Tuning to service standards without monitors

J. F. A. Wiederhold

Computer Centre, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg 2001,

South Africa

A technique, based on an analytical model, a benchmark job stream and information routinely
provided by an operating system, has been developed to assist computer centre management with
hardware selection and system tuning. In this paper the author proposes the extension of the
technique of system tuning in relation to service standards.

The technique requires neither additional equipment nor specialist personnel so that most installations
can implement the method with relatively little expense. The use of information provided by the
operating system means that evaluation is described in terms of the conditions which prevail during
production. The results constitute a satisfactory first pass at system evaluation and highlight areas
that will need further investigation with hardware or software monitors.

Results include service/cost relationships, since a component of the model is the representation of
service standards. Case studies are presented which illustrate the application of the technique in

investigating optimum multiprogramming level and expected throughput capacity on different

configurations.
(Received July 1976)

Computer system evaluation

Evaluation of computer systems is usually conducted for the
purpose of selecting and configuring a new computer system,
improving the performance of an existing installation, main-
taining desired performance standards or predicting effects of
changes in either an existing system or the demand workload.

Performance measurement and evaluation, pertinent in any
system evaluation, embraces aspects ranging from hardware
and software to operating philosophies. The emphasis on
specific aspects, for example modes of access to the computer,
system overheads, scheduling techniques, configuration changes
and speed of certain operations, is a matter of policy decision
and a function of the type of system evaluation required.

Timmreck (1973) reporting on the literature of evaluation
methods, defines the analysis steps as follows: ‘There are four
basic steps in the selection process: analysis and specification
of need, request for proposals, validation of proposals includ-
ing system performance measurement, and the actual system
selection’. Each step varies in magnitude depending upon the
particular evaluation being conducted.

The performance measurement and evaluation phase is
obviously the principal component of a system evaluation
process when the object is to maintain desired performance
standards or predict the effects of changes in the operating
procedures, workload or configuration. This component is
generally of lesser significance when evaluation focuses on
selection of a new computer system since then, provided the
performance of the system complies with certain minimum
standards, aspects such as system facilities, financial criteria
(including cost effectiveness over a period of time) and con-
tractual details are likely to be of greater importance. In this
paper, however, attention is restricted to performance evalua-
tion and measurement.

Evaluation constraints

Any evaluation technique for performance studies must satisfy
a range of constraints, varying from cost to versatility, which,
in any given practical application, are likely to be imposed to
some degree or another. This technique, moreover, must pro-
vide results in a form readily useful to those who will be
responsible for assessing their significance. The ‘level of con-
cern’ as specified by Kimbleton (1973), that is to be addressed
in this paper, is the performance of the computer operations
environment. The performance of this ‘level of concern’ may

be influenced by activities of ‘inner systems’. As a resul
‘inner systems’ evaluations may have to be included.

The first constraint which must be lmposed upon an evalua»
tion technique that purports to be general, is that of portabxhtyO
In other words, the technique must, as far as possible, b&
independent of supplier company’s hardware and software%-
A particular advantage of a technique which satisfies thi®
constraint is that it permits comparisons even when archltecturcz,3
of hardware, operating system philosophy, and so on, dlﬂ’es
considerably.

A second constraint to be satisfied by an effective eva]uatlorg
technique is that continuous recording of performance infors
mation be possible so that day-to-day production standards;
can be measured and controlled. It is vital, in fact, that a2
common yardstick be used for both day-to-day producuor{‘\J
evaluations and those required by planning.

Finally, the cost of obtaining the necessary data must bq;q
kept at a minimum. This constraint almost precludes softwaréi%
and hardware monitors as the latter are expensive and thefD
former significantly reduce productivity, and thus mcrease<
costs, when used on a continuing basis.

The above constraints have been aptly summarised by Schu-»
macher (1973) who suggested that management s expectations>
of a performance evaluation effort is characterised as

dnytuosf papeojumog

'S

v 61

(@) to define computer system performance in simple and2
relevant terms

(b) to establish the computer system’s level of performance

(c) to establish methods to control computer system cost/
performance.

Y202 I

Performance criteria

Service standards

It is common practice to express evaluation results in terms of
utilisation factors. This information is, however, meaningful
only within a relatively limited sphere since neither management
nor users ordinarily associate such measures with their
experience. As a result, the latter group cannot fully perceive
and consequently interpret the information so presented. Such
a situation is hardly tolerable since management needs a
ready understanding of the concepts employed in defining
system performance, to know what performance level is being
achieved as compared with that which can be achieved and to
be assured that controls exist which permit attainment of

The Computer Journal Volume 22 Number 1

minimum computer system cost/performance levels.

A further difficulty which is encountered when evaluation
results are presented in terms of utilisation factors is that it is
difficult to use such data to compare various computer con-
figurations. A 60% utilisation of one resource might in fact
lead to a 20% utilisation of another. What conclusion must
therefore be drawn from a knowledge of such factors ? Although
this example illustrates the difficulty of interpreting the sig-
nificance of utilisation factors and indicates that in isolation
such data may be of limited value. Utilisation, as will be shown,
is nevertheless an essential part of a more universal measure
that exists in all production environments.

A more meaningful approach than that of utilisation factors
per se, when measures are sought to express results of a per-
formance evaluation of a computer system in a quantitative
manner, is to present such information in terms of services
provided. All installations exist to provide a service, to provide
processing efficiently and expeditiously and they should be
measured by the extent to which such services are provided in
relation to the cost of providing them. Such an approach is
meaningful to both user and management. The scope of this
paper is limited to aspects of the service provided by a computer
centre that relies on the performance of hardware and software,
not on availability of facilities, etc. The performance is depend-
ent on actual hardware speeds, operating system characteristics
and the reliability thereof in relation to the demand workload.

Service standards in the above context can be expressed as
the services that can be expected, on the average and within
limits, subject to the demand on resources and demand on
those services. The ideal way of setting up the service standards
is to balance the standards to suit the actual demand. The
selection of these standards can also affect the utilisation of
the resources—the well known conflict of optimum utilisation
versus ideal service—and as a result standards might be
established that compromise between service and utilisation
or that attempt to change the workload profile subject to
policy decisions regarding more effective use of the resources or
from a human engineering point of view. This is where most
performance evaluations miss the point. When workload
approaches capacity, service levels tend to deteriorate. At this
stage it can be seen that not only are optimum utilisation
values limited in meaning butalso result in incorrect objectives
if not qualified as subject to demand. Service criteria are the
important factors in planning and operating computer installa-
tions and these must of necessity be defined in terms of
performance measures. An analytical model is developed in this
paper for performance measurement which is directed to sup-
plying that information which relates performance to service.

The cost effectiveness of an installation is usually measured
in terms of cost per job or cost per processor hour used or even
cost per scheduled hour. A reduction in the first two rates is
considered to be an improvement. In this way a minimum
unit cost can be determined as well as the unit cost at the
desired service level. The difference is referred to as the unit
service cost. Management is thus in a position to assess the
service standards.

Turnaround model
While many techniques for performance measurement and
resource utilisation, ranging through simulation, benchmarks,
kernels and instruction mixes, have been proposed in the
literature and referred to in a survey (Wiederhold, 1975),
together with performance models which emphasise consider-
ations as stability, presented by Mertes (1974), there does
not, to the author’s knowledge, appear to be much published
work which relates performance directly to service standards.
In order to rectify this deficiency, an analytical model, based
on service considerations as the main criteria, has been de-

The Computer Journal Volume 22 Number 1

veloped. To apply this model in practical situations, informa-
tion routinely provided by an operating system and controlled
experiments are used in the performance evaluation, thereby
ensuring that no additional costs are incurred for continual
monitoring.

The model described here is postulated on the basis that the
most significant measure of service is the turnaround time,
i.e. the time taken to complete a job from submission to avail-
ability of output. This measure applies to any type of processing,
whether submitted by a terminal user or the traditional batch
user. An appropriate definition of service standard then is that,
for a given category of job, a certain mean turnaround time,
with specific variance and limits, is to be provided subject to a
specific demand.

In the most general case the major factors affecting turn-
around are dependent on the time taken (a) to perform the
work required for that job, i.e. elapsed time, (b) waiting in
either the input and output queues, (c) to spool input and out-
put, and (d) before job is spooled to input queue and after
output has been spooled, i.e. manual preparation and clearancey
of job. The turnaround time for a job will therefore clearlys
depend on resources available to process that category of jobg
and the number and priority of streams allocated to processing§
reading and printing of that class of job hardware and soft=
ware malfunction, together of course with the personag
resources allocated to the manual stages of processing.

Where it can be established that manual processing has eitheé
minimal effect on turnaround or is alternatively excluded fron
the measurement of the turnaround time, the remaininé
factors can be measured in the normal course of productions,
provided the following information is available for each jobo
reader, job and writer start times, job end time and the numbep
of records handled or time taken by the reader and writer§
The part of total turnaround time that excludes manual pros
cessing will therefore be defined as the measurable tumarouncﬁ_
time. In other words, it must be accepted that expeditious:
manual processing is essentially a function of supervision and=
motivation since it it not possible to describe this often crucia
aspect of services in simple mechanical terms. N]

The measurable turnaround time for a job can be expresseds
as: 3

wy

cefem

ti=e;+q;+o0;+y;+z; (1
where

i = thei’thjob

t; = measurable turnaround time
e; = elapsed time

¢; = input queue wait time

0; = output queue wait time

y; = writer time

z; = reader time

In this formulation, elapsed time can be regarded as a com-
pound component constituted of further subcomponents.
Obviously the time it takes for the work to be done, i.e. pro-
cessor and input/output (channel and device activity), is an
essential part of the elapsed time. In addition, elapsed time
of a job contains a wait time subcomponent, i.e. the time that'
the job is not being processed, owing to system overheads,
the fact that other jobs are being processed and any user caused
wait times. In other words, the elapsed time can be expressed
as:

¥20z 1Mdy 61 uo 1s8nb Aq 9£ZEGe/

ee=pi+fith+g+d+u)
where
p; = processor time
f; = input/output time
h; = system overhead processor time

g; = system overhead input/output time

d; = deactivation time (i.e. when other jobs are running)
u; = user enforced delay times

The possibility of an overlap of activities generated within
any one job, such as an input/output activity concurrent with a
processor activity, is not included in Equation (2), since in
the author’s experience it generally tends to be minimal and
requires special monitoring procedures for its measurement.
The overlap of activities referred to here relates to that
occurring within a job, not that which can take place when the
system is run in a multistream mode. The latter form of overlap
will be discussed later. In the present context, however, although
not included in Equation (2), it would be desirable to measure
the extent of overlap in a single stream environment with a
hardware monitor and, if significant, insert an appropriate
subtractive term, say /;, into Equation (2).

The formulation in Equation (1) caters for multiple input/
output devices and multiple processors, i.e. each of p;, fi, A
and g; could comprise the time taken on more than one unit.
Also, each of the utilisation variables are expressed in such a
way that when only one job is being processed, i.e. a single
stream environment, a time period can be associated with each
of the variables.

The further development of the model makes use of the com-
mon practice of categorising jobs with similar resource require-
ments, qualifying turnaround times accordingly. The mean
turnaround time for the k’th job category is then expressed as:

Jk

Tk=712t,- 3)

i=1
where j, is the number of jobs in that category. The mean
turnaround time for all jobs is then:

T=‘1’ZT,(_],‘ Z Z = - z 4)

=“1,z(ei+qi+oi+yi+zi)
i=1

—E+Q+0+Y+2))
and
J J
iz:ei=i§:(pl+ﬂﬁ + h +'gl+'dl+'u0
=1 =1
ie.
E=P+F+H+G+U+ D (6)
where
J J
= 2: el‘P = E: pi
n=1 n=1
and so on.

The mean turnaround, both for each job category and for all
jobs, can be readily calculated, provided the operation system
publishes sufficient information to determine the value of the
variables in Equation (5). However, only E, P and F in Equa-
tion (6) can be determined from information normally avail-
able. The other components of Equation (6) thus require
special treatment. These components are therefore discussed
in the sections which follow.

User enforced delay times

User enforced delay times (U) can in a batch environment
be controlled by minimising delays for activities such as disc
and tape mounts and, in fact, for job categories where no
operator intervention is required, U = 0. For interactive
processing it is necessary to determine user delay times as no

control exists during production. Some operating systems
provide the necessary data. However, where this information
is not available, it is necessary to relate results from controlled
experiments with the production environment before a reason-
able estimate can be made.

System overhead

The real overhead of an operating system cannot be precisely
determined as, in the first place, it is not possible to formulate
a precise definition of what constitutes overhead and in the
second place, in the absence of such a definition, it is not
practical to implement a method of measurement. As a result
of this lack of precision, overhead is generally simply defined
as any work done that is not automatically attributable, from
information published by the operating system, to a job run
in a single stream environment. This deficiency should be
borne in mind when overheads of different operating systems
are compared. In these terms, however, some of the elements
that constitute overhead are:

(@) time taken between activity termination and activity startU
in a single stream environment, which will be referred tos
here as initiation/termination overhead, and which referSm
to both input/output and processor activities

(b) the difference in processor time when that processor tlmeo
which can be directly related to the job under processmg
is compared with the total processor time used; this tlmeU
thus represents all overhead functions which require the
processor for their execution

(c) the increase in processor time, some of which might bea
allocated to the job itself, when run in multlstream_o
environments as compared with that allocated to the same 2
jobs when run in a single stream environment, i.e. thoseg
allocations which possibly result from timer inaccuracies, 3
memory and multiactivity management

(d) the increased times for input/output activity which results
from greater management activity and longer seek times
as load increases

(e) time taken during step activity in a single stream environ-
ment that cannot be directly attributed to the job for
either processor or input/output activity.

[Luoo Iwapeoe//: 1} pep

998898/82/L/ZZ/GIO'U?/IU

Response time
For jobs processed in a time sharing environment the turn-2

<

around equation reduces to ¢; = e;. Q
i.e. l,=p,+f,+h,+g,+d,+u, (7)2

and S
_ pi+jﬂ + hi +'gi+'di (8)©

= >

a;
where r; is the mean response time and a; is the number of5
activities requiring a response from the system. Response tlmeb
is in fact also applicable to batch processing although it is not
generally referred to directly in such terms.

ud

Overlap of activities

An important relationship which strongly influences the

quantity of work that can be conducted concurrently in a

multiprogrammed environment is the overlap L. Thus the

length of a session with scheduled time S can be expressed

as a sum of components, as follows:
S=P+F+H+G+W-L)

where

P = total processor time allocated to the jobs

F = total input/output time allocated to the jobs

H = total system processor overhead

G = total system input/output overhead

The Computer Journal Volume 22 Number 1

W = the system idle or wait, i.e. when there is not input/
output or processor activity; in a controlled situation
W is measurable and in production it is often possible
to determine this value from the difference between
scheduled time and the system meter readings

L = overlap time.

A suitable procedure for estimating the overlap time can be
derived from the work of Snel (1973) and others. These authors
have postulated and observed that events for service of I/O
devices and CPU tend to be statistically independent. Hence:

P12 =P1+ P2 = P1P2 (10)
where p, and p, are the probabilities of a processor or channel
event occurring and p,, the probability of either event occur-
ring. If the channel activity can be shown to be independent
of the processor activity then it is also reasonable to consider
the activity device to be independent of the processor as well.
This assumption is essential when use of statistical independ-
ence is required to determine the value of some of the variables.
The difference beween the calculated and measured values as
observed by Snel depend on the number of programs running
concurrently. The difference is negative when the system is
idle over long periods of time and positive when the system
is overloaded. In both the latter cases the events are, however,
no longer statistically independent.

Where measurement is not possible, it is essential to cater for
those situations in which the events are clearly dependent
upon the load, especially where device times are being con-
sidered and not channel time, as the times involved are greater.
Firstly, the proportion of time a system is idle should be
excluded from the total time period. Secondly, when only one
event is possible at any one time, such as in a single stream
environment without multitasking, the probability of two
events occurring concurrently is zero. It can therefore be
concluded that the time period during which events can be
considered to be statistically independent is the period when
at least two independent tasks are competing for those two
resources.

This statistical dependence of events also occurs in the over-
load situation. This arises when a queue for services on a par-
ticular device is equal to or greater than the number of tasks
currently active. At this stage the processor is waiting for the
device and as a result the premise of statistical independence
is no longer valid. The increased non-overlapped device time
is then based on the time taken per activity and the difference
between the average queue length on a device and the multi-
programming factor. This situation can occur on devices where
spool, paging or swapping data sets reside.

Multiprogramming level

At this stage there is no indication of the load being placed
on the system in conjunction with the values thus far obtained.
One of the most significant load measures, given the type of
workload, is the number of activities that are conducted con-
currently and thus a multiprogramming factor can be defined
as the mean number of jobs requiring service from the com-
puter system over a period of time. However, when an inter-
ruption is required by a user or an operator, such as for
mounting a tape or typing data on a terminal or even the
user’s think time on a terminal, these periods should be
subtracted from the relevant job elapsed times before a multi-
programming factor is determined. On the other hand, the
reader and writer (spooling operation) real times should,
most probably, be included in the multiprogramming factor
calculation. Moreover, for the sake of both compatibility and
consistency of definition, the possible gap between each activity
terminate and start should be catered for. With the inclusion
of the preceding considerations, the multiprogramming factor

The Computer Journal Volume 22 Number 1

can be written as: P
- U
==~ 11
S (1

where E formally includes the elapsed times of spooling
operation and has been corrected to cater for the possible gap
between activity termination and start, the gap being based
on observations in a single stream environment. The effective-
ness of the system can be assessed from a comparison of the
multiprogramming factor with two other measures: the overlap
ratio and the number of independent units. The overlap ratio

is defined as Z = % Clearly, Z < M under all situations.

The closer Z is to M, the better is the overlapping capability
of the system. Also, if the multiprogramming factor is less than
the number of units such as processors, devices and channels
that are considered 51gn1ﬁcant and independent of each other,
it is unlikely that the system is being effectively used, i.e. either
it is badly configured in relation to the workload or production
policies are incorrect.

Workload
The workload of a system can be universally defined in termsm
of time taken by the processor and the peripherals no matter-:
what the application. The amount of work processed is depend-3
ent on demand, service criteria and resources available. TheZ
amount of work processed in a given period is con51deredm
to be the supply workload which is not necessarily the same asm
the demand workload, i.e. the potential workload. This dlstmc-
tion is extremely important when attempts are made at plannmgg
and forecasting. If the service standards are based on theJ
demand workload then it is relatively simple to calculate thé
difference between supply and demand at any stage. 8
To measure the workload accurately in terms of processor3
and peripheral time it would be necessary to run each jobs
in a single stream with adequate resources. This is obvxously_
impracticable for a total workload but can be done on as
sample basis which can prove vital in performance analysis,&
as explained later in this paper.

peojumo(

€/8z/L/zz/l

Analysis of performance data
The first step in analysing performance data is to determine the
distribution of the multiprogramming factor over the relevamB
period. This reveals the consistency of operation and focusesO—
attention on those periods of time when low and high multm
programming factors occur. Thereafter, relationships betweenm
load on the system and the variables such as overlap, elapsedo
time, deactivation, overheads and utilisation can be establlshem
once sufficient information has been gathered for various loadb
on a configuration. =

By plotting the mean elapsed time per active stream agamstB
the multipgramming factor it is immediately clear at what®
load level the minimum mean elapsed times occur. Similarly,
the behaviour of each variable can be determined for any
conﬁguratlon Examination of plots of these measurements
assists in determining whether hardware and software limita-
tions exist or not.

For example, a graph of the mean processor overhead time
per job divided by the mean active stream level plotted against
the multiprogramming factor provides a clear picture of the
load level at which difficulties can be expected. Some overheads
could result from memory management of multiprogramming
management overheads. However, with further experiments, it
is soon possible to determine the cause of the problem and
establish a solution. An alternative representation is obtained
by dividing processor overhead by both the scheduled time
and multiprogramming factor.

Deactivation and overlap distributions can be similarly

31

depicted. The increase in deactivation time is dependent on
the increase in overhead times and the ability of the system
to overlap activities. It is therefore possible to establish what
capacity a configuration will attain as a result of a lack of
overlapping capability or because system overheads are too
great. In the first case minor hardware changes will generally
solve the problem. In the second case a thorough investigation
of the software is called for since, if the problem does not
occur in this area, the only solution is the upgrading of the
hardware.

The representations of the state of the system described in the
previous paragraphs are of course only valid if the set of jobs J
is a valid sample of the population under investigation.

Maintaining desired service standards

Service standards for each job category are dependent on de-
mand for that service and centre policies, subject of course
to the capabilities of the system. It is the responsibility of the
production supervisors to ensure that these standards are
maintained within acceptable limits. A range of limits based
on probabilities can be established. This can readily be done
provided such standards are defined in terms of measures
routinely produced during production.

The variables of the turnaround model presented in the pre-
vious sections together with utilisation values form the basis
of the reports illustrated in Tables 1 and 2. A method of
defining service standards is depicted in Table 2. A certain
turnaround can be expected, on the average, provided the
demand for such a service and the resources used are con-
sistent with those detailed in the table. Most of the information
required to determine problems at the production supervisors
level is detailed in Table 1. The figures in these tables are hypo-
thetical and are for purposes of illustration only. In Table 1
only the mean values are entered.

If some turnaround standards are not being met, a variation

of the demand for such services and the resources used may
explain why such a situation has arisen. Alternatively, the
cause may be production problems such as excessive input
or output queue wait times or excessive elapsed times. Pro-
vided however that the mean turnaround of all jobs is compar-
able with the standard, it can be concluded that a solution to
the problem can be achieved by modification of priorities,
scheduling principles and job category/stream relationships.
Where the mean turnaround of all jobs is not comparable
with the standard the explanation may be found in any of the
following areas: operation inefficiency, system malfunction and
incorrect service standards, as well as in those causes already
outlined.

In order to solve problems relating to elapsed time, it is
necessary to investigate activity profiles for stream activity,
memory and peripheral device utilisation. A number of con-
clusions can be reached from the stream activity profile
(Table 3), bearing in mind the desired system activity level
and expected multiprogramming factor.

The effect of hardware or software malfunctions can bg
quantitatively evaluated by determining the amount of strearn
time not used as compared with the desired multlprogrammmﬁ
factor. A lack of demand, i.e. some or all input queues emptg
is an obvious factor to consider. An overloading of resourcey
is clearly depicted in profiles for memory and device utilisations
Where no explanation is forthcoming at this stage, the possg
bility exists that the cause rests with operatlon inefficiencies of.
system design factors such as excessive reserves of critical
disc drives or data sets. A report similar in format to that
shown in Table 3 for printer activity profile can assist 113
solving output queue problems.

Improving present service levels
Although the desired service standards are attained, it should
the objective of management to find ways in which betteg

o®/woo°dnoo

Table 1 Demand and supply breakdown by job category

Mean and Standard Deviation For

[lzzdonie)u

Job
category
(queue)

Number

of jobs
from
prior
period

Total
no. of
jobs

Mean
length
of
queue

time
queue
empty

No. of
jobs
serviced

Turn=
around

?ﬁﬂﬁu)

Elapsed
time

(mins)

Processor
time

(secs)

1/0
count

Writer
time

(mins)

Writer
count

Reader
time

(mins)

Reader
count

Input
queue
wait
time

Output
queue
wait
time

Memory

Size

Student
batch
(0-5)sec

Non u

setup
(0-10)sec

e+-uaikanB Aq bezeco/oz

Non
setup
(10-30)se

200

15

200

70

20

1500

1000

400

60

0
o
Hznz 1d
SO

Non
setup
30-120)se]

Non
setup
120sec|

30

149

20

20000

5000

800

120

90

Setup

0-30 -eql

Setup
30-120

secs

0

10

10

24

10

25

40000

5000

800

110

Setup
120
secs

TOTALS”

The Computer Journal

Volume 22 Number 1

Table 2 Service standards

Mean and standard deviation for

Job category Total number Turnaround Processor Ijo Writer Reader Memory
of jobs time (min) time (sec) count count count size
Student batch 3 1 100 75 180
(0-5) secs 1,200 3 1 trivial 50 25 0
Non setup 10 2 300 200 150 90
(0-10) secs 480 5 1 200 50 50 30
Non setup 60 12 1,000 1,000 400 90
(10-30) secs 200 30 6 500 1,000 200 30
Non setup 120 25 10,000 3,000 600 90
(30-120) secs 50 60 15 1,000 2,000 300 30
Non setup 300 300 20,000 5,000 800 90
> 120 secs 20 200 150 5,000 2,000 300 30
Setup 90 4 5,000 3,000 500 110
0-30 secs 90 90 4 1,000 2,000 200 50
Setup 240 25 40,000 5,000 300 110
30-120 secs 15 240 15 2,000 2,000 400 50
Setup 300 360 10,000 10,000 2,000 110
> 120 secs 5 300 100 5,000 5,000 600 50
Totals 2,200 24 6,7 1,200 300 140 100

NB: The times in the ‘Job category’ column are user estimates, and in columns ‘Turnaround time’ ef seq, the first of each pair of entries

the mean and the second the standard deviation of mean

Table 3 Steam activity profile
Percentage time active for

Stream level

1 Stream 2 Stream 3 Stream 4 Stream 5 Stream 3 Stream**

0 3 0 0 0 0 0

1 96 9 1 8 19 0

2 90 14 1 16 11

3 84 16 4 87

4 72 20

5 33

**_See Table 4.

service standards can be established without increasing the cost
of production. The main areas in which improvements can be
effected are software system tuning and in the service standards
themselves, as well as in those areas previously mentioned,
i.e. operations efficiency, optimum stream level, job category/
stream relationship, priorities and scheduling algorithms.

Optimum service standards, subject to demand, organisation
policies and resources available, can be determined by using
optimisation techniques on the turnaround model. It is postu-
lated that with the use of linear programming techniques it is
possible to optimise the following expression:

c
2 L X,
k=1
where
Jk
X = =
kT
0<X., <1
and
c
Z Xk=
k=1

X, represents the proportion of jobs in the k’th job category
as compared with the total number of jobs and ¢, is the mean
turnaround time for the k’th job category.

The Computer Journal Volume 22 Number 1
2

Aq 9€Z£5€/82/ LIz aI0Me/|ulWod/Wwod dno olwsbese;/: S'éut wouy apeojumog

Optimum multiprogramming
Controlled experiments have been conducted to determine the@
multiprogramming factor with the aid of the tumaround‘j
model. The latter cannot be determined in the productiong
environment since the optimum factor is a function of workload ;
variations, available resources, e.g. tape drives, memory, etc.>
and the ablhty of the system to multiprogram. Controlled=
experiments, in the form of a benchmark representing a sampleo
of the demand workload with 134 jobs and 315 activities >
(steps), were conducted with the number of permissible streams
varying from one to five on an IBM 370/145 with 384K bytes
using OS/VS1 Operating system (Table 4).

The resource utilisation figures obtained for the single stream
experiment were assumed to be applicable to the multistreamed
experiments as well (job processor time and I/O activity in
Table 4). Any variation of those figures were regarded as a
portion of the increased overheads. It was also assumed that
the overheads for the single stream experiment are at a mini-
mum with little or no memory management (this must be
checked in a paging environment) or multiprogramming
management required (adjusted figures for a single stream in
Table 4). The benchmark jobstream had previously been
checked for the extent of processor and channel overlap in a
single stream environment and these factors were found to
exert negligible effect on the outcome of the experiment when

33

Table 4 Summary of multistream experiments

Stream Mean Multi Step Elapsed Scheduled Writer Overhead Overhead Overlapped Deactiva-

level Stream program- elapsed time E time S time processor I-O time L tion
activity ming time time H Activity time D

factor M time G

1 1 1,32 13,364 14,076 14,076 4,552 2,631 3,534 1,200 —

1* 1 1,42 — 10,899 10,899 4,552

2 1,95 2,35 23,284 23,819 12,243 4,928 3,031 5,569 5,468 6,108

3 2,85 3,29 34,239 34,774 12,191 5,384 3,476 6,374 6,658 15,813

4 3,56 3,99 43,708 44,243 12,419 5,328 3,627 5,677 5,995 25,828

5 3,46 3,90 42,166 42,701 12,325 5,407 3,910 4,948 5,593 29,704

Jex 2,87 3,28 34,024 34,559 12,036 4,883 3,722 5,639 6,435 16,088

Job processor time P = 4138:54 seconds and Job mput/output time F = 4972 seconds
*Single stream figures adjusted to reflect no paging assuming 25 ms per EXCP

**Input/output activity spread over two devices.
All times are published in seconds.

Table 5 Memory upgrade experiments
N.B. Same correction was applied as in the previous study

]

Single stream Two streams Three streams <

256K 384K 256K 384K 384K §—)

Q.

Pages (No of) 176,850 110,506 458,605 199,307 225,817 %
Step elapsed time (sec) 16,218 13,317 34,359 22,762 31,486 g
Job processor time ' 4,072 3,688 3,941 3,766 3,892 =
Total processor time " 7,012 6,630 8,970 7,332 7,784 S
Scheduled time ’ 18,872 15,693 19,527 12,513 13,956 5
Corrected elapsed time ,, 18,872 15,693 37,013 25,138 33,862 g
Writer time 3,077 2,680 3,035 2,451 2,916 2
Multiprogramming factor 1,16 1,17 2,05 2,20 2,64 g
©

no paging occurred.

In the preparation of the figures, a number of adjustments
were made. Thus, it was assumed that, provided there is no
system idle time during the experiment, elapsed time of the
jobs must be equal to the length of the session and the multi-
programming factor correspondingly is equal to one. This ad-
justment is necessary since the system publishes start and
terminate times at a convenient location in its logic. For
multistreamed experiments, the elapsed time gap for the single
stream is merely added to the elapsed times. This is a valid
approach provided such activities have a high priority and
they are not directly affected by memory management.

Conversion of input/output activities to input/output time
used on various peripheral devices, together with the propor-
tion of processor time used during initiation and termination

_phases in a single stream environment, is based on factors
obtained from special test runs in that environment. These
values are required to solve the turnaround model equations
for the single stream benchmark run. The utilisation values
(processor time P and input/output time F) thus obtained are
used in the solution of equations for all multistreamed
experiments.

A minimum value of the input/output overhead is known for
paging and “initiation and termination activities. However,
overlap can be estimated and, in conjunction with the scheduled
time equation (9), a feasible total input/output overhead time
is obtained. The extent to which overlap occurs is estimated
by assuming statistical independence of events on the heavily
used direct access storage device (these experiments were
conducted using only one device for most of the system
activity) and the processor over the period when more than
one activity is taking place, i.e.

P+ H Fd+ Cd s
s TS
where P + H is the total processor time and Fd + Cd is the

L=

4

total device input/output time on the particular critical device:
and S’ is the adjusted scheduled time.

A graph (Fig. 1) of the mean elapsed time per active stream®
of all the jobs as a function of the multiprogramming factors
based on the above controlled experiments resulted in a hori-2
zontal straight line for more streams than 1 but should resulto
in a concave curve, provided the range of multlprogrammlngm
achieved is sufficient to include an overload situation. At theA
time of wrmng, only the results of a three stream experiment, &
with paging data sets spread over two devices, was available. & &
The mean elapsed time per active stream is the same as forN
paging on a single device. In this case the reason is obvious2
as the amount of memory and the paging algorithm do no’c<
lend themselves to overloading other resources. The crmcalm
resource is consequently memory and the optimum multl-
programming factor is when two streams are active as thlS
allows for maximum flexibility but, at the same time, minimum
job elapsed times.

ulwoo/wod"

20z Idy 61

Predicting the effects of change

The effect of change of either the workload or resources must
be quantified to determine cost effective upgrades. Performance
improvements of a memory upgrade from 256K to 384K on an
IBM 370/145 was predicted by making use of controlled
experiments and the analytical model. Results from controlled
experiments after the memory upgrade compared favourably
with the predictions.

The maximum demand for memory can be determined by
summing the memory requirement for each step, weighted
by the elapsed time for that step, in a single stream environ-
ment. The manner of access of that memory and the propor-
tion that is relatively frequently required is not known. From
the benchmark runs it was possible to determine the overhead
of both processor and I/O resources as a function of workload
memory required and available (Figs. 2 and 3). The values
on the graphs were derived from single and two stream

The Computer Journal Volume 22 Number 1

[}
100 =
g &
N s
&
(]
]
[80 |-
]
]
“
°
4
3}
o
[
[]
a
o
[od
[*]
§ | 1 1 1 1
2
1 2 3 4 5
Multiprogramming Factor
Fig. 1

10

3

Total Processor Time (10”) Seconds

0.5 1.0 1.5 2.0 2.5
Load Based on 144 K Pageable Memory

Fig. 3 g

o«
o
c
‘E 2
3
3
® 1
A
1 1 1 1 1 1 1 1 1
0.5 1.0 1.5 2.0 2.5
Fig. 2 Load Based on 144 K Pageable Memory

experiments on the IBM 370/145 with 256K (Table 5).

The real pageable memory of 144K was used as a base and a
single stream experiment was assumed to have a factor of
1:16, i.e. a multiprogramming factor, whereas the two stream
experiment resulted in a factor of 2-:05. The page count was
expected to be greater than zero, due to memory access
method, and the processor time must tend to a value which
caters for initiation and termination overheads, normal over-
heads while processing and the actual work time. Based on
experiments with no paging requirements, the system overhead
was approximately 66% of the processor work done.

With the introduction of another 128K of memory the avail-
able real paging area of 272K results in a decreased load factor

\
of %%‘ = 0-53. With the use of this factor the paging count and
processor time for any loading on the new configuration can be
determined. Experiments with one, two and three streams
active were run for which the forecast page counts were
98,000, 230,000 and 220,000 while the total processor times
were 6,425, 7,350 and 7,700 seconds respectively.

With the use of the turnaround model it is possible to predict
the scheduled time based on a constant multiprogramming
factor and consequently the improved throughput ratio (work
done) as compared with the reduced scheduled time. Consider,
for example, the two stream environment with a total pro-

The Computer Journal Volume 22 Number 1

cessor time of 7,000 and a page count of 160,000. The totak
input/output time for work done in a single stream was 1, 87’7‘l
seconds on tape drives, 965 seconds on 2,314 direct access;~
devices and 2,130 seconds on 3,330 direct access dev1ce53
i.e. F = 4,972 seconds. From the table, the difference betweeré'
scheduled time and step elapsed time in a single stream rum
is 2,654 seconds, i.e. step and job initiation and termmatlor%>
overheads. Assuming a 209, processor time activity durm%
this period, the input/output overhead is given by

G = 2,654 — 531 + (160,000 x 0-025) = 2,123 + 4,000
= 6,123 seconds?
The overlap probability for the same load, i.e. multiprogram%

ming factor, should be consistent, hence for the two streamS
run the overlap probability is

no-oIW

L 1
—=-(P+F+H+G-1
s=gP+F+H+)
1
3 —
= o577 3970+ 4972+ 2,123 + 11,465) — 1

=141 - 1:0 = 04
The new scheduled time can now be estimated, viz.
S=P+ F+ H+ G — 041
ie. 1-41 = 7,000 + 4,972 + 6,123 = 18,095
i.e. S = 12,833 seconds

Based on this estimate the throughput improvement, in termsg
of _]Ob processor utilisation in a single stream, with the samc;g
load, is 529%.

To confirm the validity of statistical independence of actlvmesg
on a device and the processor, the overlap value for each experi->
ment is compared when derived from the scheduled time
equation and calculated statistically. The device time on 3,330
system resident packs is 1,726 seconds for work done, as
accounted to the jobs. This time together with the paging
activities on the same disc packs forms the major portion of the
device time that can be overlapped with the processor time
although each device (tape, 2,314) is accounted for separately.
Where the multiprogramming factor is approximately 2 or
more, then the initiation and termination input/output over-
head (2,123 seconds) must be considered as well. A less than
5%, difference in the overlap times was found to exist for the
two and three stream experiments.

uo 3senb Aq 9£ZEGE/82/ L /zg /o E/ulw

Conclusion
The turnaround model described here embraces aspects from
utilisation to service standards and consequently provides a

35

coherent analytical tool for various types of analysis. It can
be used to control and measure day-to-day operations environ-
ment on the one hand and forecast the effect of alterations to
configurations on the other. It also provides a reasonable
initial basis for system evaluation and isolation of those areas
which may require further investigation with the aid of appro-
priate monitors.

The model has already been used to assist management of a
centre in the selection of computer equipment for both batch
processing and time sharing services. It has also been used at
existing installations to determine stream levels that result in a

References

minimum mean elapsed time of jobs and predict the effect
of configuration changes such as direct access storage and
memory upgrades. In these applications, techniques derived
from the model have been of useful practical assistance.

The turnaround model proposed here requires, of course,
considerable refinement. Obviously, also, introduction of
optimisation techniques would considerably enhance the value
of results derived from the model. The author hopes, however,
that this description of the model and its application at some
existing installations will be of assistance to others faced with
the all too familiar problems of computer centre managers.

KIMBLETON, S. R. (1973). Performance Evaluation—Directions and Implications, Remarks Delivered at the First SIGME Symposium,

Performance Evaluation Review, Vol. 2 No. 1.

MEerTEs, L. H. (1974). The Top Data Processing Manager’s View of the Role of Operations Management, Share XLIII, pp. 692.
SCHUMACHER, D. (1973). A Methodology to Establish and Control Computer Performance, Share XLI, pp. 751.

SNEL, D. (1973). Computer Performance Measurement and Evaluation Tools, Share Measurement and Evaluation, Vol. 2, pp. 210-219.
TIMMRECK, E. M. (1973). Computer Selection Methodology, Computing Surveys, Vol. 5 No. 4.

WIEDERHOLD, J. F. A. (1975). Selection of computer measurement and evaluation techniques, Systems, September 1975.

Book reviews

Computer Data Structures, by J. L. Pfaltz, 1977 ; 446 pages. (McGraw-
Hill, £14-60)

Data Structures and Programming Techniques, by H. H. Maurer,
1977; 228 pages. (Prentice-Hall, £10-85)

It can be argued that detailed consideration of data structure is an
‘academic’ subject, which has little to do with the reality of day-to-
day commercial data processing. Pursuit of such an argument tends
to rob programming practitioners of some useful tools. Anyone
involved in the specification or design of processes to handle large
quantities of related data should spare some effort to study suitable
texts and to work through suitable examples. Programmers will
recognise that the efficiency, clarity and complexity of any program
purporting to solve any given problem depends to a large extent upon
the selected data structure. Indeed there is a popular view that the
ability to describe formally the data structures involved is a necessary
prerequisite to the solution of any such problem.

Both of these books begin by introducing their own formal nota-
tion, based upon graph theory and set theory respectively. All
necessary manipulations are described and demonstrated in a
simple way to enable the reader to practise and understand the
notation used. Beyond this point the two books differ in both style
and emphasis.

Maurer’s text, which has been extremely effectively translated from
the German by Camille Price, has a more theoretical approach.
Most of the structures described are assumed to exist within the
knowledge of the reader. The book formally defines each structure
and illustrates its properties by means of a mathematical analysis.
An example PL/I program is given to illustrate a process to mani-
pulate the structure; this technique represents solutions in search of
problems!

Computer Data Structures has a better approach. After the essential
notational introduction, abstract structures are introduced as
necessary to solve particular problems. Several possible computer
representations of each abstract structure are given, with a detailed
description of the merits of each. Using formal graph theory,
techniques for describing the nature and efficiency of data structures
are developed. The problem areas covered include interactive
graphics, dynamic storage allocation, virtual memories and file
structures. Throughout the text procedures are defined in an obvious
ALGOL-like language, but can easily be realised in FORTRAN,
PL/T or other languages; necessary guidance is given to enable
those processes which are essentially recursive to be implemented
non-recursively.

36

06¥/:sd))y WoJj papeojumoq

Clearly, I personally favour the book by Pfaltz, as being more
suitable for both students and practitioners of computer science. I
general its diagrams are better and more meaningful, the worke
examples are more helpful and the ‘excercises for the reader’ more
likely to stimulate one into actually trying them out. 2

ALAN CHANTLER (Yelvertoft)

o]

Computing in Clinical Laboratories, edited by F. Siemazko, 19783
302 pages. (Pitman Medical, £10) 3

=]

The proceedings of the second international conference on comi_:{_
puting in clinical laboratories was held in Birmingham in Septembef

1977 and the papers presented are now available in hardback formg
The book is subdivided into sections on system design and imple=
mentation, microprocessors, cost effectiveness, experience of input)
output devices, interfacing and remote processing, compute@
assisted choice and use of laboratory results and, finally, recenf;
advances in numeric techniques. 5]

Nowadays, no book can cover completely as extensive a subject ag
clinical laboratory computing. However, most of the basic issues are
explored in the 33 papers from centres across Europe and beyond}
and most papers list references to enable the topic to be explored ino
more detail. I particularly appreciated the growing interest in the..
analysis and use of laboratory data. The utilisation of the standar@
techniques of data analysis to explore the meaning of the enormouss
volume of material produced by automated laboratory systems is.
crucial to improvements in system design and use; as well as trendS
analysis and discriminate analysis, the appearance of payoff mat-
rices, utility functions and especially decision trees augurs well for
future developments in the exploration of investigation strategies
and medical decision making.

In addition to the data analysis, about a quarter of the book is
devoted to the exploration of the implications of microprocessor
technology for laboratory computing. This is a rapidly developing
area. Microprocessors are likely to be included in most items of
analytical equipment and a balance needs to be struck between the
integral processing capacity of the laboratory equipment and the
data processing activity of the total laboratory (or hospital) system.
The evaluation of cost effectiveness of laboratory computing con-
tinues to be explored but this still presents difficulties in the absence
of serious evaluation of laboratory information within the medical
system.

The book provides a useful exploration of the present state of
laboratory computing.

BARRY BARBER (London)

The Computer Journal Volume 22 Number 1

