[abs “a” : abs “‘z”’] nng stg;
proc int prog = (prog p, nng input) nng : (
for i from abs “‘a” to abs “z” do stg[i] := 0 od;
stg [abs readvar of p] := input;
int cmd (body of p);
int expr (writeexpr of p));

proc int cmd = (cmd cm) void :
case cm in
(seq se) : (int cmd (cmd| of se); int cmd (cmd2 of se)),
(asst as) : stg [abs lhs of as] := int expr (rhs of as),
(loop Ip) : to int expr (lim of Ip) do int cmd (body of Ip) od
esac;

proc int expr = (exp ex) nng :

case ex in
(int) : 0,
(var v) : stg [abs v],
(succ su) : int expr (opd of su) + 1

esac
Fig. 4 Operational definition in ALGOL 68

language definer in achieving a complete, consistent, and
‘bug-free’ specification, for language defining and program-
ming are actually very similar activities in certain respects.
Moreover, if the defining language is a ‘mainstream’ language
like ALGOL 68 as opposed to a specially invented notation

References
ANDERSON, E. R., BELz, F. C. and BLuM, E. K. (1976).
Languages, Acta Informatica, Vol. 6, pp. 109-131.
HoARE, C. A. R. and LAUER, P. E. (1974).
Acta Informatica, Vol. 3, pp. 135-153.
Linpsey, C. H. (1974).
Linpsey, C. H. (1976).
Mossks, P. D. (1975).
Verlag Lecture Notes in Computer Science, No. 28, pp. 409-422.
Mosses, P. D. (1976).

PaGan, F. G. (1976).
Pagan, F. G. (1977).
Notices, Vol. 12, No. 6, pp. 54-62.
RAYWARD-SMITH, V. J. (1977).
pp. 179-183.
REeyNoLDs, J. C. (1972).
TENNENT, R. D. (1976).
VAN WINGAARDEN, A. et al. (1976).

Partial Parametrization, ALGOL Bulletin, No. 37, pp. 24-26.
Specification of Partial Parametrization Proposal, ALGOL Bulletin, No. 39, pp. 6-9.
The Semantics of Semantic Equations, Proc. 3rd Symp. on Mathematical Foundations of Computer Science, Springez>

Using Procedures in List Processing, Proc. Strathclyde ALGOL 68 Conf., SIGPLAN Notices, Vol. 12, No.

or a primitive scheme like pure LISP (where the lack of strong
type checking is a serious disadvantage), then the definition
will be more acceptable and understandable to the community
of implementors and users. In this connection, it is important
that the executable definition be comparable to or possibly
better than a purely formal definition with respect to qualities
such as readability and conciseness. In the author’s opinion,
this is achievable in the case of ALGOL 68 with partial para-
metrisation but not in the case of strict ALGOL 68 (and cer-
tainly not in the case of other ‘mainstream’ languages); it is
to be hoped that future ALGOL 68 compilers will permit the
use of this additional feature.

When viewed purely as an implementation of LOOP, the
specifications in Fig. 3 are indeed strange, arcane and extremely
inefficient, and the specifications using strict ALGOL 68 are
even more so. The latter have been tested with the aid of an
ALGOL 68 compiler; as expected, they will slowly but success-
fully interpret simple LOOP programs with small input values.
For example, interpretation of the program given earlier for
computing the function Ax . 2x + 2 with input value 2 involves
about 70 function calls with a maximum recursion depth of lg
The lack of clarity and usefulness of Flg 3 as a processor as
opposed to a definition is not surprising, since denotatxon@gl
definitions are much less implementation oriented thay
operational definitions. If we had wanted the definition
constitute a clear and useful processor (probably at the expense
of other uses such as proving correctness of programs), v&
should have taken an operational approach and written
specifications such as those of Fig. 4.

o olWwapes

SEMANOL (73) A Metalanguage for Programming the Semantics of Programmug

Consistent and Complementary Formal Theories of the Semantics of Programming Language§

Je/|u[Luo

Compiler Generation using Denotational Semantics, Proc. 5th Symp. on Mathematical Foundations of Comput&}
Science, Springer-Verlag Lecture Notes in Computer Science, No. 45, pp. 436-441.

On Interpreter-Oriented Definitions of Programmmg Languages, The Computer Journal, Vol. 19, pp. 151-155.
ALGOL 68 as an Implementation Language for Portable Interpreters, Proc. Strathclyde ALGOL 68 Conf., SIGPLA

aDLyERE/9/L/

A

Definitional Interpreters for Higher-Order Programming Languages, Proc. 25th ACM National Conf., pp. 717-74&
The Denotational Semantics of Programming Languages, CACM, Vol. 19, pp. 437-453. 3
Revised Report on the Algorithmic Language ALGOL 68, Springer-Verlag, also in Acta Informanc&,
Vol. 5, Parts 1-3 (1975) and SIGPLAN Notices, Vol. 12, No. 5, pp. 1-70 (1977).

Book review

Structural Analysis and Design (Volumes 1 and 2), 1978. Infotech,
£120)

The first volume is an analysis and bibliography of the processes of
analysis and design. It takes the form of a series of extracts from
many sources, including volume 2, linked by an editorial commen-
tary. This format is very effective and it succeeds in demonstrating
both the need for a methodology and also the schools of thought
which lead to the competing methodologies. SADT, Michael
Jackson Methodology, Warnier-Orr Methodology and Structured
Design are each concisely and clearly described.

The second volume contains 19 invited papers, the first of which, by
R. R. Brown, includes a productivity analysis of two application

20z Idy 61

developments at Hughes Aircraft in 1974 and 1972/3: One of the
rare published case studies. An elegant paper by S. N. Griffiths
compares methodologies and finds much merit in Michael Jackson.
It also takes an interesting perspective view of the current structured
design scene together with some predictions for the future.

The book makes a valuable contribution to current literature, and
provides a good starting point for a study of structured design. It
won’t be much help to the application practitioner looking for
guidance in selecting and introducing a methodology in his own shop
but will sustain the current debate. It is a report not so much on the
state of the art, but more on the state of mind of the artists.

K. BoarDMAN (London)

The Computer Journal Volume 22 Number 1





