ALGOL 68 as a metalanguage for denotational semantics’
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The possibility of using ALGOL 68 as a metalanguage for ‘denotational’ definitions of the semantics
of programming languages is considered, using the simple language LOOP as an example. The
approach is found to be a viable one if the ‘partial parametrisation’ feature is added to ALGOL 68.
The advantages of using a general purpose programming language as a definitional medium are

briefly discussed.
(Received September 1977)

1. Background

The denotational approach (also known as the mathematical
or Scott/Strachey approach) to the formal semantic specifica-
tion of programming languages is currently receiving much
attention. The reader is referred to Tennent (1976) for an
introduction to this approach and for an extensive biblio-
graphy. The notion that program semantics can be wholly
described in terms of mathematical functions plays a central
role in the method, which is more abstract than the operational
or constructive methods but less abstract than the purely
axiomatic or implicit approaches (Hoare and Lauer, 1974).
Leaving aside the last mentioned approaches, formal defini-
tions of languages often take the form of abstract interpreters
of various sorts (Reynolds, 1972).

Many workers have taken the position that formal definitions
should be expressed in a metalanguage, possibly an actual
programming language itself, suitable for computer processing;
for example Anderson, Belz and Blum (1976) and Pagan (1976)
take this view in the context of operational (implementation
oriented) definitions. In the context of denotational defini-
tions, Mosses (1975) proposes a specially designed, machine
readable metalanguage, and Mosses (1976) discusses its
possible utilisation in a compiler generation system.

The present paper may be viewed as a sequel to Pagan (1976)
in which the author discussed the use of a general purpose
programming language, in particular ALGOL 68, as a meta-
language for operational semantic definitions and concluded
that it was at least as well suited for this purpose as the
purely formal Vienna Definition Language. Here we consider
some similar ideas in the context of denotational definitions.
The principal points will be introduced in connection with the
trivial programming language LOOP, which is also the first
example considered in Tennent (1976). It should perhaps be
pointed out that, in advocating a general purpose program-
ming language as a notational medium, the paper is not
concerned with the mathematical or utilitarian adequacy
of the denotational approach and is neutral with respect to
the question of its superiority (or otherwise) over other
approaches.

2. LOOP and its denotational semantics

LOOP is an extremely simple language concerned with non-
negative integer values, its main features being a successor
operator, an assignment statement, and a simple loop con-
struct. An informal understanding of LOOP may be readily
gained from the following BNF grammar:

{program) ::= read {variable); {(command list);
write {expression)
{command list) ::= {(command) | (command fist);

{command)
{command) ::= (variable) : = {(expression)
| to {expression) do {command)
| (¢command list)) g
{expression) ::= 0 | {variable) | succ {expression) s
(o]
bl

The sample program
read x; y : = Xx;
to x do y : = succ y;
write succ succ y
corresponds to the input/output function
f(x) =2x + 2
or, in lambda notation,
Ax . 2x + 2
or, as an ALGOL 68 routine text,
(int x) :2 x x + 2
The denotational definition of the semantics of LOOP a
given in Tennent (1976) is summarised in Fig. 1. The fir
part specifies the various syntactic domains and correspondin
metavariables; for example,
E: Exp
specifies that Exp (corresponding to the set of all expressionss;
in LOOP) is a syntactic domain and that E (and possibly E'g
E,, E,, etc.) will be used as a metavariable over this domamw
The relationships among the syntactic domains are given m&g
terms of production rules which are a mild abstraction fromz
the BNF rules. The form of these productions is convenieng
for the subsequent semantic specifications. Taking a deepef}
view of the notion of abstract syntax, however, we could
have eliminated all non-essential ‘syntactic sugar’ and speciﬁedg
the domain relationships by writing the following equatlons:>
Prog = Var x Cmd x Exp
Cmd = (Cmd x Cmd) + (Var x Exp) + (Exp x Cmd)
Exp = {0} + Var + ({succ} x Exp)
The only semantic domains specified in Fig. 1 are the set of
numbers (non-negative integers) N and the set of states S,
where a particular state ¢ is a function mapping variables
into numbers. The functions #, €, and & define the meaning
of the various language constructs in terms of functions involv-
ing the semantic domains. Thus, according to the ‘semantic
functions’ section of Fig. 1, the meaning of a program is a
function from numbers to numbers, the meaning of a command
is a function from states to states, and the meaning of an
expression is a function from states to numbers. The semantic
equations give the detailed definitions of the function-producing
functions ., €, and & with the aid of the following notational
devices:
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Syntactic domains

¥: Prog (programs)
I': Cmd (commands)
E: Exp (expressions)
Z: Var (variables)
Abstract productions

Y ::=read Z; I'; write £
r:.:=r,;r,|E:=FE|toEdoTl |(I
E::=0]|Z|succ E

Semantic domains
v:N (non-negative integers)
0:S = Var - N (states)

Semantic functions
M :Prog - N> N
¢€:Cmd - S-S
S&:Exp—»>S-> N

Semantic equations
M [read Z; I'; write E] v = &[E]o;
where o, = €[I'] (a;[v/Z])
where o,[E'] = 0 for all Z’: Var
€[] = $[7]
€\I'y; r,] = ¢[I,] - ¢[r,]
¢[= := Elo = o[8[E]s/Z]
¢[to Edo '] ¢ = (¢[T])")s
where v = &[E]o
&[0]e = 0
€[E]e = o[Z]
¢

succ E]Jo = €[E]o + 1
Fig. 1 Original denotational definition of LOOP

proc m = (prog p) proc(nng)nng :
(nng n) nng : (
state initst = (var v) nng : 0;
state finalst = ¢ (body of P) (update (initst, readvar
of P, n));
e (writeexpr of P) (finalst));

proc ¢ = (cmd cm) proc(state)state :
case cm in
(seq se) : (state s) state :
¢ (cmd2 of SE) (c (cmd1 of SE) (5)),
(asst as) : (state s) state :
update (s, lhs of AS, e (rhs of AS) (s)),
(loop Ip) : (state s) state :
iter (¢ (body of LP), e (lim of LP) (s)) (s)
esac;

proc e = (exp ex) proc(state)nng :
case ex in
(int) : (state s) nng : 0,
(var v) : (state s) nng : s (V),
(succ su) : (state s) nng : e (opd of SU) (s) + 1
esac;

proc iter = (proc(state)state f, nng n) proc(state)state :
ifn=20
then (state s) state : s
else proc(state)state g = iter (f, n — 1);

(state s) state : F (G (s5))

fi;

proc update = (state s, var v, nng n) state :
(var id)nng : (id = V | N | S (id))
Fig. 2 First attempt to specify semantic functions in ALGOL 68

1. Arguments from syntactic domains are enclosed by [ and ].

2. Single symbol arguments from semantic domains are not
parenthesised, e.g. & [0]o means (& [0]) (o).

3. o[ v/=] denotes the state which is the same function as &
except that it maps the variable = into the number v.

4. An argument « in an equation of the form fu = ga may be
‘cancelled’, resulting in a functional equality f = g.

5. f™ denotes the function obtained by composing f with itself

n times; if n = 0, it is the identity function.
A program ¥ with input v will produce as output the value of
A [¥]v. Given a suitable mechanism for constructing and
applying functional values, the denotational definition consti-
tutes a kind of interpreter for the defined language. Such a
mechanism would be provided by a high level programming
language capable of manipulating functions as values and of
structuring data in ways corresponding to the various opera-
tions on domains.

3. ALGOL 68 as metalanguage
The abstract syntax of LOOP can be expressed in ALGOL 68
as follows:

mode prog = struct (var readvar, cmd body, exp writeexpr),
cmd = union (seq, asst, loop),
exp = union (int # 03, var, succ),
var = char,
seq = struct (ref cmd cmd 1, cmd?2),
asst = struct (var /hs, exp rhs),
loop = struct (exp /im, ref cmd body),
succ = struct (ref exp opd)

dno-olwepeoe//:sdny wouy pepeojumod

It is convenient to introduce seq, asst, loop, and succ asg
syntactic subdomains and to assume that LOOP variablesS
consist of single characters. It is not difficult to write a readable S
ALGOL 68 program which will translate any LOOP source=
program into an internal value of mode prog. These aspectss
are discussed in more detail in Pagan (1976; 1977).

The semantic domains N and S are modelled by the following
additional definitions:

mode nng = int # > =04,
state = proc(var)nng

It remains to code the meaning functions .#, €, and & asgy
ALGOL 68 procedures; we shall also need auxiliary proceduresz
iter(f, n) corresponding to the notation /" and update(s, v, n)o
corresponding to s[n/v]. Fig. 2 shows a straightforward but$
(unfortunately) incorrect encoding of these procedurcs. Noteg
the close correspondence with the original specifications and_;
the way in which syntactic components are extracted by means>
of the field selectors defined in the mode definitions for the=
abstract syntax. S
The procedures are incorrect because of scope violations*
in the routine texts specifying the functional values to be
returned. The scope of an ALGOL 68 routine is restricted
by the scopes of the nonlocal identifiers used in its body, so
that a routine value cannot be passed out of a procedure if it
makes reference to identifiers defined only within that pro-
cedure. The offending occurrences of identifiers are shown in
upper case for emphasis in Fig. 2.

Our real need is for a single routine text to be capable of
yielding different routines at different times when evaluated in
different environments. Thus the routine text

(int x) int : x + y
would yield the ‘incrementing’ routine given by

(int x) int : x + 1
when evaluated in an environment where y = 1, and the
‘decrementing’ routine given by

w
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proc m = (prog p) proc(ung)nng :
((PROG P, nng n) nng : (
state initst = (var v) nng : O;
state finalst = :
¢ (body of p) (update (initst, readvar of p, n));
e (writeexpr of p) (finalst))) (P,);

proc ¢ = (cmd cm) proc(state)state :
case cm in
(seq se) : ((SEQ SE, state s) state :
¢ (cmd2 of se) (c (cmd] of se) (s5))) (SE,),
(asst as) : ((ASST A4S, state s) state :
update (s, lhs of as, e (rhs of as) (5))) (4S,),
(loop Ip) : (LOOP LP, state s) state :
iter (c (body of Ip), e (lim of Ip) (s)) (s)
) (LP)
esac;

proc e = (exp ex) proc(state)nng :
case ex in
(int) : (state s) nng : O,
(var v) : (VAR V, state s) nng : s (v)) (V,),
(suce su) : (SUCC SU, state s) nng :
e (opd of su) (s) + 1) (SU,)
esac;

proc iter = (proc(state)state f, nng n) proc(state)state :
ifn=0
then (state s) state : s
else proc(state)state g = iter (f, n — 1);
((PROC(STATE)STATE F, G, state s) state : f (g (s)
g ) (F, G,)

proc update = (state s, var v, nng n) state :
((STATE S, VAR V, id, NNG N ymng : (id = v | n | s (id)
) (S, V,, N)
Fig. 3 Specification of semantic functions in ALGOL 68 with partial
parametrisation

(int x) int : x — 1
when evaluated in an environment where y = — 1. Standard
ALGOL 68 (van Wijngaarden, 1976) simply does not provide
this capability, which is an important one for a ‘higher order’
programming language (Reynolds, 1972). Problems arising
from this deficiency are not infrequent, and partial para-
metrisation (Lindsey, 1974; Lindsey, 1976) has been officially
recommended as an appropriate ALGOL 68 superlanguage
feature to alleviate them. With this feature, a call £(1,) of the
procedure defined by
procf = (inty, x)int : x + y

yields the incrementing routine of mode proc(int)int as specified
above and f(—1,) yields the decrementing routine.

In Fig. 3, the procedures defining LOOP have been rewritten
using partial parametrisation; here the use of upper case
serves to highlight the differences from Fig. 2. Note that,
although the various routine texts contain extra parameters,
they are immediately partially parametrised with the appro-
priate nonlocal values so that the desired routine values are
passed out. Given an implementation of an ALGOL 68
superlanguage incorporating partial parametrisation, the
procedures of Fig. 3 provide an actual processor for abstract
LOOP programs, so that the call m(p)(n) will yield the number
output by a program p with input n.

It is possible, but very inconvenient, to simulate partial
parametrisation in standard ALGOL 68 with the aid of
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auxiliary structures where one of the fields is a routine and the
remaining fields are some of the actual parameter values for
the routine. This technique, which is also used in Rayward-
Smith (1977) in a different problem context, arises from the
concepts of ‘defunctionalisation’ and closure used in Reynolds
(1972) and in earlier work. In the present case, it involves
defining various unions of the auxiliary structures, writing
explicit auxiliary procedures to apply the routine in a structure
to its actual parameters and altering the main semantic pro-
cedures accordingly. For LOOP, three of the necessary auxiliary
modes are given by

mode snfna = struct (proc(var, state)nng rout, var parm),
snfnb = struct (proc(succ, state)nng rout, succ parm),
snfn = union(proc(state)nng, snfna, snfnb)

and state must be redefined as

mode state = struct (proc(state, var, nng, var)nng rout,
ref state parm 1, var parm?2, nng parm3)
Then, given the additional procedures
proc apply snfin = (snfn fn, state s) nng:
case fn in
(proc(state)nng p) : p(s),
(snfna sa) : (rout of sa) (parm of sa, s),
(snfnb sb) : (rout of sb) (parm of sb, s)
esac;
proc apply state = (state s, var v) nng :
(rout of s) (parm1 of s, parm2 of s, parm3 of s, v)
the main semantic procedure e can be recoded as follows
proc e = (exp ex) snfn :
case ex in
(int) : (state s) nng : 0,
(var v) : snfna ((var v, state s) nng :
apply state (s, v), v),
(succ su) : snfnb ((succ su, state s) nng :
apply snfin (e (opd of su), s) + 1, su)

/1/2Z/3191de/|ulwoo/woo dno olwapeoe)/:sdiy Wol) papeojuMod

esac
The complete specifications, which are not shown here, are
almost twice as long as those using partial parametrisation™
and are considerably more complex, ungainly and difficult 3

to comprehend.
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4. Some extensions, alternatives, and conclusions
Although the LOOP language is very small and its definitione
is correspondingly simple, there would appear to be no diffi- &
culty in generalising the techniques illustrated above to include g
the various other devices employed in denotational definitions. 2
The ALGOL 68 mode system has sufficient power and general->
ity to model closely complicated domains involving concepts =
such as environments, stores and continuations; for example,§
an equation of the form =
A=B->C*>DxE)>» (F+G)
might be modelled by a definition of the form
mode a = proc(b)proc(ref[ Jc)proc(struct(d d, e ¢)) union(f, g)
The operations of injection, inspection, and projection are
provided by the uniting coercion and the conformity clause.
Conditional functions, tuples and selections, lambda expres-
sions, and so forth, all have direct analogues in ALGOL 68.
ALGOL 68 is thus a viable metalanguage for large scale
denotational definitions, at least if partial parametrisation is
used.

One of the major advantages of using a programming
language as the metalanguage of a definition is the resulting
executability (or, at least, ‘compilability’) of the definition.
(It may be that execution will be so inefficient that it is to all
intents and purposes impossible.) This can greatly aid the



[abs “a” : abs “‘z”’] nng stg;
proc int prog = (prog p, nng input) nng : (
for i from abs “‘a” to abs “z” do stg[i] := 0 od;
stg [abs readvar of p] := input;
int cmd (body of p);
int expr (writeexpr of p));

proc int cmd = (cmd cm) void :
case cm in
(seq se) : (int cmd (cmd| of se); int cmd (cmd2 of se)),
(asst as) : stg [abs lhs of as] := int expr (rhs of as),
(loop Ip) : to int expr (lim of Ip) do int cmd (body of Ip) od
esac;

proc int expr = (exp ex) nng :

case ex in
(int) : 0,
(var v) : stg [abs v],
(succ su) : int expr (opd of su) + 1

esac
Fig. 4 Operational definition in ALGOL 68

language definer in achieving a complete, consistent, and
‘bug-free’ specification, for language defining and program-
ming are actually very similar activities in certain respects.
Moreover, if the defining language is a ‘mainstream’ language
like ALGOL 68 as opposed to a specially invented notation
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Book review

Structural Analysis and Design (Volumes 1 and 2), 1978. Infotech,
£120)

The first volume is an analysis and bibliography of the processes of
analysis and design. It takes the form of a series of extracts from
many sources, including volume 2, linked by an editorial commen-
tary. This format is very effective and it succeeds in demonstrating
both the need for a methodology and also the schools of thought
which lead to the competing methodologies. SADT, Michael
Jackson Methodology, Warnier-Orr Methodology and Structured
Design are each concisely and clearly described.

The second volume contains 19 invited papers, the first of which, by
R. R. Brown, includes a productivity analysis of two application
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developments at Hughes Aircraft in 1974 and 1972/3: One of the
rare published case studies. An elegant paper by S. N. Griffiths
compares methodologies and finds much merit in Michael Jackson.
It also takes an interesting perspective view of the current structured
design scene together with some predictions for the future.

The book makes a valuable contribution to current literature, and
provides a good starting point for a study of structured design. It
won’t be much help to the application practitioner looking for
guidance in selecting and introducing a methodology in his own shop
but will sustain the current debate. It is a report not so much on the
state of the art, but more on the state of mind of the artists.

K. BoarDMAN (London)
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