Discussipn and correspondence
Automatic generation of payroll programs

M. H. Williams and E. V. C. Fielding

Department of Computer Science, Rhodes University, Grahamstown, South Africa

A system for automatically generating programs for a particular class of problem—in this case
the class of payroll programs—is discussed. The technique used in the generation process is based
on the stepwise refinement approach to problem solving. The method described is applicable to
other similar problems and ultimately could be used in a general automatic programming system.

(Received February 1978)

1. Introduction
The term ‘automatic programming’ refers to a system which will
automatically create a program from some specification.
Initially (Sammet, 1969) this term was used in the narrow sense
to refer to compilers (where the specification is simply a
program written in a high level language). More recently
(Knuth, 1974) the term has been used to refer to much more
ambitious systems which in some way accept the definition
of a problem from a user and from this construct a program
to solve the problem.

Various workers are already engaged in the task of creating
systems to solve general forms of problems (eg. Balzer et al.,
1974) while others are approaching the problem from the point
of view of accepting an existing program and converting it to a
significantly improved form (Cheatham and Wegbreit, 1972).

An alternative approach to automatic programming is to
consider specific applications for which the techniques of
solution are known but for which many variations in user
requirements exist. If one can create a system which will
adequately determine the user’s needs and generate a unique
program to solve each individual user’s particular problem,
this will provide a small step in the direction of the ultimate
goal of automatic programming. Furthermore if the same
technique can be applied to other types of problems and
eventually the different systems can be merged into a single
system, one may indeed obtain a limited form of the all purpose
automatic programming system—one which may not be
capable of handling ‘any’ problem but which will certainly
be capable of handling the more common problems from a
particular area.

One of the most common programs in existence today and
certainly one of the most important in most institutions, is the
payroll program. The payroll program is also a program for
which user requirements differ widely.

The present paper describes a system, the aim of which is the
automatic generation of payroll programs. This involves both
the determination of user requirements and the generation of
a unique program to meet each user’s particular needs.

2. Structure of the system

The current approach to designing a system, which will
provide for a variety of different user requirements, is to con-
struct a package. In order to use a package, the user must
decide which facilities he requires, set up the appropriate
parameters and feed these into the package.

From experience the task of deciding on and setting up the
parameters can be a lengthy one and one which requires some-
one with considerable computer expertise to perform. In one
instance the setting up of a set of parameters for one computer
payroll package which is currently being marketed, took one
institution (with under a thousand employees) many man-
months to complete. In general parameters may lead to prob-
lems unless they are well designed and documented.

378

Questions

@)

o

1 2

2

o

Q-A Flowchart 1]

User «— e ¢ &
Program Info a

:

P

rogram =

Generator i

14

Cobolg?
User Fo.rmat Format Prograin
Editor Info @

3

I

2

Fig. 1 An overall view of the system °
(]

3

On the other hand a question answering approach is a mu
more efficient and effective means of determining the userzs
needs. The question answering system can be designed to ask
the user only those questions which are relevant, omitti@
those which from the user’s previous replies are obviously
irrelevant. Thus this approach was adopted here. B

The question answering system used here is a table driven
program for which the data is set up initially on a disc file:
The data for each question consists of three components:

(@) the text of the question

fufgo

C/Y

(b) the expected answer

uoisanb Aq z

(c) the action.

The expected answer field contains a little procedure which
must be executed once the text of the question has been dig
played. It is responsible for displaying any additional inform%
tion and reading in and checking the user’s reply. It also pers
forms certain actions on the basis of the user’s reply. =

The action field also contains a small procedure which is
executed after the user’s reply has been read and the expected
answer procedure is completed. The action procedure is
concerned essentially with the generation of ‘flowchart boxes’
on the basis of the user’s reply and with deciding which ques-
tion should be asked next.

The output from the question answering system comprises
a set of flowchart boxes which contain most of the information
necessary to construct the program. The only details which
are missing at this stage are details about input/output formats.
A separate program, the Format Editor, is responsible for
setting these up. Thus when the user finishes with the question
answering system, he is directed to the Format Editor which
obtains the necessary information and stores this away
on a disc file.

The final step in the process is the Program Generator. This

The Computer Journal

A B C

caleulate =] calculate
B1O| i S hasic p OVERTIME
addiions AD| eicrw| pE | omene
l ! I
calculate calculate
ANNUAL-BONUS
B | 55 1 AE, |
l calculate l
LY calcutate
AE., | apprtions
1 3 if timely
1
l !
calculate calculate
OVERTIME TIME-AND-A- No
if timely HALF AI

if timely

L 1
calculate

ANNUAL- ANNUAL-BONUS
BONUS if timely

if timely J{

calculate
ADDNA
if timely

calculate
*2 if nec-
essary

calculate

calculate
ADDNA
if timely

calculate
calculate
ADDNB ADDNB
if timely if timely
] 7

Fig. 2 (a) A portion of the initial flowchart;
(b) possible replacement boxes;
(c) part of the flowchart after expansion by question 9;
(d) the same part after expansion by question 10;
(e) same as (d) after expansion for overtime;
(f) the pair of boxes which replace each box of type AE

accepts as input the information set up by the question
answering system and that by the Format Editor and uses
these to generate a COBOL program which is tailored to the
user’s requirements (see Fig. 1).

3. The generation process

The strategy followed in the process of generating flowchart
boxes is based on the principle of stepwise refinement. The
first few questions determine the nature of the program to be
generated (e.g. weekly payroll, single shot program, setup
program, etc.); from these the initial flow diagram is deter-
mined. Each subsequent question, which is asked, is concerned
with the refinement of boxes in this flowchart and, depending
on the user’s reply, one or more boxes in the flowchart may be
replaced by other boxes with more specific information.

To demonstrate this, consider the portion of flowchart in
Fig. 2(a). This represents part of the whole flowchart at an
early stage in the question answering process. One will then
encounter the question

0.9. WHAT ADDITIONS?
WHAT ADDITIONS ARE THERE TO BASIC PAY/
STANDARD SALARY?
A) OVERTIME
B) ANNUAL BONUS
C) HOLIDAY BONUS

N) NONE
0) OTHER?

Volume 21 Number 4

The expected answer procedure will read the user’s reply—
a string of characters—checking that each character lies in the
range A to O. The characters are stored on a stack. The action
procedure does the following:

1. If the answer is ‘N’, remove box B10 completely and
replace box B11 by box AD (see Fig. 2(5)); goto question 13.

2. Otherwise replace box B10 by a series of boxes of type AE
(see Fig. 2(b)) replacing the parameter * by the appropriate
string. If ‘A’ occurs in the stack, set the overtime pointers;
if ‘O’ occurs in the stack, set the ‘other’ pointers and go to’
Q. 10. If the overtime pointers are set but not the ‘other
pointers, go to Q. 11 otherwise goto Q. 13.

Assuming that the user has replied giving the letters A, B and
O, then box B10 would be replaced by the flowchart in
Fig. 2(c). Now since the user has specified other additions
(0), the next question to be asked will be:

Q.10 OTHER ADDITIONS
WHAT OTHER ADDITIONS ARE THERE?

The expected answer procedure reads one or more strings and =
stores them on a stack. The action procedure replaces the
OTHER ADDITION box (in this case box AE;) by one or 2

more boxes of type AE with the appropriate addition name g

substituted in place of the parameter. Thus if there are two
other additions, say ADDNA and ADDNB, the updated3
flowchart will look like that in Fig. 2(d).

The next question is responsible for handling different types &

jumoQ

C
CL
CL

C

=
S

=
Q
C

of overtime and expanding box AE, accordingly, e.g. as m3
Fig. 2(e). One might then be asked about the frequency of &

each addition as follows:

Q. 15 FREQUENCY OF ADDITIONS
AN ADDITION MAY BE CALCULATED IF
(A) IT IS A WEEKEND

&

calculate
TIME-AND-A-
HALF if nec-]
essary

<&

calculate
ANNUAL-BONUS
if necessary

&

calculate
ADDNA
if necessary

if
QUARTER-
END?

calculate
ADDNB
if necessary

I.__J

Fig. 3 The portion of the flowchart after question 15

379

20z Iudy 61 uo 3senb Aq z| | 2G€/82€/¥/1Z/31911HE/|ufwod/Wwod dno ol

(B) IT IS A FORTNIGHTEND
(O IT IS A MONTHEND

(I) A SPORADIC INDICATOR HAS BEEN SET.

THE ADDITIONS ARE LISTED BELOW. USE THE
ABOVE LIST TO INDICATE NEXT TO EACH WHICH
FREQUENCIES ARE APPLICABLE.

In this case the action field replaces each box of type AE by
the pair AI with the appropriate substitution of parameters.
The result is shown in Fig. 3.

4. Conclusion

The question answering interface with the user is an effective
way of establishing the user’s requirements. Even someone
with little or no computer experience can generate a payroll
program within a matter of hours and a complex system can
be set up in a short space of time.

The question answering system produces as output a flow-
chart structure. This has several advantages, the most import-
ant of which is that the use of a flowchart structure makes this
part of the system to a certain extent language independent.
It is possible to write a Program Generator for other lan-

References

BALZER, R., GREENFELD, N., KAy, M., MANN, W., RYDER, W., WiLczyNsKI, D. and ZoBrisT, A. (1974).
Programming, in Proceedings of IFIP Congress 71, North-Holland, Amsterdam, pp. 326-330.

A Laboratory for the Study of Automatic Programming, AFIPS Conf. Proc., 40, pp. 11-21;

Computer Programming as an Art, CACM, Vol. 17 No. 12, pp. 667-673.

CHEATHAM, T. E. and WEGBREIT, B. (1972).
KNuTH, D. E. (1974).

guages, €.g2. FORTRAN, in which case one could produce
one’s final generated program in a variety of languages.

The reason for producing the final generated program in a
high level language instead of producing a machine code
program directly is that the user may then inspect the result
to check that it does suit his requirements. Thus if he should
want a facility not catered for by the system it is possible to
add the appropriate COBOL statements to the generated
program. Since COBOL is a reasonably efficient language
for this type of problem the loss of efficiency in generating
COBOL statements is not particularly serious.

The use of the stepwise refinement approach meant that the
questions had to be organised in such a way that information
is obtained in order of increasing detail. This is the most logical
way of presenting the questions and is the most useful from
the point of view of manipulating the flowchart structure
produced.

The system has been implemented using PASCAL on an
ICL 1902T.

Acknowledgements
One of the authors, Miss E. V. C. Fielding, was in receip
of a CSIR bursary when this work was carried out.

eenumMoQg

Domain-independent Automati

[y

Predicting student success in an introductory

programming course
L. J. Mazlack

Computing and Information Science, University of Guelph, Guelph, Ontario, Canada

Over several years, more than a thousand students have taken
the same introductory programming course. The students
were drawn from all academic disciplines and academic
experience levels. No correlations were found between success
in the course or its components when posed against academic
programme, gender or semester in school. Additionally,
when the IBM Programmer’s Aptitude Test was administered
to a smaller group of mathematically orientated students
taking the same course, the predicative value of the test was
found to be low.

There are several questions that immediately come to mind
when constructing an introductory course. Some of them are:

(a) who should it serve?

(b) should the disciplines be separated ?

(c) are the students from varying disciplines equally com-
petitive ?

(d) what is the potential performance difference due to the
number of semesters of academic experience?

(e) does one gender perform better than the other?

(f) is it possible to predict performance by an aptitude test?

The importance of these questions varies from person to per-
son. Answers which may appear to be self-evident to one
person may be considered to be an emotional response to
another. An empirical study was developed to shed some light
on these questions. The course material was held constant
over a period of several semesters. The student’s performance

3/17/Lz/ap!ueuu[Luo:)/LUOO'an'o!Luepeoe// sd)® woly pap

was then correlated against a standard aptitude test and againsg
various personal descriptions (semester in school, sex, etc.)<

The three PAT (IBM Programmer’s Aptitude Test) tesf
components and PAT total score were correlated against ther
various course components. The highest correlations existed:
between student performance in the PAT scores and the mid$
term examination results. The midterm examination contained
the least programming of any component in the course. The:
correlation with the pure programming and problem analysi%>
component of the course (assignments) was very low. IE&
logically follows that this type of test should not be admmlstered‘aJ
to college level people as the results are meaningless and mlghP
have adverse effects on the test takers.

No significant correlation was found between academic
performance and academic discipline. This is directly opposed
to the often made assumption that a student’s academic
discipline is a good predictor of potential competency in
programming. This implies that if a course is properly con-
structed and presented, there is no need to segregate students
from differing academic disciplines due to concerns based on
learning ability or interdiscipline competitiveness.

No significant difference was found in academic performance
between the genders. The only observable difference is that
women appear to be more consistent than men.

The correlations found between semester in school and
academic performance were very low. This clearly indicates
that in a properly constructed course, there is no reason to
worry more about those beginning their university experience

The Computer Journal

