Modelling of indexed sequential files: Monitoring disc

transfers

Eva Huzan

Slough College of Higher Education, Wellington Street, Slough, Berks.

This paper describes monitoring experiments that were carried out to obtain a detailed under-
standing of a particular disc hardware/software system to enable a disc file simulation (DFS) model
to be constructed and validated. The validated DFS model provides a means of testing the validity
of estimation formulae for the performance evaluation of indexed sequential files.

(Received November 1977)

There are many combinations of file parameters and design
alternatives which affect the record access time for disc files.
This has been clearly demonstrated in the reports by Senko et al.
(1967, 1968, 1969, 1971), Lum et al. (1970, 1974) and Owens
(1970), which describe the file organisation models (FOREM 1
and FOREM II) developed by IBM to aid the system designer
in exploring alternative parameter combinations and in select-
ing the final design.

The work described in this paper is part of a larger project
concerned with an investigation and modelling of disc files. A
detailed disc file simulation (DFS) model has been designed to
be used as a research tool to test the validity of existing esti-
mation formulae for the performance evaluation of indexed
sequential files, as given for example in Senko et al. (1967),
Ling et al. (1970), Clifton (1972), London (1974), Waters
(1975) and Kollias (1978), and to enable new estimation
methods to be devised for different parameter combinations.

In order to construct the DFS model and validate it against
actual files it was necessary to obtain a detailed knowledge of
the hardware and particularly of the software to be modelled.
This paper describes how a software monitor was used to
investigate the way data is accessed and transferred by the
particular software being modelled. These details were obtained
by setting up actual disc files of specified organisations and
updating these in a controlled way to force certain data accesses
to occur for the different situations that can exist.

It is intended that the results of this project will also be of
use to the commercial user, and it was therefore decided that
one of the most commonly used disc file organisations (indexed
sequential) should be investigated in depth, that the appli-
cations simulated should be typical commercial ones (updating
and information retrieval) and that the computer with its associ-
ated software should be one that is widely used (ICL 1900,
with Direct Access Housekeeping Mark III).

The results given in this paper are for selective (skip) sequen-
tial processing, and these show how the Direct Access House-
keeping package accesses and transfers data for different
buffer combinations. Further tests were carried out for sequen-
tial and random processing. To model the full capabilities of
the software, tests would need to be carried out for the other
options available, for example the enhanced selective/
sequential processing facility starts the search from the current
position of the index and allows the user to allocate a two-cell
area instead of an index buffer at any level of index.

The ICL 1900 Direct Access Housekeeping (DAH) package

This consists of a number of subroutines which enable the
programmer to access data in direct access files at the record
level. The basic high level commands, known as Storage Device
Macros, direct housekeeping to open, close or extend a file,
to search index tables to determine the location of a record
in a file and to read, write, delete, insert or update a single
record. The necessary low level operations, such as issuing

Executive level commands, allocation of buffers and scheduling
of transfers between these and the disc, searching of index
tables, and handling of overflow, are carried out by housekeep-
ing routines (ICL, 1974).

Note:
The unit of data transfer for ICL 1900 disc files is a bucket,
which may be 1, 2, 4 or 8 blocks of 128 24-bit words in length.

0l} pepeojuUMOQg

Buffers
Direct Access Housekeeping uses a number of buffers fori
transferring data when processing at the logical level. House-5
keeping buffers are allocated by the compiler as a result
of parameters in the SDDEF macro in the PLAN updatc§
program. One or two home buffers may be specified to hold 3
home buckets and second level overflow buckets. An overflow e
buffer may be specified to hold first and second level overflow 2
buckets, otherwise the home buffer(s) is used for holding both?
types of overflow bucket. At least two buffers must be available 3
if DAH is to deal with second level overflow insertions and up-g
dating. Record buffers are used to hold a single record and are 3
allocated by the user.

Index buffers are used by the SDIND macro to access thes
indexes in a sequential file. Up to three levels of index may be
specified by the user. The level 1 index is at the beginning of the X
file, the level 2 index is at the beginning of each file area and3
the level 3 index is at the beginning of each seek area. The index &
buckets contain cells of information consisting of the logical
bucket number of the start of the next level of index, and theS
highest key in the next level. The cells of the lowest level index<
being used contain the logical bucket number containing%
the required record key, followed by the highest key in that®
bucket. The user may allocate buffers for none, some or allS
of the indexes, by parameters associated with the SDIND®
macro.

ue/|u

20z Iudy

File allocation and organisation
The ICL 1900 File Allocator routine #XPJC (ICL, 1975) was
used to allocate a small indexed sequential file of seven seek
areas (cylinders), two of which were designated for the second
level overflow area. Each cylinder contained 16 1-block buckets,
three of which in each cylinder (other than those in the second
level overflow area) were designated as first level overflow
buckets as a result of specifying a cylinder packing density of
85%. The first cylinder contained the level 1 index for the file
in bucket number 1 and the level 3 index for that cylinder in
bucket number 2. The remaining four cylinders contained the
level 3 index in the first bucket of the cylinder. Thus the first
cylinder had 11 home buckets and the other four cylinders had
12 home buckets as shown in Fig. 1.

This file was loaded with data initially using the ICL File
Organisation Software. This consists of two parts: first aPLAN
skeleton program is generated which is run with parameters

The Computer Journal Volume 22 Number 1

first level

cylinder logical bucket numbers overflow
area
111 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
L1 | L3

2 |L3

3 (L3

4 L3

51{L3

6

*

7 112

L1 = level 1 index
L3 = level 3 index
* second level overflow area

Fig. 1 File map

to give a specified file organisation. A bucket packing density
of 75% was input as a parameter. This is the percentage of
space that may be used in the home buckets for data on loading.

The indexed sequential file was loaded with data from a serial
direct access file. The latter was created by a COBOL program
which had as input the following parameters: the number of
records (150) to be output to the disc file, the record length
(30 words), the first key (10), the gap between successive keys
(50), and the file generation number.

The contents of the buckets on the indexed sequential files
were printed by means of an ICL routine #XPJL, and showed
that three records had been loaded into each bucket. The space
left in the buckets was 36 words (128—2 word header—
(3 x 30)).

Updating the file

The program developed to update the indexed sequential file
was written in PLAN and incorporated a segment which
recorded the disc transfers in a stack. The latter was output
at the end of each run in the form of a core printout which
showed the unit number, mode, logical bucket number, transfer
size and buffer address, of each disc transfer in the order in
which the transfers occurred (see Fig. 2).

In addition, the DAH Performance Information routine was
incorporated. This outputs the mill time used in housekeeping
routines and the number of home, first and second level
overflow and index buckets read and written (HOME R,
HOME W, 10F R, 10F W, 20F R, 20F W, IND R). The disc
transfers as recorded by this routine were compared with the
core printouts. The latter were used to determine the action of
DAH, so that this could be incorporated in the DFS model.
These core printouts are also used to validate the action
of the DFS model.

Core printout of stack

Fig. 2 shows the format of the core printout (in octal) and its
interpretation. A core printout of all the disc transfers that
occurred was obtained after the same data file had been up-
dated with the same insertions for each of the sixteen possible
buffer combinations. Each transfer was interpreted and this
information was used to construct Table 1 and to explain the
differences in the number of disc transfers according to the
buffer combination used and the distribution of the insertions
over a cylinder. The effect of the latter is illustrated by com-
paring C2, C3 and C4 for each specified combination.

The Computer Journal Volume 22 Number 1

1) papdojumoq

Distributions of insertions
Five records were inserted in each of three cylinders (C23
C3 and C4). For C2, the insertions were made into separate;
buckets; as there were 36 words left in each bucket after loads
ing, no overflow occurred in C2. For C3, the distributiom
of record keys for the insertions was such that one buckef
had two insertions, and another bucket had three insertions3
For C4, all five insertions were made into one bucket.

Explanation of variations in number of disc transfers

1.1 HOME, 1 OVERFLOW BUFFER

1.1 Buﬂ'ers for level 1 (L1) and level 3 (L3) indexes

L1 is read into its own separate buffer at the start of the pro
cessing and remains there throughout. L3 is read once int
its own separate buffer for each cylinder.

For C2, there is one home bucket read into the home buﬂ'e;g
for every insertion (into separate home buckets) and corrcspond-*
ing home writes to write away the updated bucket each tlmev

For C3, only two home buckets are accessed (two home readg
and writes). One bucket had two insertions; however there 1&;
room for only one, therefore the second insertion has to bg_
written into a first level overflow bucket. Two 10F reads ar@
required. The first reads the first bucket in the cylinder mt%

0|1¢e/|w[w00/w00'dn0'0!

Core printout Interpretations %
*00200044 unit 0 (main file), mode 2 = read, >

Home BN 36 =
*00000200 transfer size = 128 words (1 block bucket) §
*00014662 address of home buffer (main file) &
*00200041 read 1st bucket in cylinder (to establish

overflow BN)
*00000200
*00015074 address of overflow buffer (main file)
*00200060
*00000200
*00015074
*01200003 unit 1 (transaction file) read BN 3
*00000200
*00017002 address of home buffer (transaction file)
*00300044 main file, mode 3 = write, Home BN 36
*00000200
*00014662
Fig. 2 Core printout of part of stack for 1 home, 1 overflow buffer

combination
23

Table 1 Disc transfers for different buffer combinations for the same data files

Number of disc transfers

Buffer combination HOMER 10FR INDR HOMEW I1I0FW Cylinder
TOTAL
C2 5 0 1 5 0 11
L1, L3 C3 2 2 1 2 1 8
C4 1 4 1 1 3 10
C2 5 0 5 5 0 15
L1 only C3 5 2 5 5 1 18
1 HOME, C4 5 4 5 5 3 22
1 OVERFLOW C2 5 0 6 5 0 16
L3 only C3 5 2 6 5 1 19
C4 5 4 6 5 3 23
C2 5 0 10 5 0 20
NO INDEX BUFF | C3 5 2 10 5 1 23
C4 5 4 10 5 3 27
C2 5 0 1 5 0 11
L1, L3 C3 5 4 1 5 3 18
C4 6 8 1 6 6 27
C2 5 0 5 5 0 15
L1 only C3 8 4 5 5 3 25
1 HOME, C4 | 10 8 5 6 6 35
NO OVERFLOW C2 5 0 6 5 0 16
L3 only C3 8 4 6 5 3 26
C4 | 10 8 6 6 6 36
C2 5 0 10 5 0 20
NO INDEX BUFF | C3 8 4 10 5 3 30
C4 | 10 8 10 6 6 40
C2 5 0 1 5 0 11
L1, L3 C3 2 3 1 2 2 10
C4 2 4 1 2 3 12
C2 5 0 5 5 0 15
L1 only C3 2 3 5 2 3 15
2 HOME, C4 2 6 5 2 5 20
NO OVERFLOW C2 5 0 6 5 0 16
L3 only C3 2 4 6 2 3 17
C4 2 7 6 2 5 22
C2 5 0 10 5 0 20
NO INDEX BUFF | C3 2 3 10 2 3 20
C4 2 6 10 2 5 25
C2 5 0 1 5 0 11
L1, L3 C3 2 2 1 2 1 8
Cc4 1 4 1 1 3 10
C2 5 0 5 5 0 15
L1 only C3 2 1 3 2 1 9
2 HOME, C4 1 2 2 1 3 9
1 OVERFLOW C2 5 0 6 5 0 16
L3 only C3 2 2 3 2 1 10
C4 1 4 3 1 3 12
C2 5 0 10 5 0 20
NO INDEX BUFF | C3 2 1 10 2 1 16
C4 1 2 10 1 3 17
4 The Computer Journal Volume 22 Number 1

20z udy 61 U0 1s9n6 Aq 061£GE/Z2/1/22/a101E/UlWOd/ W00 dNo dlWspeoe)/:SAjY Wolj paPEojuMOQ

the overflow buffer to establish the logical bucket number
of the bucket currently accepting overflow records. The over-
flow bucket write occurs when the overflow buffer is required
by C4.

For C4, there are five insertions into one bucket, therefore
there is one home read into the home buffer and one home
write. The home bucket has room for one record to be inserted
and there are six words left (126 — (4 x 30)). For the
second and third insertions, tags have to be written in the
home bucket to show in which first level overflow bucket the
records have been written. The length of a tag is equal to the
key size rounded up to an integral number of words plus one
word (the tag for a 7-character key = 3 words). The tag for the
fourth insertion cannot be written until a record has been dis-
placed from the home bucket to make room for it.

The left-most record of size > 2 tags is written in the first
level overflow area and 2 tags (for the insertion and the dis-
placed record) are written in the home bucket. Thus five records
need to be written in the first level overflow area requiring two
overflow buckets to be accessed (each overflow bucket can
hold four 30-word records only). The first overflow bucket
read establishes the logical bucket number of the required
overflow bucket for this cylinder as for C3. The second and
third overflow bucket reads access the required two overflow
buckets. The fourth overflow bucket read accesses the first
bucket in the cylinder to record the number of the overflow
bucket now accepting overflow records (as this is a different
bucket to that originally used). An overflow bucket write is
required to write this away plus two more for the two overflow
buckets used. The write occurs just before an overflow bucket
needs to be read into the overflow buffer in each case.

1.2 Level 1 (L1) index buffer only

If no separate buffer has been allocated for L3, then it will be
read into a home buffer when required. This means that for C2,
the number of disc transfers are the same as before, since each
insertion is into a separate home bucket so that a different
home bucket is read in for each insertion.

However, for C3 and C4, the contents of the home buffer
will be written away before each L3 is read after the first one.
This means that the same home bucket has to be read into the
home buffer again, whereas in 1.1 the required home bucket
remained in the home buffer and was used again. L3 needs to be
searched before each insertion can take place so that for C2,
C3 and C4 there are five home reads and five home writes.

1.3 Level 3 (L3) index buffer only

L1 has to be searched before each insertion can be made, so
that L1 will be read five times into the home buffer for C2, C3
and C4 overwriting the contents as for 1.2. In addition, L3
will be read into its own buffer once for each cylinder, thus
giving six index reads for each cylinder.

Note: v

Extra time will be spent in making a seek to the first cylinder
in the file to access L1, and for the return seek to the required
cylinder, in addition to any extra time due to disc transfers.

1.4 No index buffers

In this case, both L1 and L3 need to be read into a home buffer
so that they can be searched before each insertion giving
2 x 5 = 10 index reads in each case.

2. 1 HOME, NO OVERFLOW BUFFER
2.1 L1 and L3 buffers

Because there is no overflow buffer, any overflow processing
requires the use of the home buffer, whose contents must be
written away first if it has been updated. There is no overflow

The Computer Journal Volume 22 Number 1

processing for C2, so the number of disc transfers are as for 1.1.

C3 requires one record and two records, respectively, to be
written in an overflow bucket for two home buckets. The disc
transfers are as follows:

(@) read first home bucket to insert first record (for which there
is room), and to try to insert second record (for which there
is no room)

(b) write home bucket away, since it has been updated, prior to
reading in the first bucket in the cylinder to establish the
logical bucket number of the overflow bucket currently
accepting overflow records

(c) read first bucket in cylinder into home buffer (this counts
as an overflow read)

(d) read required overflow bucket into home buffer and insert
record

(e) write overflow bucket away, prior to reading in home
bucket so that tag can be written for record just written
in the first level overflow bucket

(f) read home bucket and write tag

(g) write home bucket prior to reading in next home bucket

(h) read next home bucket into which the next insertion is to3
be made and insert one record; there is no room for the®
second record g

(i) write home bucket

(j) read overflow bucket into home buffer and insert secon
record

(k) write overflow bucket

(1) read home bucket and write tag for second record

(m) write home bucket

(n) read overflow bucket and insert third record

(o) write overflow bucket

(p) read home bucket and insert tag for third record

(¢9) write home bucket prior to reading in next required hom
bucket in C4.

The processing for C4 corresponds to that for C3. The overflow
bucket reads are for establishing the required overflow bucketé
for the cylinder initially and recording the new value (since>
two overflow buckets are used), plus four reads for one bucket;
to insert four records, plus one read to find there is no room lef@
in the current overflow bucket to insert another record and to-
establish the next overflow bucket number, plus one read for
that bucket = 8 overflow bucket reads, and correspondingly}
6 overflow bucket writes. o

ojumoq

&my wou

a1onf8/jufwoo woo dnoolwspeoe;;

VV 61 Uo

2.2 L1 buffer only
The extra home bucket reads are due to the contents of the.
home buffer having to be written away before reading in the L33
index for each insertion. Thus, whereas in 2.1 for C3 it was®
possible to establish that there was no room for the second
insertion into the same bucket, this time for C3 an extra home
bucket read has to be made to determine this. One bucket
will require one extra read for its second insertion, and the other
bucket will require two extra reads for its second and third
insertions. For C4, four extra home bucket reads are required
for the four insertions for which there is no room in one bucket.

2.3 L3 buffer only

This case is similar to 2.2 but in addition there is one extra
index read for reading L3 into its separate buffer once for each
cylinder.

2.4 No index buffers
L1 and L3 have to be read into the home buffer each time as

for 1.4.
25

3. 2 HOME, NO OVERFLOW BUFFER

3.1 L1 and L3 buffers

In this case, two home buffers are available for all the home
bucket and overflow bucket transfers. Comparing the number
of disc transfers for C3 with 1.1, the extra overflow bucket read
and write is due to the overflow bucket which has been read
into the second home buffer being overwritten by the second
home bucket read, and this has to be read again into the first
home buffer for the second home bucket overflow processing.
In C4, the home bucket was overwritten by the second overflow
bucket accessed thus causing one extra home bucket read and
write.

3.2 L1 buffer only

The two home buffers are now shared by the home buckets,
overflow buckets and L3s. L3 has to be read into a home
buffer before each insertion so that it can be searched to find the
next required home bucket. Compared with 2.2, for C3 one
overflow bucket read to establish the number of the bucket
currently accepting overflow records apparently was ‘saved’
because the L3 index containing the first bucket in_the cylinder
was already in a buffer. A similar situation occurred for C4.

3.3 L3 buffer only

This time L3 was in its own buffer, an extra overflow bucket
read had to take place so that the situation was comparable
to 2.3 for C3 overflow processing. However, only two home
bucket reads and writes were required for C3.

3.4 No index buffers
Overflow processing was as for 3.2, but extra index reads
occurred for the same reasons as those stated in 2.4.

4. 2 HOME, 1 OVERFLOW BUFFER

4.1 L1 and L3 buffers

No savings in disc transfers could be made under these circum-
stances compared with 1.1.

4.2 L1 buffer only
Savings in disc transfers were made for two reasons:

(a) The alternate home buffer was used for reading in L3,
thus avoiding rereading the required home buckets as was
the case for 1.2, 1.3 and 1.4.

(b). Extra overflow bucket reads to establish and record the
bucket number currently accepting overflow records were
avoided as in 2.3 and 2.4, because L3 (containing the first
bucket in the cylinder) was already in a buffer which had
not been allocated as an index buffer.

4.3 L3 buffer only

There were fewer home bucket reads and writes and L1 reads
for C3 and C4 compared with 1.3 because both home buffers
were used in the following way. If one buffer contained an
updated bucket then the second buffer was used for the L1
read. If both buffers contained an updated bucket then the
buffer containing the bucket not last updated was used; thus
the bucket last updated was still available in a buffer.

4.4 No index buffers

There were fewer overflow bucket reads for the reason explained
in 3.2. However, because there was no separate L3 buffer,
L1 was overwritten for each insertion giving the same number
of index bucket reads as for 1.4.

Second level overflow processing
Second level overflow will occur for a sequential file if any of
the following circumstances arises:

(a) a particular home bucket is full of tags. In this case, no
further tags can be written since there are no records left to
displace

(b) there is no room for a tag, and no record in the home bucket

has a length greater than or equal to two tags
(c) all the overflow buckets in the cylinder have become full.

A number of cylinders may be allocated as a second level
overflow area at the end of the file by specifying these as a
parameter to #XPJC. This was done for the test file used
(see Fig. 1). Buckets in use in this area are known as extension
buckets because they are chained to one particular home
bucket by means of pointers. Records that cannot be stored
in their appropriate home buckets, or in the associated first
level overflow area for the reasons given above, are written
in their logical key sequence in the chain.

The records are in physical key sequence within the extension
buckets. The extension buckets are in logical (but not necessar-
ily physical) sequence by means of pointers, so that the whole
of the chain including the home bucket is in key sequence. Y
Records and tags are moved out of home and extension buckets 5
and written elsewhere in the chain to maintain logical key8
sequence. w

The first level overflow areas are not reused after records—"
have been deleted from them unless this facility has beenB
spec1ﬁed by setting bit 0 of word 9 of the File Definition Area. =
If this is set, the search for space in an overflow bucket w1ll"’
start at the beginning of the overflow area for that cylmder,O
i.e. the last bucket in the cylinder, working backwards towardsa
the last home bucket in the cylinder. Use of this facility 1s3
likely to decrease the number of times the file has to be reorgan-o
ised because of excessive second level overflow, but may m-U
crease the number of disc transfers required and should beS
used with caution. When the file is reorganised all the recordSO
in the overflow areas are returned to their appropriate homeB
buckets.

Writing records in or retrieving records from an extensionz:
bucket always involves seeks to the appropriate cylinders asm
well as extra read and write operations. Table 2 shows the num-
ber of disc transfers for a point overflow situation giving rises
to second level overflow processing. The file previously defined
was first updated to a state where one cylinder had all firstc
level overflow buckets full and three insertions had been mades
in a second level overflow extension bucket for one home bucket.2
The example illustrates the effect of deleting two records from2
a first level overflow bucket (the first level overflow area is not%
reused) and inserting eight records into the same home bucket.S
This caused eight records to be written into extension bucketsg
and involved moving a record and some tags out of the home>
bucket and altering the contents of extension buckets, and%
resetting pointers so that the resultant chain was in logicalg
key sequence. In each case, the home and overflow buffers were™
used for second level overflow processing.

€/|U

ezl

Conclusion

A method of monitoring the action of a particular piece of
commercially available software has been described. The infor-
mation obtained from the monitoring experiments has been
used to construct and validate the DFS model. This simulates
the action of ICL 1900 Direct Access Housekeeping accurately
for the processing of indexed sequential files, and provides
a means of testing the validity of various formulae and hypo-
theses concerned with the performance of these types of files.
Because of the differences in hardware and software, some of the
tests will not apply to other systems. However, the model can
be adapted to simulate other hardware and software environ-
ments, provided their action is known to the level of detail
indicated in this paper, and validating facilities are available .

The Computer Journal Volume 22 Number 1

Table 2 Disc transfers for a point overflow situation

Number of disc transfers
Buffer combination HOMER IOFR 20FR INDR HOMEW IOFW 20FW TOTAL
L1, L3 6 1 16 2 1 1 8 35
1 HOME, L1 only 10 1 16 11 4 1 8 51
1 OVERFLOW L3 only 10 1 16 11 4 1 8 51
NO INDEX BUFF |10 1 16 20 4 1 8 60
L1, L3 6 1 21 2 1 1 13 45
2 HOME, L1 only 9 1 22 11 3 1 14 61
NO OVERFLOW | L3 only 9 1 22 11 3 1 14 61
NO INDEX BUFF | 9 1 22 20 3 1 14 70
L1, L3 6 1 13 2 1 1 8 32
2 HOME, L1 only 8 1 13 9 3 1 8 43
1 OVERFLOW L3 only 8 1 13 9 3 1 8 43 9
NO INDEX BUFF | 9 1 13 19 3 1 8 54 s
]
Acknowledgements discussions, her colleagues in the Computer Unit at Slouglfc_%

The author wishes to thank Mr F. F. Land and Dr S. J. Waters,
of the London School of Economics and Political Science

College of Higher Education for help in setting up and pro-g
cessing the test files, and International Computers Limited fors

where this reasearch project is being carried out, for helpful their co-operation and assistance. §

N
References g
CLIFTON, H. D. (1972). Systems analysis for business data processing, Business Books. 2
ICL. (1974). Direct Access, Technical Publication 4385.)
ICL. (1975). Unified Direct Access Standards Utilities, Technical Publication 4405. e

KoLLias, J. G. (1978). An estimate of seek time for batched searching of random or index sequential structured files, The Computer Journal,_

Vol. 21, No. 2, pp. 132-133.
LiNG, H., Lum, V. Y., and SEnkO, M. E. (1970).

LonpoNn, K. R. (1974).

FJCC, Vol. 37, pp. 211-222.
LuMm, V. Y., SENKO, M. E,,LING, H. and BarLow, J. H. (1974).

OWENS, P. J. (1970).
Contract AF30602-69-C-0097.
SENkO, M. E. et al. (1967).

SENKO, M. E. et al. (1969).

SENKO, M. E. er al. (1971).
AF30602-70-C-0114.

WATERS, S. J. (1975).

Calibration of the File Organisation Evaluation Model (FOREM I), Formatted Fil
Organisation Techniques, Final Report, IBM Research, Contract AF30602-69-C-0097.

Techniques for direct access, Petrocelli Books.

LuMm, V. Y., LING, H. and SENKO, M. E. (1970). Analysis of a complex data management access method by simulation ‘'modelling, AFI.

Quantitative timing analysis and verification for file organisation modelling
Information Systems, Coins IV, Plenum, New York, pp. 377-387.
Phase II, A data management system model, Formatted File Organisation Techniques, Final Report, IBM Research

Formatted File Organisation Techniques, Final Report, IBM Research, Contract AF30(602)-4088.
SENKO, M. E., LuM, V. Y. and OweNs, P. J. (1968). A File Organisation Evaluation Model (FOREM), IFIP Congress, pp. C19-C23.
File Design Handbook, Final Report, IBM Research, Contract AF30602-69-C-0100.
Semi-operational evaluation of file modelling techniques, Final Report Volume I, IBM Research, Contra

Estimating magnetic disc seeks, The Computer Journal, Vol. 18, No. 1, pp. 12-17.

o

B uiwoSw

celVigerer

Book reviews

The BASIC Idea: An Introduction to Computer Programming, by R.
Forsyth, 1978; 154 pages. (Chapman and Hall, £1-95)

This book is one of a number of recent introductions to program-
ming and the use of BASIC. These introductions range in style from
the most pedantic programming manuals to flashy, journalistic
approaches that are breaking new ground for serious computing
texts. The present book falls roughly in the middle of that range: the
style is a reasonable compromise between the rival approaches and
the reader is presented with an illuminating (and sometimes enter-
taining) range of problems and sample programs.

The whole presentation is in terms of the BASIC implementation
for the DEC System-10; while compatability problems with other
versions of the language are mentioned this is done in a somewhat
haphazard way. The immediate execution facilities of BASIC are not
mentioned—these can be helpful during program testing. With these
reservations I liked the book and would certainly recommend it to
those learning programming by using DEC System-10 BASIC.

PETER WALLIS (Bath)

The Computer Journal Volume 22 Number 1

0z ludy 6} uo 159% Aq 061€5¢€/

Large-Scale Evaluation Study of On-line and Batch Computeﬁ

Information Services, by A. Vickery and A. Batten, 1978; 176
pages.

This is a very carefully compiled report on the investigations into the

need and suitability of a computerised library information retrieval
service for the University of London. The points for and against
are well presented, even if the enthusiasm of the authors is apparent.

There is an irritating large scale use of abbreviations and, although

they are defined, it is difficult to carry them all in one’s mind when
reading the report. The repetition of facts in the various sections is
much more acceptable however, since without this the completeness
of the presentation would suffer.

Inevitably aid is needed in information services since ‘as the
volume and variety of information expands the proportion im-
mediately available in one institution contracts’. This rather specia-
lised report will be of value to librarians, researchers, providers of
systems and equipment, and providers of information services.

A. J. THOMAs (Sunbury on Thames)

27

