How to read, make and store chess moves

A. G. Bell* and N. Jacobit

A vast wealth of knowledge lies untapped in the chess libraries of the world. This paper discusses
some simple techniques which could allow computers to access, verify and share this information.

(Received October 1977)

1. Introduction

Chess games have been recorded for many centuries, but the
records are not easily accessed or shared by computers. One
reason is that the notations used are ‘natural’, i.e. they were
evolved by humans for humans and consequently are untidy,
complex, redundant and prone to human error.

This paper describes how a program can read English and
algebraic game records by the use of ‘skeleton keys’. In order
to exemplify the technique (and also reduce the description
of trivia to a minimum) a working program is given in the
Appendix; the program is in PASCAL (Jensen and Wirth,
1974), a language similar to ALGOL, and should be used more
as a footnote to the paper than as an example of efficiency.
The paper also proposes an international machine notation
which could, in the future, allow computers to share more
easily the processed game records.

2. English notation

Essentially this is a descriptive shorthand for
MY MAN (M1) IN SQUARE (S1) TAKES OPPONENTS
MAN (M2) in SQUARE (S2) or S1(M1) — S2(M2) where

= (empty), P (pawn), N (knight), B (bishop), R (rook),
Q (queen), K (king) and S is a (two letter, one digit) square
description as shown in Fig. 1(@).
The common opening move P-K4 is, therefore, a skeleton
form of
KK2(P) — KK4() .
In order to identify this move the program builds up the skele-
ton in the character variables P1, P2, P3, P4, P5, P6, P7, P8
thus
- S1 M1)— S2

r A — f—'—‘_""Jb__'q
P1| P2| P3| P4 | PS| P6| P7| P8

(M2)

P K K 4

It then compares all the non ‘-’ characters in this skeleton
with all the possible pawn moves and finds that only
S1 M1)— S2

S A
r "\ la —

K K 2 P K K 4 0

(M2)

gives full agreement and the corresponding white move is
made, ie. square 13 to square 29 in the program’s board
notation. (See Fig. 1(b)).

There are four special cases which the skeleton cannot handle.
The first is the en passant capture (P*PE)—in this case the
program shifts the opponent’s pawn back one square and then
lets nature take its course (see the Appendix for exact details

of this case and the two following).

The second special case is king or queen side castling (0-0 or
0-0-0). These moves are flagged by making the piece to move
have an apparent value of 9. On returning from SKELETON
the program checks for this flag and, if true, makes the correct
rook move and primes the king move. N.B. there is no need,
to match the skeleton but, as the program cannot find a piecg
of integer value 9 on the board, nature again takes its courses

The third special case is pawn promotion, e.g. P-K8(Q
In this case, the program remembers the promotion charactet

‘Q’ and, on completlon of the move, replaces the pawn w1tE
the correct piece.

The fourth special case is when the uniqueness of a mov6
depends on whether or not it is a check/checkmate mov&
or on the fact that similar moves are illegal. The program do@
not handle such problems. To illustrate the possible complicas
tions, consider Fig. 2. Black has just played P/2-Q4 and thg
program, faced with this position and the input P*P, would
find an eight-way ambiguity (an octiguity?). Note that 2
human would also find P*P to be an oct1gu1ty but his elgfg
possibilities are not the same as the program’s because the
human includes the two en passant captures and excludes th§
two illegal captures whereas the program does the opposite. &

Fig. 2 also gives a minimal unambiguous notation for each’
of the eight possible moves plus the skeletons the prograng;
would produce plus the correct move in full. Now an cxperxE
enced human can identify and isolate each of the moves

correctly because g
(a) he knows what en passant really means %
(b) he can use the presence or absence of check (+) ot

checkmate (+ +), and E
(¢) he knows that the pawn in KN2 cannot make captures. &

But the simpleminded program has none of this knowledgg
and so it still cannot uniquely identify any of the moves fronn
their skeletons. To illustrate an even greater complexity the
reader is invited to identify the move P*R + + ; a move whic%
requires even greater sophistication to identify correctly S

At this point the reader might be puzzled as to why we také
such pains to reveal the shortcomings of the program. The
important point to appreciate is that the program has no real
understanding of what it is doing—it can, for example, quite
happily obey the move Q*K. It is therefore necessary to
appreciate how successfully this simple program can perform.

As test data for the program 1000 moves were copied out of
the Ruy Lopez section of the Encyclopaedia of Chess Openings,
Vol. C ECO 90-99. These moves are recorded in algebraic
notation (see next section) and, when processed, the program
was able to isolate and make 973 moves correctly. Of the
remaining 27 moves, 17 were genuinely ambiguous in the origi-
nal text, six were erroneous and only four were ambiguous

*Division of Computing Research, CSIRO Canberra, Australia; now at Computing Services, University of Sheffield, The Hicks Building,

Sheffield S10 2TN.

tDepartment of Economics, University of Newcastle, Newcastle, N.S.W., Australia

The Computer Journal Volume 22 Number 1

LY

I

QRS | QN8 | QB8 | QQ8| KK8 | KBS | KN8 | KR8

QRT | QN7 | QBT | QQ7 | KK7 | KBT | KNT | KR7

QR6 | QN6 | QB6 | QQ6 | KK6 | KB6 | KN6 | KR6

QRS | QN5 | @B5 | QQ5 | KK5 | KBS | KNS | KRS

QR4 | QN4 | QB4 | QQ4 | KK4 | KB4 | KN4 | KR4

QR3 | QN3 [QB3 | QQ3 | KK3 | KB3 | KN3 | KR3

QR2 | QN2 | QB2 | QQ2 | KK2 | KB2 | KN2 | KR2

QR1 | QN1 | QB1 | QQ1 | KK1 | KB1 | KN1 | KR1

(a) English notation for White. The numbers are reversed for Black.

a8 | b8 | ¢8| a8 | e8| f8 | g8 | h8

al | 7 | 7| a7 | €7 | £7 | &7 | h7

ab| b6 | c6| a6 | e6 | £f6 | g6 | h6

a5| b5 | 5 a5 e5 | £f5 | &5 | hd

ad | b4 | c4 | d4 | e4 | £4 | g4 | M4

a3 | b3 | c¢3 | 43 el f3 g3 | h3

a2 | b2 | c2 | a2 | e2 | f2 | g2 | 02

al | bl cl a1 el f1 g1 h1

(c) Algebraic notation
Fig. 1 The various board notations

57| 581 59| 60 | 61 | 62 | 63 | 64

49 | 50 | 51| 52 | 53 | 54 | 55 | 56

41 | 42 | 43| 44 | 45 | 46 | 47 | 48

33| 34| 35| 36| 31| 38| 39| 40

25 | 26 | 27 28 | 29 30 31 32

17| 18] 19| 20 | 21| 22| 23 | 24

9l 1011|1213 14a] 15| 16

1 2 3 4 5 6 7 8

(b) Program notation

0| 71| 72 | 1374 | 75| 76| 77

60 | 61 | 62 | 63 | 64 | 65 | 66 | 67

50 | 51| 52 | 53|54 |55 | 56| 57

40 | 41 | 42 | 43 | 44 | 45 | 46 | 47

30 31| 32| 33| 34|35] 36| 37

20 | 21 22 23 | 24 | 25 | 26 | 27

10 11 12 13 14 15 16 17

00 | 01 02 | 03|04 | 05| 06 | O7

(d) International notation

20z Iudy 61 U0 1sanb Aq 06FESGE/L //1/2Z/a101E/UlWOd/ W00 dNo dlWspeoe)/:SAjY Wolj papPeojumMoq

in the program’s terms, i.e. could have been correctly resolved
by analysis of the check and illegality information. It therefore
seems ridiculous to double (at least) the size of the program
to handle 4/1000 = 0-4% of the data correctly, particularly
when the majority of problems were produced by incorrect
data in the original text or caused by faulty transcription.

The interesting feature of the 17 genuine ambiguities in the
sample is that they are almost all caused by confusion of rooks,
for example, in Fig. 2, if white’s move is R-Q7. Humans can
often resolve these ambiguities by looking at the moves that
follow, e.g. if black’s reply to R-Q7 is R*R, then we know that
it must have been the rook in QB7 that had just moved.

The program also (very crudely) allows what follows to resolve
any current ambiguity by simply flagging (it outputs ‘?’) and
then making one of the possible moves. Should it eventually
find an impossible move it halts and a human scan of the out-

72

put, with particular attention given to the flagged ambiguities,
can usually resolve the problem—an example of ambiguity is
given in Fig. 4.

3. Algebraic notation

Essentially this is a shorthand for MY MAN (MIl) IN
SQUARE (S1) GOES TO SQUARE (S2) or (M1)S1 —.8S2,
where M is the same as in English notation and S is a (one
lower case letter, one digit) square description as shown in
Fig. 1(¢).

Note that in this notation (¢) pawn moves are simply the
square a pawn can move to, e.g. the opening move P-K4 is
e4 not Pe4 and (b) captures are not distinguished from ordinary
moves unless they are pawn captures in which case the file of
the pawn is given as identification (Comparison of the English
and algebraic examples in the Appendix should make these

The Computer Journal Volume 22 Number 1

1 ...P- KKA4. 14 34 ... P- QQ4. 63 43
2 ...P- KKS. 34 4 ...P- KB4, 65 45
3 ...P* KB6PE 44 55 ...Q- QQ3. 73 53
4 .. P* KK.P 55 64 ...B- QQ2. 72 63
5 ...P* ...BB 64 35 ...Q* ...B 53 75
6 ...P- QN4 11 31 ...P- QQS5. 43 33
7 ...P- .NS5. 31 41 ...P- .BA. 62 42
8 ...P* QB6PE 41 52 ...Q* ...P 75 15
9 ...P- .B4. 12 32 ...P* QB6PE 33 22
10 ...B- .B4. 05 32 ...P* .B.P 61 52
11 ..N* P 01 22 ...N- .B3. 76 55
12 ...N- .R3. 06 27 ...N- .R3. 71 50
13 ...N- KK2. 2 14 .- .- 74 72
14 ..3N- .B4. 27 35 .R.R- .Bl. 77 75
15 04 06 ...Q* ...K 15 06
Fig. 3 Output of English program
1 P..E4 13 29 P..D5 52 36
2 P..ES 29 37 P..F5 54 38
3 PE.F6 37 46 Q..D6 60 43
4 PF.E7 46 53 PB.D7 59 52
5 PE.F8B 53 62 Q..F8 4 62
6 P..B4 10 26 P..D4 36 28
7 P..BS 26 34 P..CS 51 33
8 PB.C6 34 43 Q..F2 62 g
9 P..C4 11 27 PD.C3 28
10 PB.C4 6 27 PB.C6 ? 52 43
11 N..C3 2 19 N..F6 63 46
12 N..H3 7 24 N..A6 58 4]
13 N..E2 19 13 0..00 61 %
14 N.3F4 24 30 RH.F8 64 62
15 P..00 5 7 Q..Gl 14 3
c
Fig. 4 Output of Algebraic program hse
o
—
8

nately the notation does depend on using lower case letters

Z
/////
.

.//////%/.,

Y

%

Input Skeleton Move

English
L. BP*P .B.(P). . .(P) QB5(P)QN6(P)
2. P*PE . . .(P)QQ6(P) QB5(P)QQ6(P)
3. P*PE + . . .(PQQe6(P) KKS5(P)QQ6(P)
4. P*P+ ..(P). . (P KK5(P)KB6(P)
5. P*BP . .(P). B .(P) KN5(P)KB6(P)
6. P*KRP . .(P)KR .(P) KNS5(P)KR6(P)
7. P*P+ + ..(P). . (P QB4(P)QQ5(P)
8. P*P/3 .(P). . 3(P) QN2(P)QR3(P)
Algebraic
1. CB6 (P)C.B6 (P)C5B6
2. CD6E (P)C.D6 (P)CS5D6
3. EDGE + (P)E .D6 (P)EsSD6
4, EF6+ (P)E .F6 (P)ESF6
5. GF6 (P)G.Fé6 (P)GSF6
6. GH6 (P)G.H6 (P)G5H6
7. CD5+ + (P)C.D5 (P)C4D5
8 BA3 (P)B .A3 (P)B2A3

Fig. 2 Position which illustrates some weaknesses of the program

conventions clear).
In order to identify the correct move the program builds up an

algebraic skeleton in the character variables P1, P2, P3, P4, P5
thus

(M1) S1 - 8S2

Pl P2 | P3 P4 | PS5

P | - - | E | 4

It then compares all the non ‘-’ characters in the skeleton with
all the possible pawn moves and finds that only |,

(M1) S1 — 82

P E 2 E 4

gives full agreement, i.e. square 13 to square 29.

Algebraic notation (if written accurately) is much more
suitable to the program than English notation; in fact, the
program can resolve all the pawn captures in Fig. 2. Unfortu-

The Computer Journal Volume 22 Number 1

for squares and upper case letters for pieces. Because the
program cannot distinguish upper and lower case letters it 13
possible to confuse a bishop capture with a b-file pawn capturéj
e.g. in Fig. 2, if there was a white bishop on square b4, the
program would flag an ambiguity and assume that BA3 i§
more likely to be Ba3 than ba3. Note that (@) the correct
move can be forced by entering it as PB2A3 and (b) none of thg
other pieces can cause this problem because their initial letter§
in PASCAL, are all greater than ‘H’. g
One would imagine that algebraic notation is preferable to
English notation but, in terms of error detection and correctior‘g
this is not true. The confusion of rooks can still occur and 1
much more difficult to resolve because capture is not indicated;
e.g. in Fig. 2, if white plays RD7 then black’s reffly RD8 does
not resolve the ambiguity as it did in the more redundant.
English notation of R*R. : S
Even worse is that human error resulting in impossible moves
is much more likely in algebraic records—typically the file is
out by one letter and the rank by one digit. To recover from
such errors requires an extremely knowledgeable scan of what
follows and, although a human can often correct such errors,
we have no idea how a program might reproduce this ability.

4. International notation

In order to ease the exchange of processed chess games between

computers we propose the following data base standard for

chess pieces, board and move notation.

1. The piecesare K = 6,Q =5 R =4, B=3 N=2 P = 1.

2. The board notation is given in Fig. 1(d) and is effectively the
program’s decimal notation less 1 and written in octal.

3. The move notation derives from the piece and board nota-
tion. First note that all possible moves can be defined by

13

four octal digits with the following provisos:
(a) if the piece is a pawn moving diagonally to an empty
square then it must be an en passant capture

(b) if the piece is a king moving further than one square
then it must be castling

(¢) if the piece is a pawn moving into a promotion square
then the rank of the final square denotes the promotion,
e.g. in Fig. 2 6655 means P*RQ, 6645 means P*RR, 6635
means P*RB and 6626 means P-N8N.

Now, although it is possible to compress all moves into four
octal digits, this is not good practice partly because this
superpacked form requires a fairly elaborate program to
decipher it and partly because most computers operate on
8-bit bytes rather than 6 bits.

We therefore propose that a complete move be defined by
16 bits, thus (F) (S1) (P) (S2), where F(Flag) is 2 bits, S1 (from)
is 6 bits, P (promotion) is 2 bits and S2 (to) is 6 bits. The
deciphering algorithm is then much simpler (note that () means
contents of).

(S2) := (S1); (SD) := 0;

if (F) = 1 then (* PROMOTION *)

(S2) :=(S2) + (P) + 1;

if (F) = 2 then (* EN PASSANT *)

if S2 > S1 then (S2 — 8) := O else (S2 + 8) := 0;

if (F) = 3 then (* CASTLING *)

if S2 > S1 then
begin (S2 — 1) :=
begin (S2 + 1) :=

(52 + 1); (S2 + 1) := 0 end else
(S2 — 2):(S2 — 2) := O end

5. Program description

The program has the structure

MAIN PROGRAM (LISTMOVES(SKELETON,COM-
PARE,READMOVE,NORKM,RORBM,WORBPM)).

In order to understand how NORKM (knight or king move),
RORBM (rook or bishop move) and WORBPM (white or
black pawn move) work the reader must consult Algorithm 50
(Bell, 1970).

The tables driving this program are the same as those for
Algorithm 50 and the first operation, on entry, is to read them
into the arrays KNT (knight), KNG (king), ROOK (rook),
BSHP (bishop), WP (white pawn) and BP (black pawn).

The program then clears the board and reads in the position.
For the opening position the data is

4 12 23 35 46 53 62
1 9110111112113 11411 1
14915015115215315415 5
4572583595606 61 3622634 64

The program then reads the board notation for each of the
64 squares into the arrays D1, D2, D3, D4. English notation is:

QRI8QN18QBI8QQI8KK18KBISKNISKR18
QR27QN27QB27QQ27KK27K B27KN27KR27
QR36QN36QB36QQ36K K36KB36K N36KR 36
QR45QN45QB45QQ45K K45K B4SK N45K R45
QR54QN54QB54QQ54K K 54K BS4KN54K R 54
QR63QN63QB63QQ63KK 63K B63KN63KR 63
QR72QN72QB72QQ72KK 72K B72KN72KR72
QR81KN8I1KB81QQ81KK81KBS1KN8IKRSI

74 8
5116
5156

The program sets the en passant aid (BACK: = 8), the line
counter (LINE: = 1) and then begins to process the white and
black moves (LISTMOVES (WMEN,BMEN,D3); LIST-
MOVES (BMEN,WMEN,D4)).

In order to make the program accept algebraic input the

4

procedures SKELETON, COMPARE and READMOVE
have to be replaced in the program and the algebraic board
notation replaces the English in the data thus:

Al..Bl..Cl1..D1..El1..F1..Gl..Hl..
A2..B2..C2..D2..E2..F2..G2.. H2..

A8..BS..C8..D8..ES..F8..GS8.. HS..

In order to demonstrate the program the following game was
entered in English and algebraic.

English Algebraic

1. P-K4 P-Q4 E4 D5

2. PKS5 P-KB4 E5 F5

3. P*PE Q-Q3 EF6E QD6

4. P*KP B-Q2 FE7 BD7

5. P*BB Q*B EF8B QF8

6. P-QN4 P-Q5 B4 D4

7. P-N5 P-B4 B5 C5

8. P*PE Q*P BC6E QF2

9. P-B4 P*PE C4 DC3E 9
10. B-B4 P*BP BC4 BC6 g
11. » N*P N-B3 NC3 NF6]
12. N-R3 N-R3 NH3 NA6 §
13. N-K2 0-0-0 NE2 000 3
14. N/3-B4 R/R-Bl N3F4 RHF8 3
15. 0-0 Q*K 00 QGl _%'
The outputs of both versions of the program are given in%

Figs. 3 and 4. Note that the English output gives the moves ing
fully compressed International whereas the algebraic outputg
is given in the program’s decimal board notation. %

One final comment. English notation does not have any fixed2
standard for its symbols and the characters (),. ? ! and = are?
often used. When preparing data for the program given here§
these symbols, together with check (+) and checkmate (+ +),8
should be omitted whilst any en passant indication (usually e.p.)%.
should be represented by just the letter ‘E’. Even better would 5
be to modify the procedure READ so that it ignored the=
characters), . ? ! = and +, treated (as / and, on reading the%
letter ‘E’, threw away all characters until a space was read.®
The program should then be able to read and verify almost any~
chess game in English notation with considerably more 3
accuracy than any human.

6. Conclusion

The purpose of this paper is to present the reader with guide-
lines and illustrations as to how to process, verify and store2
chess game records. In order to make clear how the skeleton S
technique works a great deal of the detail has not been dis-o
cussed. The reader must therefore consult and understand the 2
program given in the Appendix for clarification on a number%
of trivial problems. He will, if sufficiently perspicacious, find &
a few errors—for example, the program does not performh
correctly for P*BN, i.e. pawn takes a bishop and is promoted
to a knight. Our only defence, as already mentioned, is that
errors due to the program will be considerably less than
errors due to data. It is hoped that, within a decade, programs
following the techniques described here will have processed
and stored a great deal of the chess games recorded and thus
make available to computers a great deal of the knowledge
which, up till now, has only been available to literate humans.

anb Aq 061¢

Acknowledgements
The authors wish to thank D. Slate, L. Atkin, M. Donsky,

J. Birmingham and P. Kent for their comments on the proposed
International Notation.

The Computer Journal Volume 22 Number 1

Appendix Pascal program to read English notation

PRUGKAM ENGCINPUT,0UTPUT)
1YPE AN=AKKAYLl..576) OF INTEGER;
vKSAKRAY LU..259) UF INTEGEK;
wBPSAKKAY L30..22/) OF INTEGER?
MLwSAKRAY (1. ©5) UF INTEGEKS
U SAKKAYLl.. 04) UF CHAK;
VAR 1,U,8,L,PA,PB,FRUM,SQ,TU,M1,M2,LP,BACK,LINES LINTEGEK;
Cn,PL,P2,P3,P4e,P5,Pb,PT,P8: CHAK;

AN ANGS KN;
B5nP, KOUNS BRJ
wP, P wBP;

wHEN, BMENT MEN;
V1,0,03,bL4: V]

PRUCEDURE LISIMUVES(VAR MYM,0PPIMEN; LwB:D);
LAbBEL 1}
VAR C,Ll,J,R,L,PULNTS LNTEGLKS

FRUCEUUKE SRELELUNG
bEGIN

poiz' ' Pe=',!
' LU READ(CH

ir I'neN BEGIN PD READ(CH)
ir IHEN BEGLIN PS REAU(CH)
ir IHEN BEGLN KEAD(CH)

1F CH='s' I'HEN BEGIN
ir CH='n' Lhen BRGIN
AF CHE'P' THEN BEGLN
AF Cn>'v' Ik

LF Cn<'y' IHEN BEGLW
4F CH='V' 1HEN bRGIN
1F Pb=ro
ir Pozry
i Cos'/' Ihieh
OELLH KEAULLH)G

KEAL(CH)
READ (CH)
KEAL(CH)

REAL(CH)
KEAL(Ch)

1¥ THEN BEGIN PS KEAL(CH) END?
i Then BEGIN P52 KEAD(CH) ewp;
1F Ihen BEGLN KEAD(CH) ENL}

ar THew BEGIN KEAD(CH) ENL;
1¥ 1hEN OEGLN READ(CH) kND;
I TuEN

IF CH<'y' (HEN BEGLN READ(CH) eob;
Eww;

1F Cn='c' THEN

LEGAN

UPPLerToACR) =15 UPPLEP)
E333DAter); Poizuller);

7 EPI=EP+BACK;
PT:=DwsLEP)

wrife(' ', P5,P0,P/,P8,Ln," ');
PRTH (* SKeLETUN *)

FrUCLDUKE CUMPAKE;

veuly

Lk Uk (P1S0LIFROR)) 1HEN
1F UR (P2=D2(FROM]) THEN
ir OR (P3=0wB(FKOM)) THEN
ir T THEN
ik (Po='.") THEN

LF (P]='.') UR (P7sLWBLTIV]) THEN
1r (Pus=uPPLIUJ) LHEN
vruln

AF M1<>V THEN wRITE('2');
M1ISERUM; M2:=TU;

kD

DXV (* CUMPARE ¥)

PRUCEDUKE KEADMUVE?

veGIN

SKELETUN; P13=P5; P2:=Po; P3:=P7; P4i=Py;
1F PAZY THEN

PB; SKELETUN;

bEGIN

LF WMENLEP)=0 THEN M1335 ELSE M1:=61;
1F Ch=' ' THEN

bEGIN

M2IZMLHL; MYMLMLI+3)2S0; MYMIML+1):=
end eLSe

cbGLN READ(CH) G
M23=M1=2; MYM(M1=4)2
END

[

[XTH (% REAUMUVE *)

MYM[M1-1):=4

FRUCEDURE NURKM(VAR NURKIKN)?

VAR L3lileGhRr;

BEGLIAN

JITYESU;

FUR L3=J=NURK(U) TU J=1 DU

peuly TUSSNOKKLL); LF MYM(TUJ=0 THeN CUMPAKRE END;
END; (% NURKM *)

PRUCEDUKE RUKBM(VAR RURBIBR);
LaoklL 17

VAR L3LnNLEGER]

pEGLN

FUR 1:=0 Tu 3 LU

BEGLN

LIZRURBLA¥SU+L);

1F L=SU ThEN GUIV 17
RI=RURBLLI; TUI=SU;

KEPEAT

1ULSTU+R;

1F MIMLTUJ=U THEN CUMPAKRE eLSE GU10 1;
Ar UPPLIUICOVU THEN GUTO 13
uwlil TUsL;

130D

ENU; (¥ RUKBM %)

PRUCLLDUKE WORBPM(VAK PAWNZWbP);
LABEL 17

VAR L3inleGer;

oEGIN
JizarS
Fuk
beGiN

TUSSPANNLE);

AF MYRLIUI<OU THEN GUTU 13

LF UPPLIUICOU THEN GUTO 1 ELSE CUMPAKE;
enu;

13FOR L330+2 TO J+3 VO

BEGIN

TU=PAMNLLYG

1F UPPLIUICOV THEN CUMPARE;

Ny

T0 y+l.wU

References

BELL, A. G. (1970). How to program a computer to play legal chess, The Computer Journal, May 1970, pp. 208-219.

[XIDH
ENL;
ehb;
ENL;G
ENU;
el

brb;
ENLG

IV (+ wuhbbn ¥)

(* ewlRI LU LiSIMUVES *)
[AN

@l3SV; ML3IZ0;

KEAUNUVYLS

13 Fun Pulu LU o4 wu
Lr AXMLPULNIIZPA Loen
veuwln

PRUMISPULNLS DUITERUM;

imiduwl;

Case Cour

111F wNEWLSWIS1 THEN wUKBPM(wP) bLSE wukBPM(BP)
SNURRA(AND)
3TRURDM(BSHP
43RUKDBMLKUUR) G

2:0EGLIN KURBH(RUUK); RURBM(BSHP) ENDJ
GIHURKMUIANG) S

bwwi

LIV

GOTU 1 END;
2; BACKR:==BACK;

pPl:='B';

1r P23'o' THEN BEGIN PA33
MYMLNLL; MYNLNML
THEN BEGIN MYNM(N2)
THEN BEGLN WYMIM2)
THEN BEGLIN RYM(M2)
THEN BEGIN MYMIM2)332
M23=M2=1;
H M1=l%¥; K3I=M2 D1V B; LI=M2-K¥H;
WRITE(L34,031,n2a,L31,"):
eWD; (% LIST WuveES ¥)

3 M2:=M24BACK®3 END;
;
;

M2:=M24BACK®S ENU;

beLin (* ENTKY TU PRUGRAM %)
rur 10 570 DU READ(RNTCL));

rur 1U 570 LU KEAD(RNGLLD);

rUR TU 259 LU READ(ROUKLL));

run Tu 459 DU KEAL(BSHPLID)G

LAV TU 227 LU REAL(WP L))

rur TU <2/ VU READ(BPLL));

FUR 41U b5 DU BEGLN WMENLL):=U; BMEWL1)3=0 END

FUR JU 1o LU BEGLN READ(J): REAU(K); WMENLAJ i END,
rur JU 16 DU bEGLN KEAD(J); REAL(K); BMENIR)I=JS END;
hEAULN

FUR 133V AU 7 WU

bEGLN

FOR JIS1 10 B LU

seuln

KEAU(DLILL®B4J]); KEAD(DZLLI¥8+J)); KEAD(D3LI*B+J1); READ(U4LI*BHU))
LWL

KEAULN;

DUV

DACKRI=D; LINEIZLS

KEPEAL

anlie(biness,’ '): LINESSLINE+L]

LISLAUVED (whEN BMEN,U3);
L13TMUVED (LAEN, wAEN,V4)
wralBLN; READLN

UNLLL BUE;

EwUe

Algebraic replacement

PROCEDURE SKELETON}

BEGIN

Pl:='P'; P2:=','s P3:='.'; Pa:=','; PS:='.';
READ(CH); PB:=0;

REPEAT

PB:zPB+1; P2:=P3; P3:=P4; P4:=P5; P5:=CH; READ(CH)
UNTIL CH=' ';

IF PS='E' THEN

BEGIN

OPPIEP+BACK]) :=17 OPP(EP):=0; EP:SEP+BACK;

PB:=S; PS:=P4; P4:=P3; P3:='.';

END?

IF (PS='Q') OR (P5='R') OR (P5='B') OR (PS='N') THEN
BEGIN

CH:=PS; PB:=5; PS:=P4; P4:=P3; PI:='.'

ND3
IF PB=3 THEN
BEGIN
IF P3>'n' THEN P13=P3 ELSE P2:=P3;

END;

IF PB=4 THEN
BEGIN

P13=P2; P2:='.'s
IF P3<'I' THEN
BEGIN P23 ;P32

THEN PA:31;
THEN PA2:=2;
THEN PA:=4;
THEN PA:=5;
THEN PA:=6;
THEN PA3=9;
WRITE(' ',P1,P2,P3,P4,P5,CH,' ')}

END; (*SKELETON #*)
PROCEDURE READMOVE}

BEGIN

SKELETON;

IF PA=9 THEN
BEGIN
IF WMEN[EP)=0 THEN M1:=5 ELSE M1:=61}

IF P1<>'0' THEN

BEGIN

M2:=M1+427 MYMIM143)3=0; MYM[MI+1]:=4
END ELSE

BEGIN

M2:=M1=27 MYMIM1=-4]3=03 MYM[M1-1):=4
END

END

END; (* READMOVE *)

PROCEDURE COMPARE}

BEGIN

IF (P2='.') OR (P2=D1(FROM)) THEN
IF (P3='.') OR (P3=D2[(FROM)) THEN
IF P4=D1(TU) THEN

IF P5=D2(TU) THEN

BEGIN

IF M1<>0 THEN WRITE('?'):
M1:=FROR; M2:=TV

END

END; (* COMPARE *)

Jensen, K. and WIRTH, N. (1974). PASCAL User Manual and Report, Springer Verlag.

The Computer Journal Volume 22 Number 1

20z udy 61 U0 1s9nB Aq 06FESE/L //1/2Z/a101E/UlWOd/ W00 dNo dlWspeoe)/:SAjY Wolj paPeojuMoq

5

