On the computational aspects of semi-implicit

Runge-Kutta methods

J. R. Cash and C. B. Liem*

Department of Mathematics, Imperial College of Science and Technology, Queen's Gate,

London SW7 2BZ

In recent years the problem of obtaining an approximate numerical solution of stiff systems of
first order ordinary differential equations has received a great deal of attention. One important
class of numerical procedures suitable for tackling this problem is the class of semi-implicit
Runge-Kutta procedures originally proposed by Rosenbrock. Although a great many algorithms
belonging to this particular class have now been proposed a detailed comparison between them
on a truly representative class of stiff systems has not so far been made. Moreover an analysis of
the computational aspects of semi-implicit Runge-Kutta schemes is noticeable only by its absence.
The purpose of the present paper is to examine some of these computational aspects in the third
order case in some detail with the aim of making some specific recommendations regarding which
methods should be used in practice. The details of some fairly exhaustive numerical experiments

are also presented.
(Received May 1977)

1. Introduction

In the present paper we shall be concerned with the approxi-
mate numerical integration of stiff systems of first order
ordinary differential equations of the form

B — 10, xto) = %o (1.1)

In an attempt to derive a class of Runge-Kutta procedures
suitable for the numerical integration of (1.1) Rosenbrock
(1963) proposed the class of semi-implicit methods given by

R
Xnt1 — Xp = hzlcrkr
re=

ky = £6e) + ah & () (12)
0x

r—1 r—1
b= fsat b > k) + ah L+ b > gk,
s=1 s=1

r=23...,R

where the ¢;’s, a;’s, B;;’s and b;;’s are constants. Several algor-
ithms of this particular class have more recently been
proposed (2, 3, 4, 5) but because of the inherent difficulty in
deriving high order schemes (see particularly Calahan, 1968)
attention has been mainly focassed on the problem of actually
obtaining schemes rather than on an examination of the com-
putational aspects of existing methods. The main practical
problem associated with the use of (1.2) lies in the estimation
of the local truncation error. An algorithm containing a built-in
error estimate of the type proposed by Merson (1957) has
been derived by Haines (1969) but no real examination of its
computational efficiency seems to have been carried out so far.
The present paper arose as a result of some numerical experi-
ments performed with Haines’ method which in some cases
was found to produce rather unexpected results. An examina-
tion of the theoretical aspects of Haines’ algorithm by the
second author (CBL) revealed that the expression for the
characteristic root given by Haines is incorrect. It was found

that the correct expression for the characteristic root is given

by

(1 — 89/3 + (11¢%)/6 + ¢*/3)/(1 — 11¢/3 + 5¢* — 3¢° +
(24)/3), 9 = ha 1.3)

The third coefficient in the numerator of (1.3), (= 11/6), is

different from 2/9 which is the corresponding coefficient in
the expression for the characteristic root given by Haines.

*Now at Department of Mathematics, Hong Kong, Polytechnic.

Volume 21 Number 4

g

g

. o
This error also invalidates Haines’ plot for the region of
absolute stability of his method (although the true region is;
not very different from his) and for a consideration of this and
other theoretical aspects of semi-implicit Runge-Kutta
methods the reader is referred to Liem (1976). The fact thaff
this error has remained undetected so far and has been
duplicated several times in the literature would seem to suppor@
our claim that a detailed analysis of the computational aspect§
of semi-implicit Runge-Kutta methods has not so far bee
carried out. In view of this we decided to make some coms
parisons between four specific third order methods to see whag
general conclusions could be drawn. In particular we wanted
to see how the error estimation procedure proposed by Haine%
which is strictly valid only for linear systems, performed o
general nonlinear problems and we also wanted to see how
expensive Haines’ method is in terms of computing timg-
compared with certain other methods. By carrying out such am
analysis we were able to gain some important information:
regarding error estimates of this type since, although ou§
attention was confined to the third order case in this paper,
it is expected that most of our general conclusions carry over
to higher order equations as well. &
The methods which we have chosen for comparison and th&

corresponding test problems are given in Section 2 and £
summary of the results together with the main recommenda%
tions are given in Section 3.

udy g1 uo

2. Some third order methods
Since the only serious attempt to derive a semi-implicit Runge=
Kutta procedure of the form (1.2) containing a built-in errof3
estimate has been made by Haines, and Haines’ method is
third order, it seemed appropriate to carry out our investi-
gation by considering some third order methods. The schemes
which we chose for comparison purposes were as follows:

1. Haines’ method.
2. Calahan’s (1968) method which is given by
Xn+1 — x" = 3/4k1 + 1/4k2

ky = h(T — ha &)11 ()
ox

ky = hT = ha 3L)11 e, + by

where a = 0-788675134 , b = —1-15470054 ,
and two methods of the general form

Xpt1 — Xy = clkl + C2k2 + C3k3
ky = k(I — a;hA(x,))~f(x,)
ky = h(I — a,hA(x, + e1k,))™Yf(x, + bik,)
ks = h(I — ashA(x, + ek, + e3k,)) f(x, +
bk, + dik,)
where A(x) = f (x) The two sets of coefficients which we
choose are

3.01 = 13/4,02 = 3/4,C3 = _3,a1 = az = 1/2,b1 =
_2/3,e1 = €, = €3 =b2 = dl =0,03 = 1/3
and
4.¢; = 2/3,c, = 01345999274 , c; = 01987334059 , a, =
a, = a3 = 004358665215,
by = —1,b, = 06013743641 , d, = 0-:3986256359 , e, =
e, = e; = 0. (see Cash, 1976).

The expressions for the characteristic roots of 3. and 4., denoted
by R,(h2) and R,(hA) respectively, are given by
Ry(hd) = (1 — q/3 — ¢*/H/(1 — 4¢/3 + 14*/12 — ¢*/12) "
q=
Ry(h2) = (1 — (Ba — 1)g + (3a* — 3a + 1/2)gH)/(1 —
3aq + 3a*q? — a’q?),

where a = 0:4358665215. It can easily be shown that both of
these schemes are L-stable and have order 3. Associated with
schemes 2, 3 and 4 we use an ‘h — 2k’ error estimation
procedure coupled with local Richardson extrapolation and
we shall explain this in more detail later on. If we now take
two steplengths of integration as our unit of comparison we
find that in integrating two equal steps the following main
computations are required:

Method Function Jacobian Matrix
evaluations evaluations inversions
1 10 6 10
2 5 2 3
3 5 2 6
4 8 2 3

We see immediately from this table that Haines’ method
requires more function evaluations, more Jacobian evaluations
and more matrix inversions than any of the other methods
and as a result we would immediately question its efficiency.
In general it would seem that scheme 2 requires the least
computational effort but it suffers from the disadvantage of
not being L-stable and very poor results have been obtained
on excessively stiff problems. Unsatisfactory results when using
Calahan’s method for certain problems have also been
reported by Lapidus and Seinfeld (1971). We chose method 3
so as to keep the number of function evaluations to a minimum
and method 4 was chosen to keep the number of Jacobian
evaluations and matrix factorisations to a minimum. For a
detailed derivation of 4 the reader is referred to Liem (1976).

We now describe our step control procedure in more detail.
Rewriting our semi-implicit Runge-Kutta procedure in the
form

Xny1 — Xp = h¢(xmh)
it follows that the local truncation error of our scheme is given

by
Tn+l = x(tn+ 1) - x(tn) - h¢(x(tn),h)

where x(¢,) is the theoretical solution of our initial value
problem at the step point #,. Assuming that x(¢) is sufficiently
differentiable we obtain a relation of the form

Tn+1 = w(x(tn))h4 + O(hs)

where A*y(x) is the principal local truncation error of our
p

364

scheme. If now starting from the point (¢,,x,) we use two
different steplengths 4 and 2A to get two distinct approxi-
mations to x(7,,,) we may use these two approximations to
give an estimate of the principal local truncation error. Firstly
if we use a steplength 24 to get our first approximation x;, ,
to x(t,,,) we have

XMtns2) = Xpe2 = Tpvy = QA*Y(x(2,) + O(H°) .
If we now compute x,,, ,, the second approximation to x(¢,. ,),
by applying our method twice with a steplength / we have

Mlps2) = Xpr2 = Tpiy = 20%(x(1,)) + O(A°) .

Subtracting these two relations and ignoring the terms 0(h°)
we have

Eni2 = X(tps2) — Xps2 ~ 1T (Xps2 — Xp42) 2.1
and this serves as a computable approximation to the local
truncation error of our scheme used with a steplength 4. When
dealing with stiff systems it can of course be dangerous to
ignore the O(h®) terms since the values of the derivatives
included in these terms may be very large. Practical experience
has however shown that (2.1) is usually a reasonable estimaté
of the local truncation error. We may use this error estimate t&
control the stepsize in the following way:]

Let 6(¢) be the maximum local truncation error allowed in thg
numerical solution when integrating from ¢ to the next step
point. After every two steps a comparnson between the
estimated local truncation error and the maximum allowablg:

error 0, = 6(t,) + 0(t,.,) is made and the new steplength i§
determined. If §
1. Max|e,, ,|; > 0, halve & and return to the grid point (t,,,x,l)g
J 2.
Here (e,,); = jth component of ¢, ,. (é
2. Maxls,,ﬂlj < 0,/25 double 4 and continue from (¢, 5,X,+ 2@
>
Table 1 Results for problem C1 El
Q
Method Function Jacobian Inversion Numberz:
calls calls calls of stepsa

1 1892 1118 1935 386

2 745 285 460 285

3 594 227 734 227

4 995 231 382 231

FI:F3 = 3'2,]1:-13 = 5,11:13 = 2'6,N1:N3 =17

uo 18anb Aq $90.5¢/€9¢/¥/1C

Table 2 Results for problem C2

Method Function Jacobian Inversion Numbero
calls calls calls of stepsE
1 2184 1308 2190 437 S
2 823 324 499 324 *©
3 648 254 788 254
4 1082 264 409 264

Fy:Fy=34,J.:Jy = 51,1,:I; = 28, N;:Ny = 17

Table 3 Results for problem D2

Method Function Jacobian Inversion Number
calls calls calls of steps

1 13033 7820 13038 2604

2 1817 724 1093 724

3 1397 556 1682 556

4 2966 738 1114 738

F:Fy =93,J,:0, = 14, I;:1, = 18, Ny: Ny = 47

The Computer Journal

Table 4 Results for problem D5

Table 5 Results for problem ES

Method Function Jacobian Inversion Number Method Function Jacobian Inversion Number
calls calls calls of steps calls calls calls of steps
1 1018 608 1025 204 1 14919 8947 14930 2985
2 308 118 190 118 2 2261 898 1363 898
3 268 102 332 102 3 1948 774 2348 774
4 434 102 166 102 4 4066 1010 1528 1010
F:Fy =38, J;:J; =6, I,:I; =31, N;:N; =2. Fy\:F3 =77,J;:J3 = 11'6, I :I; = 6:4, N;:N5 = 39

3. Otherwise keep # fixed and continue from (¢, ;,%Xp+).

One of the major practical difficulties in making a numerical
comparison of integration methods is that of choosing a truly
representative class of test problems. This difficulty has,
however, now been largely removed for small systems at least
as a result of a recent paper by Enright et al (1975) which lists
an excellent selection of suitable test problems. For the
purposes of the analysis presented in this paper we did not think
it worthwhile to consider any linear problems, since most
A-stable methods will perform fairly well on this particular
class of problem, and so we confine our attention to the
nonlinear problems Cl1, C2, D2, D5 and E5 which may be
found, together with their original sources, in Enright et al
(1975).

3. Conclusions and recommendations

3.1. Comparison of accuracy

In order to make a comparison between the degrees of accuracy
obtained at the end points of the range of integration the
problems were run first of all with 8(t) = § = 10~ * and then
with 0 = 1075, We concede that different conclusions may
possibly have been obtained if different tolerances (and in
particular if a variable tolerance such as the one suggested by
Enright et al) had been used but in any comparison certain
constraints must necessarily be imposed to keep the amount
of information generated to a manageable size and one of our
constraints was that fixed tolerances were used. It was found
that with a given fixed error tolerance almost exactly the same
degree of accuracy was obtained for all methods leading to
the conclusion that there is little to choose between them in
this respect.

3.2. Comparison of computational effort

The operations which need to be counted in general for the
purposes of our comparison are the numbers of function
evaluations, Jacobian evaluations, matrix inversions and the

References
ALLEN, R. H. and PotTLE, C. (1966).

CALAHAN, D. (1968).
CasH, J. R. (1976).
differential equations, JACM, Vol. 23, pp. 455-460.

Stable integration methods for electronic circuit analysis with widely separated time constants, Pro
Sixth Annual Allerton Conf. on Circuit and System Theory, T. Trick and R. T. Chien, Eds, pp. 311-320.

A stable, accurate method of numerical integration for nonlinear systems, Proc. IEEE, Vol. 56, p. 744.
Semi-implicit Runge-Kutta procedures with error estimates for the numerical integration of stiff systems of ordinary

total number of steps required to reach the end of the range of
integration. We denote these by F;, J;, I; and N; (i = 1,2,3,4)
for methods 1.-4. respectively. For all of our five test problems
it was found that the number of steps taken by method 1 was
always the largest of the four methods and the number of
steps taken by method 3 was always the smallest. In view of
this it would seem to be particularly appropriate when listing
our results to give the ratios F,:F;,J,:J;, etc. and this 1s
done. In Tables 1-5 we give the details of the main comput -
tional effort involved with the four methods which we have
considered and as can be seen method 1 performs rathér
poorly. Bearing in mind the L- stability of methods 3 artl
4 it would seem to be advisable to use method 3 if functich
calls are very expensive compared with other operatlons a@
method 4 if Jacobian calls are the most expensive operatlong

eoe//'s

3.3. Performance of the error estimation procedure
It was found that both types of error estimate (i.e. the MerS(ﬁl
type used by Haines and the & — 2 type used by the othér
methods) were satisfactory for all problems run and in parti-
cular neither considerably underestimated the local truncatich
error (which is the dangerous case) at any stage. There 1§
however, always the nagging doubt that Merson type errcr
estimates, which are strictly valid only for linear systems, m

perform badly and produce disastrous results on certain classés
of problems. A problem for which poor results are obtainegl
has been described in the non-stiff case by England (1969) ar@
in the stiff case problems may no doubt also be found for whlcg
the Merson error estimate performs badly.

3.4. Conclusions

In conclusion we may only repeat that in practice (certain
in the third order case and probably in general) it seems to he
more efficient to derive schemes requiring as few function m'
Jacobian evaluations as possible and to use them with a@
h — 2h error estimate rather than to derive one step methocﬁ
containing ‘built-in’ error estimates.

980 /G€/€9€/

dy 6l u

YeEE U

ENGLAND, R. (1969). Error estimates for Runge-Kutta type solutions to systems of ordinary differential equations, The Computer Journal,

Vol. 12, pp. 166-170.
ENRIGHT, W. H., HuLL, T. E. and LINDBERG, B. (1975).
Haings, C. (1969).
Journal, Vol. 12, pp. 183-187.

Comparing numerical methods for stiff systems of ODE’s, BIT, Vol. 15, pp. 10-48.
Implicit integration processes with error estimates for the numerical solution of differential equations, The Computer

Larbus, L. and SEINFELD, J. H. (1971). Numerical Solution of Ordinary Differential Equations, Academic Press.

Liem, C. B. (1976).

An Evaluation of Haines’ Method for the Numerical Integration of Stiff Systems of Ordinary Differential Equations,

M.Sc. Thesis, Dept. of Mathematics, Imperial College, University of London.

MERsoN, R. H. (1957).
Establishment, Salisbury, South Australia.

RosenBrock, H. H. (1963).
pp. 329-330.

Volume 21 Number 4

An operational method for the study of integration processes, Proc. Symp. on Data Processing, Weapons Research

General implicit processes for the numerical solution of differential equations, The Computer Journal, Vol. 5,

