A distributed function computer with dedicated

processors

R. Chattergy* and U. W. Poocht

Recent advances in hardware technology have led to marked decreases in the costs of processors
in computer systems. Reduced costs of processors have led to the design and implementation of
distributed function computer architectures, using multiple dedicated processors. This paper out-
lines the hardware, modular operating system and protection features of such a distributed function

computer, designed for time shared operation.
(Received October 1977)

1. Introduction

The concept of distributed function architecture appears to
embrace a large variety of computer designs. Therefore, it is
essential to clearly specify the exact design under consideration.
We make use of the classification scheme given by Joseph (1974)
for this purpose. According to this classification, the design
under discussion should be called a distributed processing
element system. It consists of functionally distributed, hetero-
geneous, multiple processors, which are capable of simul-
taneously executing independent processes. Several other
computers in this category are listed by Joseph (1974) and by
Jensen (1975).

The architecture of this time shared computer system was
largely determined by a design team working at the University
of California, Berkeley, under Project Genie, funded by the
Advanced Research Projects Agency, US Department of
Defense (Lichtenberger and Pirtle, 1965; Lampson, Lichten-
berger and Pirtle, 1966). The primary objective for the design
of this time shared computer system was to provide interactive
computational facilities for a large number of users (much
larger than were commonly serviced by time shared systems
around 1968/1969) with modest computational needs, large
data files and fast terminal response requirements. The soft-
ware on the system creates a transaction oriented computational
environment tailored to the needs of individual groups of
users. This is one of the causes that leads to the design of
distributed function systems (Joseph, 1974 p. 24). The require-
ment of providing fast terminal responses to a large number of
users is met by the use of multiple processors simultaneously
executing independent user jobs. However, the use of multiple
processors alone does not create a distributed function com:
puter. The definition of a multiprocessor system given by
Enslow (1974 pp. 19-21) and the ANSI standards, require
that a multiprocessor system must operate under an integrated
operating system. In the computer under discussion, the operat-
ing system is distributed among several special purpose pro-
cessors, which during execution of tasks communicate with
each other via random access memory. In other words, there
is neither a master/slave relationship among the processors,
nor a separate executive for each processor, nor a ‘floating’
executive moving from processor to processor. This is why the
computer discussed in this paper can be classified as a distri-
buted function system.

2. System architecture

The architecture of the system, shown in Fig. 1, consists of two
processors for executing user processes, and three special
purpose dedicated processors for carrying out the system
management task (i.e. executing the operating system). All

*Department of Electrical Engineering, University of Hawaii

of the processors operate independently and communicate
with each other via random access memory. The RAM unit
has four ports: two of the ports are dedicated to the two,
user processors, another is dedicated to the memory transfer2
unit and the last one is shared by the three operating system=
Processors. 8
All five processors are constructed by microprogramming a2
basic hardware processor. However, since the nature ofS
computation used in system programs is considerably differ-=
ent from that in the user programs, the mlcroprogrammedo
system processors are not identical to the mlcroprogrammed\
user processors. For example, the system processors do notf
have facilities for multiple precision floating point arithmetic®
operations or hardware memory mapping mechanisms whicho
are used in the user processors. Most of the data and programs:
used by the dedicated system processors are stored in dedlcatedo
read-only memories (ROMs) shown in Fig. 1. The systemB
processors access the RAM only to share some system tables,o
and for this reason they can share a single port withouts
unduly high memory contention problems.
A major problem in large multiprocessor systems has to doo
with the size of the RAM needed to store all active user pro-m
cesses waiting for processors. With the cost of semlconductorA
RAMs decreasmg at a rapid pace, this may not be a serious<
problem in the future. In the system under discussion, them
size of the shared RAM is reduced by making use of swapping.s S
Most of the active user processes reside on drums; the RAM

T e

RANDOM ACCESS

1Jue/|

q/

1/0
T

o

DRUMS DISKS

20z Indy 61 uo 3senb A

> o,

UP1,UP2 : User Processors
SCH : Scheduler
1/0 : 1/0 Processor
MM : Memory Manager
MPX : Multiplexor
MTU : Memory Transfer Unit
SCN : Scanner
T : Terminal

Fig. 1 System architecture

tComputing Science Division, Texas A & M University, Industrial Engineering Department, College Station, Texas 77843, USA

The Computer Journal Volume 22 Number 1

37



contains enough active processes to keep the user processors
busy. When a user process stops execution for any reason, the
memory manager decides whether it should be swapped with
an active process on the drum. The memory transfer unit
is kept continually busy by the memory manager, carrying out
this swapping operation. Swapping, with as little delay as
possible, being a critical part of this system, a memory port
is dedicated to the memory transfer unit. Because of two user
processors and the continuous swapping activity, memory
contention is a serious problem in this system. The contention
problem is resolved by using a dynamic priority assignment
scheme which has been discussed in detail in Pirtle (1967).

3. Computational environment

The computational environment created by the software,
for each user group, is process oriented. The process oriented
environment is similar to that described by Farber (1973; 1974)
and all computational activities supported by the software are
carried out by creating and executing processes. For our
purpose it is sufficient to define a process as a program along
with the resources necessary for its execution. A detailed dis-
cussion of operating systems in terms of such interactive
processes can be found in Graham (1975). The processes in
the operating system communicate with each other by means
of messages left in mailboxes in the shared random access
memory. A process is normally blocked and is awakened by
the arrival of messages from other processes or external
sources. The messages direct the awakened process to carry
out certain activities, such as the transfer of a user process
from auxiliary store into random access memory.

The process, after acquiring a processor, generates its own
messages, and upon termination blocks itself. The scheduler
assigns the processor to the process. This approach allows a
flexible and distributable operating system that can be imple-
mented on multiple dedicated processors. The life cycle of a
typical process is illustrated in Fig. 2. Consider an active process
which receives a call from some other running process. The
call is entered under protection into the top two words of the
inputstack of the microprogrammed scheduler (microscheduler).
The microscheduler periodically inspects the stack for calls
from the outside. Upon finding such a call, the microscheduler
checks the identity of the process for validity. If the identity
is invalid, it ignores the call and deletes the entry. For a valid
call, the microscheduler determines whether the call is for a
wakeup or a block.

For a wakeup call the microscheduler merges the data word
from the call into the program interrupt word of the process
(PIW), stored in the process resident table. It checks to see if
the process is either waiting in the microscheduler queue for a
processor, or already running. In either case, nothing more
needs to be done.

If on the other hand the process is blocked, the microscheduler
unblocks the process. It checks to see if the process is in the
random access memory. If the process is in RAM, the micro-
scheduler places the process according to its priority into a
queue of processes waiting for processors. This placement is in
a pre-emptive priority fashion, thus the microscheduler may
have to reallocate the processors.

If the process is not in the random access memory, it has to
be swapped in. The microscheduler then puts the process into
a stack of processes waiting for the scheduler. The scheduler
determines the priorities of the processes independently,
and inserts them into the input queue of the swapper. In some
cases, the microscheduler may make a direct request for a
swap-in to the swapper.

Whenever a running process blocks, the monitor is activated.
The monitor decides whether the blocked process should
remain in main memory or be swapped out. This decision

PREEMPT

BLOCK WAKE UP PROCESSOR QUEUE
31 IN MEMORY >
(RAM),

WAKE UP

OUT OF MEMORY
(RAM)

[TIMER TRAP

SWAP IN SWAP OUT

TIMER TRAP

g SWAPPER QUEUE

SCHEDULER QUEUE

Fig. 2 Life cycle of a process

is passed onto the microscheduler via the block call. The micro-
scheduler blocks the process and if so directed makes a swap-
out call to the swapper.

If a process is caught in a timer trap, the microschedulet
places it on the input stack of the scheduler for future scheduls
ing. The scheduler changes the priority of such a process base@
on its scheduling criterion and sends a wakeup call. 2

Whenever a running process is pre-empted of its processog’
by a process with pre-emptive priority, the processor send@
a return call to the microscheduler. The mlcroscheduleg
removes the process from the running state, and places it 1&
the microscheduler queue to wait for a processor.

OILUSDEO

4. Operating system
The nucleus of the operating system consists of certain prlmlto
ive operations (tasks) distributed among the three dedlcatc@
special purpose processors, the Scheduler, the Memory
Manager, and the Input/Output Processor. For example, the
scheduler executes microprogrammed tasks for allocating.
processors to processes and other related activities. Thé&
memory manager similarly executes tasks for managing the:
hierarchical memory consisting of the RAM, the drums and th%
discs. The input/output processor manages all communica®
tions with the terminals. The primitive operations of thco
operating system are augmented and made more convenients
for use by means of utility programs. For example, the input
output processor creates and maintains logical information
channels, using its primitive operations. Each terminal i€
connected to such a logical input and output channel. A utilit§2
program is used to read from or write to a channel, a string of?
characters. The input/output processor subsequently transfers
these characters through the channels to their proper destina<
tions. Utility programs also create terminal interfaces withs
command languages and facilities for buffering character
strings. For a more detailed discussion of the mput/outpuﬁ
processor design see Heckel and Lampson (1977).

The major responsibility of an operating system is to allocate
system resources, in connection with which it makes and en-
forces decisions. The separation of the decision making activity
from the activities of enforcing these decisions on the processes,
is fundamental to the design of tasks for an operating system
(Balzar, 1973). Once the system architecture and the process
states are clearly specified, the activities required to enforce
the operating system’s decisions can be clearly defined and used
to identify the needed tasks. For example the scheduler,
using some criterion and algorithm, may set up an optimal
schedule for processes waiting for processors. No matter
what this schedule is, it essentially assigns a priority (pre-
emptive or not) to each waiting process. The enforcement of
this schedule is then achieved by allocating processors to
processes according to their priorities. This activity is depend-
ent on the hardware features of the system and can be decom-

The Computer Journal Volume 22 Number 1



PROGRAM DED_SCHEDULER;

IN

INTEGER SCHEDULER_FLAG,REQUEST_LATCH;

BOOLEAN INPUT_MAITBOX_LOCK,TIMER TRAP,USER PROCESSOR_IDLE,PROCESS_TEST;
BOOLEAN PROCESS_RAM,PROCESS_STATUS_} HORD SWAP_OUT;

PROCEDURE PROCESS_MESSAGE ;
61
INPUT_MAILBOX_LOCK=TRUE;
FETCHTMESSAGEY;
INPUT_MAILBOX_ LOCK=FALSE;
OPCODE=DECODE TMESSAGE ) ;
WAKEUP ;

BLOCK;
END PROCESS_MESSAGE ;

PROCEDURE BLOCK;
BEGIN
UPDATE (PROCESS_STATUS WORD) ;
IF TIMER_TRAP THEN QUFUE(SNAP OUT,PROCESS) ;
IF SWAP_OUT THEN QUEUE (SWAP_OUT PROCESS),
SCHEDULER_FLAG=1;
END BLOCK;

PROCEDURE WAKEUP;
BEGIN
UPDATE(PROCESS STATUS_WORD) 5
IF PROCESS_TEST THEN GO TO RETURN;
IF PROCESS_RAM THEN BEGIN
QUEUE (PROCESSOR, PROCESS)
IF PRIORITY='PREEMPTIVE' THEN SCHEDULER_FLAG=1;

END
ELSE QUEUE(SCHEDULER,PROCESS);
RETURN:
END WAKEUP;

PROCEDURE ALLOCATE;
BEGIN
COMMENT - ALLOCATE PROCESSOR TO HIGHEST PRIORITY PROCESS
WAL

a3

END ALLOCATE;

PROCEDURE UPDATE(ITEM);
TYPE DECLARATION OF ITEM;

IN
COMMENT- SET PROCESS_TEST IF PROCESS IN PROCESSOR
QUEUE OR RUNNING;
COMMENT- SET PROCESS_RAM IF PROCESS IN RAM;

END UPDATE;

PROCEDURE PROCESSOR_ALLOCATE;
BEGIN

IF USER PROCESSOR_IDLE THEN ALLOCATE ELSE PREEMPT;
SCHEDULER_FLAG=0;
END PROCESSOR_ALLOCATE ;

PROCEDURE PREEMPT;
BEGIN

COMMENT - IF WAITING PROCESS HAS PREEMPTIVE PRIORITY,
THEN PREEMPT THE LOWEST PRIORITY RUNNING PROCESS;

END PREEMPT;

PROCEDURE QUEUE(Q NAME,Q_ITEM);
TYPE DECLARATTON OF Q NAME,Q_ITEM;
BEGIN
COMMENT- ENTER Q_ITEM INTO QUEUE DESIGNATED BY Q_NAME;

END QUEUE;

COMMENT - MAIN PROGRAM LOOP;
FOR I=1 WHILE TRUE DO

EGIN
IF REQUEST_LATCH=1 THEN PROCESS_MESSAGE
ELSE
IF SCHEDULER_FLAG=1 THEN PROCESSOR_ALLOCATE;

END MAIN PROGRAM.

Fig. 3 Dedicated scheduler

posed into tasks which will remain constant throughout the life
of the system. Some of these tasks of the scheduler are dis-
cussed in the next paragraph.

The microscheduler, in response to messages left in its
‘mailbox’, wakes up processes (see Fig. 3). The microscheduler
is a microprogrammed processor whereas the swapper and the
scheduler are software modules run on the system processors.
All processors in the system make WAKE UP calls to the
microscheduler to activate processes. If a process, which has
received a WAKE UP call, is not in main memory, the micro-
scheduler inserts the identity of this process into the input
stack of the scheduler. The scheduler, using its scheduling
algorithm, assigns a priority to the process which cannot be
changed by the other processors. It places the process into its
appropriate position in the queue managed by the scheduler,

The Computer Journal Volume 22 Number 1

and makes a SWAPIN call to the swapper. Because of in-
adequate memory space, the swapper may fail to swap-in a
process. It then makes a GIVUP call to the microscheduler,
requesting the identity of a process which may be swapped
out to provide memory. The microscheduler responds by
generating a SWAPOUT call indicating the process that can
be swapped out.

The microscheduler periodically checks the status of each
processor and reallocates those processors which are either
idle, or can be pre-empted. The processors are directed to
switch processes by way of the SWITCH call sent by the
microscheduler. The SWITCH call provides the processor
with the identity of the new process to be run.

A processor has three possible states. It is either idle, running
a process or running a process which has pre-empted another
process. If the processor is in the last mentioned state, then the
microscheduler does not send it a switch call until the process
running on it blocks. A processor is switched only if it is idle
or running a process which has not pre-empted another process.:
Whenever the microscheduler enters a process in its queue Y
that has a pre-emptive priority, it sets up a schedule flag.
This flag indicates that reallocation of the processors is
necessary. When the microscheduler reallocates the processors,
it switches the highest priority process in the mlcroscheduler
queue with a process that has blocked.

In summary, when a process blocks, the scheduler removes 1t’
from the chain of processes in the run state and releases 1tsw
processor. It allocates processors to waiting processes, makesm
swap-in calls for awakened processes not in main memorya
and appropriate swap-out calls for processes to be put on theB
drums.

The scheduler shares common data bases and communicatesc
with other processors in the system via the RAM. To simplify 8
the communications protocol among the system processes,g
the tasks are designed to be noninterruptible. After completmgg
a task, a system processor normally checks its mailbox for3
urgent messages that may need attention. In order to be able'*
to respond quickly to urgent messages, each task is kept shortm
and fast. The high speed of execution is attained by micro- N
programming each task and by using very high speed (15 MIPS)w
system processors. Response time to messages become par-\
ticularly critical for the memory manager which may reuelvem
messages from the memory transfer unit in a fraction of aoo
millisecond. In such cases, long tasks are decomposed 1ntog
chains of short subtasks. Each subtask, after completion, leavesa
a message in memory private to the processor, identifyingg
the next subtask to be performed if urgent messages are notg
waiting for attention. The microprogrammed tasks of eachg
resource manager are stored in local ROMs to reduce excessnve>
memory contention problems at the RAM. A sxmphﬁed ﬂow“
chart of the scheduler with its associated tasks is shown mo
Fig. 3. Each management processor, while using a shared”™
data base, sets a bit in a lock- reglster in order to protect the
shared data base from simultaneous use (and/or access) by
other processors. Each bit in the lock corresponds to a group
of shared data bases. A processor can set its lock bit to one
only if no other processor has the same bit set to one. When-
ever a processor places a message in the mailbox of another
processor, it sets to one a request latch in the receiving
processor. This action does not interrupt the receiving processor
but merely informs the receiving processor, when it has com-
pleted its current task, that its mailbox has a message in it.

pepeowmo

wo

no-o

;-

5. Discussion

Each dedicated processor for resource management can be
thought of as a hardware module designed for a specific job.
This clearly encourages a modular design of the resource
management software with strictly enforced (hardware)

39



module boundaries. Such modular design of course simplifies
the problems of system testing, maintenance, and performance
measurements. To test the operation of a resource management
processor, its private ROM is loaded with the microprograms,
the shared data structures are created in the RAM and
messages are sent to the system processor. The results of the
operation of the resource manager can be seen by observing
the changes in the data in the RAM. Errors in operation
can often be tracked and isolated to individual processors
and their associated software. One management processor can
thus be used to monitor the performance of another processor
or perform system wide tests.

This modular design also simplifies the problems of providing
a secure computational environment for the users. A user
cannot gain complete control of the system by entering the
privileged mode via some software error. Most of the resource
management programs are microcoded and stored in in-
accessible ROMs, private to each processor. The only way a
user triggers the attention of the operating system is by sending

add a software based system manager who takes over only
when any of the dedicated system processors fail.

6. Summary

In the past, a major constraint in designing novel computer
systems has been the cost of the hardware. With recent ad-
vances in technology hardware costs have decreased, making
it feasible to design multiprocessor systems. Such multi-
processor systems operate under integrated operating systems.
We have attempted to show that important benefits can be
achieved by using distributed operating systems.

The design described here is easy to understand and imple-
ment. Each hardware module carries out a specific and simple
set of noninterruptible tasks, and communicates with other
modules via a simple message protocol. Note that some of the
simplicity of the design, such as the absence of nested inter-
rupts, is possible because of yet another hardware feature,
namely the very high speed of the dedicated system processors.
The speed of these processors also enables the programmer to

design more reliable systems by using redundant codes andy
checks (of states and messages). To summarise, cheaper ands
faster microprogrammed processors make it possible to designg
simpler, modular, distributed operating systems suitable for@
use in distributed processing.

messages to the monitor. If the messages are checked carefully,
the chances of a user gaining complete control of a distributed
operating system are rather small.

A distributed function computer system is subject to the same
problems of reliability as those of a centralised computer
system. In case of hardware failures, the system has to be
reconfigured using standby hardware modules. To mitigate
the effects of software failure, the processes should be designed
using recovery blocks (Randell, 1976). These ideas for reliabil-
ity improvement are fairly new and were not around when
this system was designed. In this system, if a user processor
fails the system does not fail completely but if a system pro-
cessor fails it leads to total system failure. Because of the

ny wouy

Acknowledgement
The computer design discussed in this paper is a simplified ver-?g
sion of the BCC 500 computer, designed and implemented by2
Wayne Lichtenberger, Butler Lampson and others of th%
Berkeley Computer Corporation during 1969-1971. The com=3
puter is currently operational at the Department of Electricaly
Engineering, University of Hawaii, under the direction of_§

architecture of the system however, it is relatively simple to Professor Wayne Lichtenberger. S

Q
References §
BALZER, R. M. (1973). An Overview of the ISPL Computer System Design, CACM, Vol. 16 No. 2, pp. 117-122. =
EnsLow, P. H. Jr. Ed. (1974). Mudltiprocessors and Parallel Processing, John Wiley, New York. g
FARBER, D. J., et al, (1973). The Distributed Computing System, Proc. IEEE Computer Society Seventh Annual Intl. Conference, pp. 31-345
FARBER, D. J. (1974). Software Considerations in Distributed Architectures, Computer, Vol. 7, No. 3, pp. 31-35. g
GRAHAM, R. M. (1975). Principles of Systems Programming, John Wiley, New York. =
HECKEL, P. G. and LampsoN, B. W. (1977). A Terminal-Oriented Communication System, CACM, Vol. 20, No. 7, pp. 486-494. g

Jensen, E. D. (1975). A Distributed Function Computer for Real-Time Control, Proc. Second Annual Symposium on Computer Architecture,s;
pp. 176-182. 8

JosepH, E. C. Ed. (1974).
pp. 17-24. 8

LAMPSON, B. W., LICHTENBERGER, W. W, and PIRTLE, M. W. (1966). A User Machine in a Time-Sharing System, Proc. IEEE, Vol. 54, No. 122
pp. 1766-1773. 3

LICHTENBERGER, W. W. and PIRTLE, M. W. (1965). A Facility for Experimentation in Man-Machine Interaction, Proc. AFIPS Conf.
Vol. 27, pt. I, pp. 589-598.

PIRTLE, M. W. (1967). Intercommunication of Processors and Memory, Proc. AFIPS, Vol. 31, pp. 621-629.

RANDELL, B. (1976). System Structure for Software Fault Tolerance, in Current Trends in Programming Methodology, Ed. Yeh, R. T:
Chapter 7, pp. 195-219, Prentice-Hall.

N
Innovations in Heterogeneous and Homogeneous Distributed Function Architecture, Computer, Vol. 7, No. 335
o

V 61 UD

1id

¥20c |

Book review

Programming and Problem-solving in Algol 68, by A. J. T. Colin,
1978; 251 pages. (Macmillan, £4-50)

As the title suggests, this is a programming textbook rather than an
ALGOL 68 language primer. Emphasising that there is more to
programming than knowledge of a programming language, Professor
Colin introduces the student to algorithm design and evaluation,
problem specification, program design and documentation in a
practical and approachable style.

Each new concept is illustrated by several worked examples, which
also serve to introduce common algorithms with which the student
should be familiar, e. g. sorting and searching. Each chapter ends
with a set of graded execrises, many of which have worked solutions

40

at the end of the book.

I was particularly impressed to see a clear discussion of the pre-
cision of real arithmetic: a subject which is clearly relevant to most
computing, but which is often either absent from programming
texts or wreathed in numerical analysis.

Only as much ALGOL 68 as one might expect to find in a first
year undergraduate course is covered. Omissions include computing
with references, operator definitions, transput with formats, heap
storage, unions, GOTO and labels. The limited coverage of ALGOL
68 makes the book unsuitable for a programmer wishing to learn
ALGOL 68. It can, however, be recommended to any student
following an introductory course in programming.

ANNE RoGERs (Bath)

The Computer Journal Volume 22 Number 1



