An experimental testbed for numerical software,

Part 2: ALGOL 68

M. A. Hennell and D. Hedley

Computational Science Department, University of Liverpool, Brownlow Hill, Liverpool L69 3BX

In this paper we describe the extension of an existing FORTRAN 1V numerical software testbed
(Hennell, 1978) to enable ALGOL 68 programs to be investigated. The extensions necessary were
two-fold; firstly, a complete rewrite of the first phase, a static analysis in which the source text is
reformatted (for reasons stated within this paper), analysed for all possible control jumps and

statistics on language constructs are collected.

The second major extension was to incorporate into the second phase an existing ALGOL 68
compiler which after some modification enables dynamic execution histories to be collected in a data
base. These modifications to the compiler represent extensions to the language definition which
enable user programs to trace themselves. The utilisation of this compiler restricts source code
programs to be written in ALGOL 68s, an official ALGOL 68 subset (Hibbard, 1974).

The third, analysis, phase is essentially identical in both the FORTRAN and ALGOL 68 systems.

(Received August 1977)

1. Introduction

In a previous paper (Hennell, 1978) a software testbed was
described which is intended to be particularly suitable for the
analysis of numerical software. This system analysed the run
time execution history of a FORTRAN program or part of a
program and compared it with a static analysis, thus enabling
us to quantify the quality of program testing since the percent-
age of statements or branches actually executed can be
measured. Program optimisation is also possible since the
frequency of execution of individual statements or branches is
available. In this paper we describe the extension of the testbed
to incorporate the analysis of ALGOL 68 programs.

Basically the original system consists of three phases. In the
initial static phase an analysis of the routine is made to deter-
mine the statement type, store the source code, determine all
possible jumps and gather statistics. The second phase involves
running the FORTRAN program with a FORTRAN interpre-
ter and selecting various events for recording in an execution
history. The third phase involves analysing the resultant data
base using various tools designed to illustrate particular aspects
of the program’s performance.

To be able to incorporate ALGOL 68 programs the first two
phases were revised. In Section 2 we describe how ALGOL 68
programs have been instrumented and a compiler modified to
provide a suitable execution history. The acquisition of the
execution history from the instrumented program constitutes
the second phase of the ALGOL 68 testbed. We also outline the
reasons why the first phase performs a reformatting of the
source program.

The tracing mechanism involved is both powerful and simple
to implement. It is clear that the inclusion of similar tracing
facilities in all ALGOL 68 compilers would provide users with
an extremely powerful diagnostic facility.

2. Instrumenting technique
To obtain an execution history of a program, three techniques
are possible. Firstly the program can be instrumented with
calls to various event reporting routines. Systems using these
techniques can be found in Fairley (1975) and the references
therein. The second technique is to provide monitoring facilities
within the compilers (the FORTRAN testbed of Hennell (1978)
belongs to this category). The third is to provide a combina-
tion of both these techniques. The ALGOL 68 system to be
described here falls into the third category.

The tracing of FORTRAN programs is greatly facilitated
by the simplicity of the language. In general the major prob-

The Computer Journal Volume 22 Number 1

O|JN\OC|

lems arise from the way in which logical IFs are handled®
It is not enough, for instance, to record whether the statemend.
has been executed, because clearly the logical expression wilf
always be executed whilst the controlled statement may no

Techniques for coping with this problem can be found lﬂ

Fosdick (1974).

With a language as powerful as ALGOL 68 where extremelg
complicated compound statements may be found it is no%
obvious which events need to be recorded to obtain from t
execution history those paths which were elaborated. Fo@
instance, with

(-)
o]
minim (x, if x > O then p else g fi, void: goto 1); 3

0,

it is not immediately obvious how one could instrument eithe%
the compiler or the source code to trace unambiguously th&
execution of this construct.

The compiler available was an implementation of ALGOL 68533
a pure subset of ALGOL 68 (Hibbard, 1977), and runs on &
CTL Modular One minicomputer in the Computational ang;
Statistical Science Department at the University of Liverpoog

As originally designed this compiler keeps a record of th&S
source code line number in the compiled code, so that when g
run time error occurs the user can be given the line numbey
together with a diagnostic message. From experience with thg
FORTRAN tracing, it was expected that easy access to thi§
line number at certain points in the program would provide g
powerful method for analysing the performance of the prog
gram. This led to the compiler writer being approached to pra>
vide such access within a framework which would enablé
any ALGOL 68 program to be traced in a meaningful manneg

The mechanism devised was to provide a special variable
called trace, declared in the standard prelude with the mode:

ref proc (int) void,

Then any routine which is assigned to this variable is called
automatically during the running of an ALGOL 68s program
at all line number interrogation points. The value of the integer
parameter is the source listing line number of the line on which
the call of trace has occurred.

The line number interrogation points are:

(a) the beginning of every source line

(b) the beginning of every routine text

(c) the return from every procedure call

(d) the entry to any alternative of a choice clause
(e) the end of every balance

(f) the start of the while and the do of every loop
(g) the end of every loop.

Calls at interrogation points are disabled within the body of
the routine text assigned to trace. They are enabled again on
normal return from the routine. The only restriction is that
no scope checking is performed on assignations to trace.
There is also a run time penalty of the order of 20 per cent
when a routine is assigned to trace, in addition to the time taken
to evaluate the routine.

As in our FORTRAN system, tracing can be freely switched
on and off at arbitrary points within the ALGOL 68s source
code. The assignation

trace :=(int n) void: skip;

disables the tracing.
Consider the unit

x := if a > b then a else b fi;

Then line number interrogation points occur at the start of
the line, after then, after else and at fi. It now becomes apparent
that to gain the maximum amount of information concerning
the flow of control through an ALGOL 68 program from
interrogating the line number alone, we must reformat the
original program so that, for example, components of choice
clauses lie on separate lines. In fact our reformatting program
performs the following functions

(a) closing brackets for choice clauses, labels and the while of
any loop, are placed on a new line

(b) any text following a goto statement, or the in or then of
choice clauses, is placed on a new line

(c) all the separators of choice clause alternatives and the do
and od of every loop, are placed on a line by themselves.

Having achieved this reformatting the first three categories
of line number interrogation points are sufficient to give us the
complete path of control flow through the program. It is then
useful to define a jump as occurring when the line number does
not change by natural selection. More formally we define a
jump as occurring in the reformatted program when control
may be transferred from line m to line n, where either m > n
or m < n and there exists some executable code between
these two lines. If at any line where there is a jump there is also
the possibility of transfer of control by natural succession to
the next line then we add all such control transfers to the set
of all jumps and call the result the set of all branches.

An ALGOL 68 program to reformat the test program or
routine constitutes part of the first phase of the testbed. To
flow trace the reformatted program a macro inserts a suitable
prelude, with the trace routine assignment, and postlude and
then runs the program on the ALGOL 68 compiler. It should
be noted that the execution history is recorded on the standard
backing store in which each word is program addressable.
At the termination of the program this execution history is
retrieved and stored in a permanent file.

In the appendix some examples are given of trace routines
to achieve monitoring of various events, such as control flow
tracing and assignment monitoring.

Should the user wish to trace only a small segment of a pro-
gram then the instrumentation has to be carried out manually.
In particular all monitoring of variables must at present be
hand instrumented.

The last phase continues with a static analysis of the refor-
matted ALGOL 68 program to determine all the theoretically
possible branches.

Jumps in the reformatted program occur at the following
points:

(a) from every goto to its corresponding label

54

(b) from the call of a procedure to the beginning of the pro-
cedure text

(c) from the end of a procedure text to the calling point

(d) from the in of a choice clause to the entry of any alternative
of a choice clause except the first

(e) from the then of a choice clause to the end of the alternative
immediately following

(f) from the end of each alternative of a choice clause except
the last to the end of the balance

(g) from the do to the od of any loop except those with fixed
bounds which ensure that the loop must be elaborated

(h) from the od to the do of any loop which does not contain a
while

(i) from the od to the while of a loop.

In cases (d) to (i) control flow can also carry straight on,
thus completing the set of branches.

It must be emphasised that the problems of finding the
branches in ALGOL 68 programs is much more difficult than
the equivalent in FORTRAN. For example, routine texts may
be assigned to a procedure anywhere after it has been declared,
and parameters of mode proc may themselves be a routine
text, rather than a reference to a procedure which has already
been declared.

This static analysis is then incorporated into the data base
with the execution history.

3. Data base analysis

In the FORTRAN testbed, the FORTRAN interpreter was
modified to output event monitoring data to the disc, from
which it was analysed by suites of ALGOL 68 programs. One
consequence of this technique is that this data was written
to that portion of the disc working area reserved for the
ALGOL 68 standard backing store (standback). Thus, using
the trace routines described in the appendix, which also output
to standback, ensures that provided we use a compatible
format, the third (analysis) phase of the FORTRAN testbed
can be used without modification. This is a particularly satis-
factory situation since a great deal of programming effort has
been expended on investigating not only analysis techniques
but also the presentation of data to the user.

The principle features of the testbed are:

(a) a statement execution frequency count (coverage), coupled
with the percentage of unexecuted statements and the
percentage of unexecuted branches

(b) a dynamic display of the program execution as shown in
Fig. 1,

(c) an interactive interrogation of the data base, monitoring
the execution of the program in either the forward or
backward direction. Details of this facility are described
in Hennell (1978) and are identical for both languages.

The principle applications of these tools have been to quantify
the testing process (Hennell, Woodward and Hedley, 1976),
assist in the derivation of improved test data and improve the
quality of the code by carrying out code optimisation using the
statement and branch execution frequencies.

The improvement of test data is achieved by choosing a
number of data sets and examining the branches executed
by each. In this way data which executes paths which have
already been executed can be excluded. The final test data
set is the collection of these individual data sets which maxi-
mises the total number of executed branches. It must be
emphasised that there may, of course, be other reasons for
including data sets, for instance those which provide difficult
tests for the algorithm rather than successful implementation.

The Computer Journal Volume 22 Number 1

20z udy 61 U0 1s9nB Aq GOFEGE/ES/1/2Z/a0ME/UlWOD/W0d dNo dlWspeoe)/:SA]Y WOJ) POPEOUMOQ

¥ trace header #
begin

int from :=1,t0 := 1;

reset (standback);

trace := (int linenumber) void:

begin

if linenumber # from +1 and linenumber # from

then to := linenumber; put (standback, (from, to))

fi;

Jrom := linenumber

end;

¥ triangle program 3
1begin
2 int cases := 4, i, j, k, match;
3 to cases
4 do
read ((i, j, k)); print ((newline, i, j, k));
check triangle inequalities satisfied 4
ifi+j<korj+ k<iork+i<j
then

4 inequalities not satisfied 4
10 print (“not a triangle™)
11 else
12 3 triangle inequalities satisfied #
13 3 now find no of sides equal %
14 match := 0;
15 if i = j then

\O 00 3O\ L\
et et ek bk bt bt ot ok ek ek

16 match + =1
17 fi;

18 if j = k then

19 match + =1
20 fi

21 if k = i then

22 match + =1
23 fi;

24 if match = 0

25 then

26 # no sides equal #
27 print (“scalene triangle™)

28 elif
29 match = 1
30 then

31 4 two sides equal
32 print (“isosceles triangle’)
33 else
34 ¥ all sides equal #
35 print (“equilateral triangle”)
36 fi
37 fi
38 od
39end
trace tail

,;ut (standback, (9999,9999)); close (standback)
end

Fig. 1 To show flow of control through a program

W WWWwWwWw
\O \O O O O
AN

LN R N
e e

WK
NN N9
LS SN S SN S
w ww
LR R A
N NNNUNSNNUNNNmNmaamaaaasa
©0 00 0

o0 00 ©O
(O, V]

20z udy 61 U0 1s9nB Aq GOFEGE/ES/1/2Z/a0ME/UlWOD/W0d dNo dlWspeoe)/:SA]Y WOJ) POPEOUMOQ

O \© O \O\O© OO

4. Conclusions

The system described in this paper is not only suitable for
detailed investigations into software quality but by making
the facility available to all users of the ALGOL 68s system,
including undergraduate students, a considerable amount
of experience has already been amassed. In the past a large
amount of academic staff time has been expended in convincing
students that the behaviour of rogue programs is due to pro-
gramming errors and not to system errors. With the powerful

The Computer Journal Volume 22 Number 1

tracing facilities the students can see for themselves exactly how
the program arrives at the particular termination point.

On the other hand convincing the compiler writers of the
presence of a system bug is made easier by presenting them
with the detailed trace analysis.

The system has been incorporated into the normal coordina-
tion and validation process of the NAG ALGOL 68 Numerical
Algorithms Library (Hennell and Yates, 1975). Its use in this
project has been threefold: to optimise routines (using the

55

instruction count), to detect bugs (its success rate here is very
high), and to develop improved stringent test programs. Some
stringent tests submitted to the library coordinator by routine
implementors have tested less than 70 per cent of the code.
The implementors in question are competent numerical analysts
who really believed that they had supplied comprehensive
tests. Preliminary reports of the use of this testbed for the
NAG ALGOL 68 library implementation can be found in
Hennell, Hedley and Woodward (1976). In this paper it is
demonstrated that a significant proportion of the short paths
are not tested and that these short paths are a fertile field for
the presence of program bugs.

In a further paper (Hennell, Hedley and Woodward, 1977)
we have used the testbed to investigate the difficulty in attaining
three separate measures of testing, namely TER1, TER2 and
TERS3 (see Hennell, Wocdward and Hedley (1976) for defini-
tions). In general, it is shown that despite the fact that for many
routines the measure TER1 is near unity (corresponding to all
lines of code executed), unity for the higher measures is more
difficult to attain.

Some additional aids which apply exclusively to the ALGOL
68 system have already been added; for instance the bracket
structure (this is essentially the equivalent of the block
structure) can be displayed against a source listing. The user
can elect to display either the total bracketing structure or
can have the do-od, if-fi and case-esac structures displayed
separately. This facility was originally intended as the first
part of a display in which various control structures and control
variables will be presented. However, users’ demand for this
bracketing display to assist in debugging routines which failed
compilation has justified it being incorporated into the standard
computing system debugging aids.

Finally we remark that it is our intention to continue develop-
ment of this system to include program analyses beyond the
third level described in Hennell, Woodward and Hedley
(1976) and to develop tools which will emphasise the facets
of ALGOL 68 not available in FORTRAN.

5. Acknowledgements

This work has been carried out in part under SRC Grant
B/RG/7747/2. The authors wish to express their gratitude to
Dr P. G. Hibbard for the superb tracing facility he implemented
for us in his compiler and to Dr M. R. Woodward and Mr J. M.
Watt for many helpful discussions.

References

Appendix

In this appendix we detail some examples of the preludes and
postludes currently used in the testbed. The preludes contain
the relevant assignments of a routine text to the variable
trace, whilst the postludes are added firstly to close the brackets
of the prelude and secondly to insert terminators to the data
base entries.

1. Standard prelude for tracing flow of control

A jump is detected if the line number at a line number interro-
gation point differs from its previous value by other than
unity or zero. The source program must be reformatted for this
routine to trace control flow successfully.

begin int from := 1, to := 1;
reset (standback);
trace := (int linenumber) void:

begin if /inenumber # from +1 and
linenumber # from

then to := linenumber;
put (standback, (from, to))
fi;
from := linenumber
end;

2. Standard postlude

put (standback, (9999,9999));
close (standback)
end

3. Prelude for printing out the value of a real variable whenever
its value changes
begin ref real trp := nil;
real trv;
string trs;
int trn;
trace := (int n) void:
begin if ref real (zrp) isnt nil
then if trp # trv
then print ((newline,

“line”, trn, trs, *“:=",
trv := trp))
fi
fi;
trn = n
end;
Thereafter, assignations such as
trv 1= trp := x; trs 1= “x”;

will cause tracing of x.

FAIRLEY, R. E. (1975). An Experimental Program Testing Facility, IEEE Transactions on Software Engineering, Vol. 1 No. 4, pp. 350-357.

FospIck, L. D. (1974). BRNANL, a Fortran Program to Identify Basic Blocks in Fortran Programs, Report CU-CS-040-74, Computer
Science Dept., University of Colorado.

HENNELL, M. A. (1978). An experimental testbed for numerical software, The Computer Journal, Vol. 21 No. 4, pp. 333-336.

HENNELL, M. A. and YATEs, D. (1975). The Algol 68 NAG Library Coordinator Support System, Report CSS/75/3/1, University of Liver-
pool, submitted for publication.

HenNELL, M. A., HEDLEY, D., and WoobwARD, M. R. (1976). Experience with an Algol 68 Numerical Algorithms Testbed, Proc. Poly.
Inst. of New York Microwave Research Institute Symposium series, April 1976, Vol. XXIV, Ed. J. Fox, Wiley and Sons, pp. 457-463.

HEeNNELL, M. A., HEDLEY, D., and WooDWARD, M. R. (1977). Quantifying the Test Effectiveness of Algol 68 Programs, Sigplan Notices,
Vol. 12 No. 6, pp. 36-41.

HENNELL, M. A., WoobpwARD, M. R., and HepLEY, D. (1976).
pp. 136-140.

HiBBARD, P. G. (1974). A Sublanguage of Algol 68, Algol Bulletin, July 1974 and Sigplan Notices, Vol 12 No. 5, 1977, pp. 71-79.

On Program Analysis, Information Processing Letters, Vol. 5 No. 5,

The Computer Journal Volume 22 Number 1

20z udy 61 U0 1s9nB Aq GOFEGE/ES/1/2Z/a0ME/UlWOD/W0d dNo dlWspeoe)/:SA]Y WOJ) POPEOUMOQ

