DanL, O-J., DuKsTRA, E. W. and HoArg, C. A. R. (1972).
DukSTRA, E. W. (1968).
FitTER, M. J. (1976).
GRrEeN, T. R. G. (1977).

Vol. 50, pp. 93-109.
IBM PROGRAMMING RESEARCH GROUP. (1954).

Structured Programming, Academic Press, London.

GOTO statement considered harmful, CACM, Vol. 11, pp. 147-148, 538, 541.

Computers as aids in forecasting and control, MRC SAPU Memo No. 117.

Conditional program statements and their comprehensibility to professional programmers, J. Occup. Psychology,

Specifications for the IBM mathematical FORmula TRANslating system, FORTRAN

preliminary report, IBM Applied Science Division, IBM Corporation, New York.

LANDIN, P. J. (1966).
KNuTH, D. E. (1974).
416.

The next 700 programming languages, CACM, Vol. 9, pp. 157-166.
Structured programming with GOTO statements, Stanford University Comp. Sci. Dept. Memo No. STAN-CS 74-

NAUR, P. (1963). Goto statements and good Algol style, BIT, Vol. 3, pp. 204-208.

NAUR, P. (1966).
SIME, M. E., ARBLASTER, A. T. and GreeN, T. R. G. (1977a).

Program translation viewed as a general data processing problem, CACM, Vol. 9, pp. 176-179.
Reducing programming errors in nested conditionals by prescribing a

writing procedure, Int. J. Man-Machine Studies, Vol. 9, pp. 119-126.

SIME, M. E., ARBLASTER, A. T. and GRrEEN, T. R. G. (1977b).
SiMe, M. E., Green, T. R. G. and Guest, D. J. (1973).

SiME, M. E., GreeN, T. R. G. and GuesT, D. J. (1977).
Machine Studies, Vol. 9, pp. 107-118.

WIRTH, N. (1971).

WIRTH, N. (1977).

Structuring the programmer’s task, J. Occup. Psychol, Vol. 50, pp. 205-216.
Psychological evaluation of two conditional constructions used in com-
puter languages, Int. J. Man-Machine Studies, Vol. 5, pp. 105-113.

Scope marking in computer conditionals—a psychological evaluation, Int. J. Man-

Program development by stepwise refinement, CACM, Vol. 14, pp. 221-227.
MODULA: a language for modular multiprogramming, Software—practice and experience, Vol. 7, pp. 3-36.

Book reviews

Optimization Technigues, parts 1 and 2, edited by J. Stoer, 1977;
528 and 512 pages. (Springer-Verlag Lecture Notes in Control
and Information Sciences, Vols 6 and 7, $21.50 each)

The Conference on Optimization Techniques, Wiirzburg, 1977, was
attended by 240 participants and the proceedings contain over 240
papers, some of which have multiple authorship. It is difficult within
the constraints of a short review to give the full flavour of the
meeting. Largely this is a collection of papers on applied mathe-
matics, ranging over stochastic processes, computational techniques,
differential equations, control theory, a lot of mathematical pro-
gramming, some very mathematical OR and economics, computer
networks and differential games.

Although the proceedings of the conference are divided into two
volumes, the first mainly dealing with optimal control, and the
second dealing with mathematical programming, it is rather con-
fusing to find that a number of papers are in both volumes. It is a
pity that some of the very important areas, such as world modelling,
are dealt with so briefly and in extremely general and chatty terms.

The conference itself was probably more lively than would appear
from these proceedings, which are extremely difficult to read and
have but little relevance to the application of optimising techniques
in that messy, muddled, chaotic real world in which we all live. If
only the world was simple enough for mathematical methods to be
applied widely, it would indeed be a Platonic heaven.

PATRICK RIVETT (Brighton)

A Primer on Disciplined Programming, by R. Conway, 1978; 419
pages. (Prentice-Hall, £6-95)

It was fashionable, a few years ago, for each new textbook on
numerical analysis to start with a few chapters on ALGOL, FORT-
RAN, or latterly BASIC before launching into the main subject
material when, in many cases, there would be no further mention of
the particular language studied in the early part of the book.
Disciplined programming, programming style and structured pro-
gramming are topics on which there are a number of newly pub-
lished texts and this compares well with all of them but emulates the
numerical analysis books in commencing with a detailed study of a

The Computer Journal Volume 22 Number 2

dno-olwapeoe)/:sdjy Woil papeojuMo(]

particular dialect of PL/I.
The book is divided into five parts, parts I and III being essentiallg
a beginners guide to PL/I, part II is on program development, parg
IV is devoted to quality of programs and part V to the limits of
computing. Parts I and III take about two thirds of the book an
this will inhibit any prospective purchaser who does not wish te:
learn PL/I or who regards himself as competent in that languagep
This is a pity since the presentation is well thought out and usm§
‘Programming Proverb 24’ (1975) which states ‘re-read the manual’
there is much to be learnt from the description of the features of thg
language. Part II on the development of programs contains some>
good ideas, put across in a competent manner. It covers prograng
structure, top-down development and the structure of data. It iS)
rather strange that this should appear before the introduction
procedures and functions which inhibits coverage of modularltm
This section is not dependent on PL/I to any great extent. <D

Part IV on the quality of programs contains a number of ideas, 15
not original, then rare in print, and ought to be on the reading list of
every serious high level language programmer. It covers progra
correctness and program efficiency. The final, very short, Part V ofp
the limits of computing covers popular WlSdom about computerso
(i.e. myths) and problems impossible to compute.

The book was produced by an editing program (FORMAT) run on
the IBM 370/168 of Cornell University’s Office of Computer Services.
At first view the small typeface is unattractive but despite the small-
ness of the print it is not difficult to read, the only criticism of the
print being that, possibly due to use of the computer, there are no
flowcharts of the examples and exercises. There are many (too
many ?) books on programming and few really good ones. This wil
hold its own with the best, it could be strongly recommended to any
student of PL/I even though its subtitle and presentation are
directed to the Cornell compilers. It should also prove interesting to
any lecturer or teacher of programming who could learn from the
presentation of the material and the well constructed exercise at the
end of the chapters.

09’

D. W. B. BALE (Swanage)

Reference
LepGArD, H. F. (1975). Programming Proverbs, Hayden

109

