MAINFRAMES INFORMATION

FRONT-END
PROCESSORS

Fig. 2 General multi-unit system with sample connections

B, —maximum number of characters per second through
processor type A.

References
GorDON, W. J. and NeweLL, G. F. (1967).

Closed Queuing Systems with Exponential Servers, Operational Research, Vol. 15, pp. 254-265.
LANGEFORS, B. (1970). Theoretical Analysis of Information Systems, Student Litteratur, Lund, Sweden.

MooRE, S. C. (1975). Approximating the Behaviour of Non-Stationary Queues, Operational Research, Vol. 23, pp. 1011-1032.
PAck, S. D. (1975). The Output of an M/D/1 Queue, Operational Research, Vol. 23, pp. 750-760.

cijkam—average total time for a query of type i to be processed
along the route j—k—A—m through the system.

—the number of lines available into front end processor
A in mode k.

D;, —the required minimum number of processed queries
per hour of type i through input/output device j.

u —utilisation of lines.

The problem statement is then:

MaxZ = ¥ Xijiam
i,j,k,Am
Subject to: Y @im Xijam < 3,600 all m
i,j,k,A
2 bi Xijram < 3,600 B, allA
i,j,k,m
S Cijeam Xijram < 3,600.u.n,, all k, A
i,j,m
Z Xijkam < Dij all i, i
k,A,m
Xijkam >0 alli, j, k, A\, m

gojumoq

Book reviews

The Architecture of Concurrent Programs, by Per Brinch Hansen,
1977; 317 pages. (Prentice Hall, £13-55)

The programming language Concurrent Pascal is by now fairly well
known, and has generated a lot of interest, as perhaps indicated by
the official distribution of its implementation to 252 institutes. This
book is concerned with the use of Concurrent Pascal in developing
reliable concurrent programs and is divided into nine main sections.
The first section discusses design principles, with Brinch Hansen
presenting his requirements of the qualities a program should ex-
hibit. Sections 2 and 4 provide a formal introduction of the main
concepts and language notation of Concurrent Pascal (namely,
processes, monitors and classes). Section 3 gives a short overview of
Sequential Pascal, which is in the main identical to Wirth’s Pascal,
and can be used to program other system utilities (e.g. the compilers).

Sections 5 to 7 present three complete examples of working model
operating systems written in Concurrent Pascal. As the text of these
programs is included, these sections are rather long and form
approximately half of the book.

Seciion 8 provides the definition of Concurrent Pascal, together
with the additional restrictions and extensions of the implementation
that was distributed for the PDP11/45. As the compiler in this
implementation generates code for a virtual machine, Section 9
describes the interpretive implementation of this virtual machine on
the PDP11/45.

The book is written in the usual self congratulatory fashion of
Brinch Hansen. The informed reader will have seen already several
sections of this book published elsewhere. While the book claims to
present a systematic way of developing reliable concurrent pro-
grams, this is illustrated solely through the use of Concurrent Pascal.
It is clear that some of the methodologies advocated could be
applied in other languages, for instance in the assembly languages
that are still widely used (unfortunately). Indeed, the kernel which
supports the Concurrent Pascal virtual machine has itself been
programmed in assembler in the distributed implementation. This
kernel has been extremely well engineered ; however, Brinch Hansen
only devotes 10 pages of the book to the discussion of its imple-
mentation. In contrast, the inclusion of three complete examples
programmed in Concurrent Pascal seems somewhat excessive, and I
feel that a reader would have benefited more from a more detailed

The Computer Journal Volume 22 Number 1

"olWapeoeR//:sdny wodj pap

o
description of what Brinch Hansen calls ‘reliable machine pré-
gramming’. However, the book is trying to sell Concurrent Pascél
to replace assembly languages, and there perhaps a conflict arise
perhaps the book should have been titled The Architecture of Cog

current Pascal Programs? 5
P. A. Lee (Newcastle upon Tyn

&/

Computer Programming Methodology, by W. M. Turski, 1977; 2
pages. (Heyden and Son, £14-00)

2B

Programming has reached the stage where there is a measure Gf
agreement about the features of a ‘good’ program. Sometimes thetg
is sound theoretical support for a concept, sometimes overwhelmir@
evidence from experience, and sometimes nothing more thas
intuition. Computer Programming Methodology presents a thorough
survey of current thought on both the design and construction &f
good programs. Apart from a preface and a page on ‘Using th§
book’, there are only four chapters, and the first of these is a four
page introduction. The second and third chapters, each of over sixty
pages, discuss basic operations and data structures, the way th

basic constructs can be incorporated into modules and schemes fc'ir
module interaction with due emphasis on parallelism and quasi
parallelism. The justification of the chosen constructs is theoretic&l
where the theory exists and intuitive where it does not. Axiomatic
methods are well illustrated in Chapter 2, which includes an over-
view of Guttag’s work on axiomatic specification of data types.

The final chapter (72 pages) draws on the preceding material and
tackles the problem of actually creating programs. For the indivi-
dual programmer ways of achieving a predesigned structure are
discussed, whilst for the project manager organisation of teams and
documentation principles are dealt with too. Notes on reliability (as
distinct from correctness), program improvement and maintenance
complete the chapter, which, with its firm base in experience,
complements the earlier more theoretical material.

In a book of this length there cannot be more than a brief mention
of many topics, and the copious references are one of its best
features. The book is nicely printed on good paper and my only
major complaint is the index, which at 105 entries can at best be

described as skimped.
A. P. BLack (Oxford)

21





