Software methods for virtual storage of executable code

P. J. Brown

Computing Laboratory, The University, Canterbury, Kent

Virtual storage systems were originally based on swapping to and from a disc or drum. More
recently, however, the same techniques have been used in new areas, where the constraints imposed by
electro-mechanical devices do not apply. This necessitates a fresh evaluation of storage manage-
ment strategies. An area where new strategies may reap specially good rewards is the management

of code areas by software.
(Received November 1977)

Virtual storage is concerned with transferring information
between secondary storage and primary storage with the purpose
of giving the illusion that the primary storage is bigger than
its actual physical size. Traditionally secondary storage is
pictured as a drum or disc and primary storage as ‘core’.
We will call this disc/core virtual storage. More recently,
virtual storage techniques have been used in two other areas:

1. Machine/machine linkage

Minicomputers or microcomputers are frequently connected to
mainframes, and in some cases the mainframe provides the
smaller machine with a virtual storage system. Here the
‘secondary storage’, that provided by the mainframe, may
even have faster access times than the primary storage, though
its effective speed to the small machine will be controlled by
the speed of the interconnecting link. (Moreover the secondary
storage may itself be subject to a disc/core virtual storage
mechanism.) In the future, machines are likely to be linked in
much more complex ways, and thus it is best to think of the
big machine/small machine situation as a peephole to a much
larger and more general picture of co-operating machines.
Among the facilities that one machine may supply to another
will be virtual storage.

2. Procedure/procedure linkage

An example of this use of virtual storage is where a ‘compiling’
procedure supplies ‘pages’ of code to an ‘executing’ procedure
running in the same machine. If the executing procedure dis-
cards a page and subsequently needs it again, then the compiling
procedure regenerates it (see, for example, Brown, 1976).

Cases 1 and 2 are logically similar, and we will use the term
process/process virtual storage to cover both of them.

Purpose of this paper
Process/process virtual storage normally needs to be imple-
mented exclusively by software methods. Disc/core virtual
storage is sometimes aided by hardware mechanisms such as
automatic paging; sometimes it is provided exclusively by soft-
ware. The purpose of this paper is to examine such software
mechanisms, and to see how process/process virtual storage
might change traditional ideas.

We shall henceforth use the neutral term unit to describe
the blocks in which storage is allocated. A unit may be a fixed
sized ‘page’ or a variable sized ‘segment’.

Software virtual storage

The main aid that hardware can provide for virtual storage is
the translating of virtual addresses into real addresses, using
such devices as page tables. Software virtual storage systems
are faced with performing this address translation as an extra
overhead. If every single address reference has to be interpreted

50

by software then this overhead may be immense, and thus the
cornerstone of most strategies is to try to minimise it.

Separating code and data
One way of minimising the address translation overhead is tog
separate code areas from data areas and take advantage of<
the special properties of each. Most software virtual storageO
mechanisms do this, and indeed many only deal with codea
areas, since these tend to be the simpler. In addition, assummg
code areas to be read-only, discarded units do not need to beg
preserved; hence (as a gross simplification) you get twice as=
much for your money with code areas as against read/wrlteU
data areas. >
Another great advantage of code is that it is normally executedm
sequentially. Only perhaps one instruction in ten is a Jump3
instruction which changes the sequence of execution. It 150
only on the virtual addresses that are the operands of j JumpSC
that address translation is needed. (Address translation mayg
also be needed if a sequence of code runs over a unit boundary.3 s
However if each unit is made to end with a jump to the nextS

unit this problem is covered by the jump mechanism.) —3
This paper concentrates on code areas. o
2

[©]

Naur’s method N

The best description of a software system for virtual storage=
of code areas is still, without much doubt, Naur’s (1963)3
paper on GIER ALGOL. Naur worked in fixed size units ot“"
40 words, the block size of the drum on the GIER machmew
The code for each unit was position independent—a featureU
available on most modern hardware—and thus could be loadeds
anywhere in primary storage without modification. Jumps%
within units presented no problem since they were relative and’*
hence position independent. Jumps between units needed to be3
interpreted to perform the correct address translation. At thei
end of each unit a jump to the next unit was added, and theseS
jumps also needed to be interpreted. Naur put all constantsg
within the code, so there was no need to have a potentiallyy
large ‘constant table’ in primary storage. A constant was in-
cluded in every unit that referenced it.

A record was kept of the usage of each unit in primary store,
and the least recently used unit was discarded when the need
arose.

Naur's technique has been reinvented many times since.
(Perhaps even Naur reinvented it and some earlier author
deserves credit.) In one variant (Colin, McGregor and Mitchell,
1975) units are of 1,024 words and consist of an integral number
of procedures. No procedure can cross a unit boundary and the
user is encouraged to write related procedures adjacently so
they are likely to go in the same unit. Procedure calls are inter-
preted in the same way as Naur’s jumps are. However the
authors say that this only represents an overhead of 13 instruc-
tions over a direct procedure call.

The Computer Journal Volume 22 Number 1

Replacement algorithms
A key to a virtual storage scheme is the replacement strategy,
i.e. the strategy that selects which unit(s) to discard if primary
storage becomes full. Hoare and McKeag (1972) survey some
of these strategies and Denning (1970) also gives an analysis.
One radical and absurdlysimple strategy that is notmentioned
in these surveys is the discard-all strategy. This strategy, which
is geared to code areas, simply involves discarding all units
in primary storage and starting again from scratch. The reason
this ‘strategy’ is not mentioned in the surveys is, of course,
that it would be a stupid one for hardware virtual storage
of disc/core transfers. However the discard-all strategy has
advantages which, in other circumstances, may outweigh its
naivity. These are as follows.

1. Being so ridiculously simple, the strategy takes few instruc-
tions to code and thus leaves more store to manage; it runs
fast too, as there is so little to do.

2. Because space is allocated sequentially there is no problem
if units are of variable size, and there is no wasted storage
(i.e. none of Randell’s (1969) external fragmentation)
except at the very end.

The above two advantages apply generally, but there are two
further advantages if there is no hardware support for address
translation.

3. If one new unit flows directly into another one there is no
need to insert a jump instruction in between, because
the second unit is certain to follow the first one in storage
and control can flow straight through.

4. Jumps from one unit in primary storage to another can be
made absolute—they do not need to go through the address
translation process. This is because if one unit is discarded
they all are; hence there can be no dangling references.
(See the next Section for further details.)

The combined effect of 3 and 4 is that if a program does com-
pletely fit into primary storage, then once the program has been
completely loaded the virtual storage management system gives
no overheads on the running of the program, because it is
completely bypassed (save perhaps for subroutine returns).
Address translation is performed once for each occurrence,
not continuously.

Because of these advantages, the discard-all strategy was
chosen for process/process virtual storage management by
Brown (1976).

Overwriting virtual jumps by absolute ones

One way of overwriting jumps to virtual addresses by jumps to
absolute addresses would be the following: as each new unit
comes into primary storage, all jumps from other units to
virtual addresses within the new unit are identified and over-
written by absolute jumps. This method involves a lot of house-
keeping and is not attractive.

A better method is to represent each virtual jump as a call of a
‘self-effacing’ system subroutine, the desired virtual address
being passed as an argument. If this call can be represented
by a single machine instruction, such as a TRAP or extracode
instruction, so much the better. When the self-effacing sub-
routine is entered it finds the absolute location of the required
virtual address, loading a new unit if necessary, and then over-
writes the call of itself (provided that this is still in primary
storage) by an absolute jump to the required location.

Wasted code

Randell defines internal fragmentation as the storage wasted
when a logical segment has to be rounded up so that it fits
into an integral number of pages. There is, however, a poten-
tially much larger source of wastage: this is code that is loaded

The Computer Journal Volume 22 Number 1

but never executed. We call this wasted code. (Wasted data
could be defined similarly, but is of less interest because,
unlike wasted code, it is hard to avoid.) As an extreme example
consider a procedure which has the form

IF BOOLEAN THEN
BEGIN (100 statemeits)
END;

and assume that this whole procedure is loaded as a segment.

If the procedure is never entered with BOOLEAN true during
its sojourn in primary storage then the bulk of the procedure
is wasted code. (If BOOLEAN was never true during the whole
program run then it would always be wasted code; hence wasted
code can arise independently of a virtual storage system.
Indeed in a run of a large program it would be surprising if as
much as 50%, of the code was exercised, and as little as 509,
wasted.)

Wasted code is simple to avoid, provided that units can be of
variable size. All that is necessary is to work in units that are
logical units of the execution of the program. Systems usuall%
work in units of the static layout of the program, such a
blocks and plocedures but these are not suitable executioxg_
units. This is a pomt well made by Naur, who cites earlleg
unfortunate experience of a scheme based on static umtSO.
(Unfortunately, at the time, 1963, physical constraints pres
vented his using logical run-time units absolutely.) It is not clea?,
if Naur’s point has been properly taken in the interveniné"
years.

The natural unit of program execution is the basic bloc
a term coined by those interested in flow analysis (see, e.
Allen and Cocke, 1976) A basic block is a sequence of mstrucf,
tions that are not jumps, terminated with a jump. Here @
‘jump’ includes a conditional jump, a subroutine call or return;
a stop or a ‘table jump’ derived from a CASE statement. S

If storage is allocated in units of basic blocks and with nGg
internal fragmentation, there will be no wasted code (sav
in error situations and certain possnble interrupt situations).
Avoiding wasted code does not in itself guarantee good pers
formance, but it is a good start.

BoeSe

ane/|

/0G/L/ce/al

Size of units
The striking facet of basic blocks as units is that they are smallw
perhaps averaging 10 instructions or 30 to 40 bytes.

There is still controversy over the ideal size for a unit. Hoare
and McKeag report suggestions varying from 1 to 8,192 words<
(Umts of one instruction avoid wasted code!) Much thmkmg
in this area is coloured by dnsc/core virtual storage where physn»
cal block sizes may be of fixed size and latency overheads sucl?
as disc seek times are large. These factors swamp the relatives
advantages of small units cited by Batson et al., (1970) an£
Coffman and Varian (1968). In process/process v1rtual storag%
none of these physical constraints applies and thus small umt@
of variable size are more feasible.

Apart from possible physical constraints the only two objec-
tions to small units are the size of the unit table (i.e. the page
or segment table) and the time to search this table. (In the
process/process case, the unit table, and the algorithms associ-
ated with it may actually reside in the secondary storage, e.g.
the ‘mainframe’.) The unit table is likely to represent an
overhead of two words per unit. Even if this comes to 209,
of a unit size it is likely to be more than compensated by the
savings in wasted code. As regards speed, computer science
has put great effort into table look-up techniques and has
produced effective methods even for rapidly changing tables
such as the unit tables might be. Nevertheless there obviously
must be some speed penalty, and thus strategies that minimise
address translation overheads are best.

6EET

51

Increasing unit size

In one realisation of basic blocks as units (Brown, 1976) the
following two devices are used to make units rather bigger.
Firstly calls of run-time system subroutines (other than the
self-effacing one described earlier) are not counted as the end
of a unit. This is because they always return (except in error
cases) and they are locked into primary storage and thus can
not cause any unit to be discarded. (The system is actually a
BASIC time sharing system where the run-time package is
shared between all users. That is why it is locked in.) This
device at least doubled the size of units.

Secondly, if one unit ends with an unconditional jump to
another, then the two can be dynamically combined into one.
(If the second unit is also subsequently jumped to from a
third unit. then this represents a jump into the middle of the
new combined unit. In this case the ‘label’ at the head of the
second unit needs to go into the unit table.) A similar tech-
nique can be used for subroutine jumps, which might be treated
as an instruction to stack a return Jink followed by an ordinary
direct jump.

Comparison

We now have three strategies to compare, and will evaluate
them from four standpoints: simplicity, ability to deal with
variable sized units, address translation overheads and efficiency
of unit selection. The last is a measure of how clever the strategy
is at choosing the correct page to discard (see discussion of the
principle of optimality in Denning, 1970). The following table
summarises the respective strategies.

Discard-all FIFO Naur
Simplicity Great Good Reasonable
Variable sized Yes Yes Not easy
units ?
Address translation Minimal Small Fairly small
overhead
Efficiency of unit Terrible Fair Good
selection

Not surprisingly, the table shows no ‘best buy’. Any choice
of strategy involves trading off a large number of factors of

which the above table gives only four. Even mathematicalg
analysis and mathematical models, as Hoare and McKeag =
observe, cannot give a complete guide to the best choice. 3
However a general trend is evident: Naur’s method looks good %

Another strategy
So far we have examined Naur’s strategy, which has fixed
sized units and discards the least recently used one, and the

discard-all strategy, which works with variable sized blocks
and minimises address translation overheads.

An intermediate strategy is a FIFO strategy. This is used in
the software virtual storage management of code areas by
Bobrow and Murphy (1967). They simply put code into a
circular buffer. They allow variable sized units and when a new
unit is loaded it automatically overwrites one or more units
at the previous head of the buffer.

In such a scheme it is possible to make forward jumps
(i.e. jumps to a more recently loaded unit) absolute since the
jump must disappear before the unit it references does. However
backward jumps need to go through an address translation
mechanism because the opposite applies; actually if the unit
referenced is discarded and subsequently reloaded the backward
jump will become a forward one and can be made absolute.

References

for a typical disc/core situation whereas in a process/process
situation the other methods have the right properties.

Conclusions

With changing technology in both hardware and software,
virtual storage strategies do not always need to be dominated
by sizes of disc tracks and latency times on electro-mechanical
devices. In the absence of such physical constraints it is possible
to work in logical units of program execution, such as basic
blocks, and thus achieve dramatic savings in wasted code.
Such units are small and of variable size and may necessitate
new storage management strategies. One possibility is the
discard-all strategy.

ALLEN, F. E. and Cocke, J. (1976). A program data flow analysis procedure, CACM Vol. 19, No. 3, pp. 137-147.

BATSON, A., SHY-MING Ju and Woob, D. C. (1970).

Measurements of segment size, CACM, Vol. 13, No. 3, pp. 155-159.

Bosrow, D. G. and MurPHY, D. L. (1967). Structure of a LISP system using two level storage, CACM, Vol. 10, No. 3, pp. 155-159.
BrownN, P. J. (1976). Throw-away compiling, Software—Practice and Experience, Vol. 6, No. 3, pp. 423-434.
CoreMaAN, E. G. and VARIAN, L. C. (1968). Further experimental data on the behaviour of programs in a paging environment, CACM,

Vol. 11, No. 7, pp. 471-474.

CoLIN, A. J. T., MCGREGOR, D. R. and MircHeLL, D. (1975). Paging STAB-1 code, Software—Practice and Experience, Vol. 5, No. 3,

pp. 309-316.
DENNING, P. J. (1970).

Virtual memory, Computing Surveys, Vol. 2, No. 3, pp. 153-189.

HoaRE, C. A. R. and McKEAG, R. M. (1972). A survey of storage management techniques, in Hoare and Perrott, Eds., Operating Systems

Techniques, Academic Press, London, pp. 117-151.

NAUR, P. (1963). The design of the GIER ALGOL compiler: Part I, BIT, Vol. 3, pp. 124-140.
RANDELL, B. (1969). A note on storage fragmentation and program segmentation, CACM, Vol. 12, No. 7, pp. 323-333.

Book review

Fundamentals of Computation Theory, edited by M. Karpinski, 1977;
542 pages. (Springer-Verlag Lecture Notes in Computer Science 56,
$19.80)

This volume in the Springer Series of Lecture Notes records the
proceedings of the 1977 International FCT Conference held in
Poland in September 1977. It gives over 60 papers organised in three
sections: A. Algebraic and constructive theory of machines and
computations, B. Computation theory in category, C. Computa-
bility, decidability and arithmetic complexity. The papers which
range from fundamental, deeply abstract to practical, give a wide

52

coverage of modern computability theory which will be of interest to
those who work in the field of logic and foundations of mathematics
and also people interested in real computational problems.

The volume is a typical product of Springer’s policy of publishing
rapidly produced versions of conference proceedings. It has the
virtue of bringing together results from writers in America, Western
and Eastern Europe faster than would be the case by any other
means and as such will be found valuable by all interested in the
foundations of mathematics and computing.

A. YouNng (Coleraine)

The Computer Journal Volume 22 Number 1

20z udy 61 U0 1s9nB Aq 0BEESE/0S//2Z/aI01E/UlWOD/W0d dNo dlWspeoe)/:sdjy Wwoi

