Practical experience with ALGOL 68-RT

J. R. Oliver* and R. S. Newtont

The use of ALGOL 68 to give all the facilities of an online, multi-access system has many advan-
tages. This paper outlines the use of ALGOL 68-RT to provide parallel processing features in an
ALGOL 68-R program and describes the practical benefits that military users at HQ RAF Strike

Command have obtained.

(Received January 1978; Revised February 1979)

One of the computer facilities needed by HQ RAF Strike
Command for its ICL 1904S* was an online, multi-access
computer facility which used a fully validated, structured
data base for information storage and retrieval and for
a combination of mathematical computation and data pro-
cessing. There had to be interrogation facilities to extract
records according to multiple criteria and an enquiry facility
to resolve certain complex mathematical relationships between
the records in the system. There was the need to provide multi-
threading so that different users could use the same service
concurrently, and the need to enforce single-threading to
restrict a service to only one user at a time when the program
overheads of providing multi-threading were too high. It
required software that allowed a large program to be written
quickly with high reliability—given certain hardware con-
straints, provide growth potential in a large program, and
allow maximum flexibility to change. The software chosen
was the ALGOL 68-RT Online System.

The ALGOL 68-RT online system

The ALGOL 68-RT Online System (Bond, 1970; Newton
et al., 1976; Woodward and Bond, 1974) has been developed
under the leadership of Dr D. P. Jenkins by the Computing
Group at RSRE Malvern and has now been used by HQ RAF
Strike Command for four years. This is undoubtedly the
most powerful software system of its type available for an
ICL 1900. It offers multi-access operation on visual display
units (VDUs) with the entire application coded in ALGOL
68-R as a single program with the systems functions relatively
isolated from the applications programmer. For multi-threading
functions, code is re-entrant and there are protection mechan-
isms to prevent the inputting or amendment of the same record
at the same time by different users.

The online system functions are provided as a procedural
package and perform two roles. Firstly, there are a set of
procedures which are called to define the hardware and software
configuration for a particular run. Secondly, procedures are
provided for the control of and interaction with the input/
output devices.

Processes (Wilkes, 1975)

The operator at his VDU will see the program as a set of
sequential functions which will perform his current job. The
logical execution of this sequence of functions by the processor
is called a ‘process’. Operators at the other VDUs will have a
similar view of the program. Thus, at run time, the program
will consist of many processes, one per VDU plus several
dedicated to the online system itself, each conceptually
executing independently of the others, but communicating
where necessary in a controlled way.

*HQ RAF Strike Command, High Wycombe, Bucks HP14 4UE

tRoyal Signals and Radar Establishment, Malvern, Worc. WR14 3PS

114

Organisation of processes (Woodward, 1973; Woodward and
Bond, 1974)

Given this definition of a process, Fig. 1 shows the ALGOL
68-RT concept on which the online system is built. The outer
loop shows how control is passed from user process to users
process by the ‘co-ordinator’ (or scheduler) which decidess
which process to run next. Each of the inner loops indicates§_
how each process can consist of several sequential functions.8
The mechanism to achieve this is an additional library for the3
ALGOL 68-R system; no alterations were made to the ALGOLi
68-R compiler. The basis of ALGOL 68-RT is a languages
construct which will launch a procedure as an independentZ
process. ALGOL 68-RT runs an ALGOL 68-R program as a§
series of stacks which are set up by the syntax-directed com-g
piler, each procedure forming an independent stack in the=
computer. Launching a process puts this process into a ring2
which is examined by a ‘round-robin’ scheduler. Effectively,?
the VDU user owns an RT process (Newton et al., 1976)—S
written as a user procedure—that is, from time to time, haltedg
and reactivated by the ‘co-ordinator’. This process controls%.
the man/machine dialogue at a VDU and the procedure isg
used re-entrantly to control as many VDUs as are linked to the=
system. This ‘user procedure’ is structured as a hierarchy of g
procedure calls, each representing a particular function.®
The diagram shows the cyclic nature of each process, and the =
time-slicing between them. Transfer of control between<
processes takes place on three occasions:

(a) when a peripheral transfer takes place
(b) when the co-ordinator is called explicitly

(¢) when an operation on a ‘semaphore’ calls the co-ordinator.

uo 1senb Aq £006Z1/7L

The scheduler also controls the overlay package. The overlay=
package is very powerful and allows a great variety of overlay >
configurations to be in core at any instant as defined by the=
syntax of an overlay specification.

¥20c

1. Setting the online system going

The application is compiled and started as a normal GEORGE
‘Job’. On entry to the main body of the program, the following
procedures are called to define the multi-process structure
and the hardware configuration and then to set the whole
system running:

proc define configuration = ([] int description of devices)

This procedure sets up the necessary data structures to define
the configuration. ‘Description of devices’ defines the number
of devices to be driven and their device type, such as VDU
or teletype.

proc start configuration = void

The Computer Journal Volume 22 Number 2

User process 1
(terminal 1)

User process 2
(terminal 2)

User process 3
(terminal 3)

N -

time slicing
<

Fig. 1 The ALGOL 68-RT concept

Avoid heap because of
overheads

The heap provides a special
area for variables used by
[certain code constructions,
for example those in which
data is of a variable nature
(eg flexible arrays).

Heap Software pages ——a
N for local -:E
procedure F
variables =
for each)'[= Stack £
Stack for f l ack for
parallel 3rd processf- 4th process
process. A 2
Local Procedure variables [—

LARE]

(Variables generated in b=

Stack
procedures do not exist ¥
when procedure has 'died') Stack for‘,’ e

] Stack for
2nd process

Global Variables

DA BUFFER
Program
(In—core and overlaid segments)
4096
Literals, formats, and strings
68-R 68-RT

Fig. 2 Core mapping in ALGOL 68-R and ALGOL 68-RT

This procedure performs initialisation of the communications
hardware and its driving software.

proc start iden = (int identifier,
proc (ref charput, ref charput) user
procedure)

This procedure launches the given ‘user procedure’ as a process,
and identifies through the parameter ‘identifier’ which device
data structure it is to use.

proc scan configuration = void

This procedure starts the system running.

Each operator may now connect his VDU to the appropriate
process using ‘identifier’ as a parameter to the GEORGE
command ‘Attach’.

Core Mapping

Fig. 2 shows a comparison of the core mapping arrangements
for ALGOL 68-R and ALGOL 68-RT. The major addition
in ALGOL 68-RT is the division of the stack containing local

The Computer Journal Volume 22 Number 2

procedure variables into software pages providing stacks for

.each process. Each parallel process has its own local storage

space, normally 2 ‘pages’ of 512 words each, although in this
application a page size of 600 words was necessary. The
significance of a page is that no single local object, e.g. array,
can be bigger than a page. Paging overheads incur about
40 words/page. The heap was not used in this program to
avoid time and space overheads.

2. Picture generation
One of the unique features of the online system is the powerful
facility provided to aid the generation of output to a VDU
and the validation of the resulting operator response. The
screenful of information for the VDU is described by the use
of standard ALGOL 68-R ‘formats’. These allow a concise
description of text together with any numerical information
required from the program’s run time data. ICL VDUs provide
the facility for defining ‘unprotected’ and ‘protected’ areas
of the screen, into which the operator can and cannot write
respectively. An ‘unprotected’ area is represented symbolicall)b
in the formats and is associated with a validation routine. S

ICL 1900 programs can exhaust LOWER data. This is due
to the architecture of the 1900 whose address structure wag
originally designed for a 32K machine and the constructlom
of early compilers which were designed to compile programs:
no greater than 32K. It is therefore imperative to have ALGOL_,
68-R formats, which would normally reside in LOWER, om’
backing storage. This is accomplished by inputting a format:
into the auxiliary program FRAMEMANAGER for translaf@>
tion into low level form on disc file, for later use by the onlm&
program. The ability to code VDU pictures directly in ALGOI,,-
68-R has given huge advantages because—when compared t@
other tedious frame formatting systems—it provides all th¢
flexibility necessary for the evolutionary development of
conversational dialogues with the users.

Input/Output
One of the most attractive and useful features of ALGOIZ

Z/o1STe/|ulwooy

[*))
%
]
-
=g}
(=]
3
-
=
o
o
e
=
-
Q
=,
=
5}
€
(=]
=
-
=
o
o
o
=
el
0
(=g
(]
=
w
el
-
(]
e
=
o
8
- 3
‘o

’

is the clean, high level language interface between the onling?
application program and the RT system. Input/output is:
controlled by a very powerful procedure:

&
oMz /11

proc display and validate =
(ref charput vdu in, vdu out, (
proc void output to screen, (
proc (int) int input and check (
proc void restart) (

which allows the clear definition of:

(a) the input/output channels

(=)
y20z 11dy £ pDods

(b) the procedure to generate the output frame
(¢) the procedure to read and validate the input data

(d) the procedure to be activated if the input sequence is to be
abandoned and some other action carried out.

In this online system, the validation of input data is completely
integrated with the language facilities available to the applica-
tions program, giving a powerful validation capability. As
shown in Fig. 3, this procedure is best used when embedded
inside another procedure—say OUTPUT AND INPUT VDU
SCREEN—which can define all of the parameters needed
by DISPLAY AND VALIDATE.

Program structure
Fig. 4 shows an outline example of an ALGOL 68-RT program.

115

Program

proc output and input vdu screen =
(ref charput vdu in, vdu out,
ref [] char function):

begin
[1:92] char c format;
proc call format = format:
(get format (c format, 51));

proc restart = void: ();
proc input and check = (int i) int:
begin

case i + 1in
3, ¢ no of screen parameters ¢

variable to select the
current character channel.

get (cc, parameter a);

validate a (parameter a),

get (cc, parameter b);

validate b (parameter b),

get (cc, function);

validate function (function)

esac
end;
display and validate (vdu in, vdu out,

void: (outf (cc, call format,

(x, space)),

input and check,

restart)

end;
Fig. 3 Procedure to output and input data via the VDU screen

Commentary

Procedure declaration.

Input parameters are I/O channels and a 2 character
variable, passed down through processes to control direction
of program.

Declare data space for format.
Procedure to read format from backing storage.

Procedure defining escape action.

Procedure to read and validate input. This procedure is called
initially to pick up the number of screen parameters

(3 in this case) and is then called for each screen parameter

in turn. It remembers any fields that are invalid—causing field
markers to flash—and will only exit from DISPLAY AND
VALIDATE if all fields are correct.

Read and validate
Ist screen parameter.
Read and validate
2nd screen parameter.
Read and validate
3rd screen parameter.

Call of DISPLAY AND VALIDATE
with 5 parameters.

Overlaying (Bond, 1970)

The overlay capability of ALGOL 68-R and ALGOL 68-RT
is particularly elegant and powerful. The unit of overlay is the
segment which can contain one or more procedures which is
read into core, according to an overlay specification designed
to minimise disc accesses when the program is used. The
overlay specification defines one or more areas of main
store. At any instant when the program is running, each area
will hold just one unit of overlayed instructions. In the simplest
case, a unit is one segment, but it is often convenient to group
two or more segments together to form a single unit which is
brought into main store by a single transfer. Each area is
automatically made big enough to hold the largest unit
assigned to it. In the overlay specification, the segments forming
a unit are identified by their titles with + as a separator,
the titles making up units in the same areas are demarcated
by commas (,), the area boundaries are denoted by semicolons
(;), and the complete specification is terminated by a full stop.
Thus, an example of an overlay specification could be:

Comment

Area 1—can be occupied by
segal or (sega2 and
sega3) or (sega2
and sega4)

Area 2—can be occupied by
one of seghl, segh2,
or (segb3 and
segb4)

In the Strike Command application with a large program on a

Specification
segal, (sega2; sega3, sega4);

seghl, segb2, segb3 + segb4.

116

non-paging ICL 1904S*, the diversity of overlay configurations

that these mechanisms facilitate has proved essential.

Error recovery

1J4e/|ulwoo/woo dno-olwepeoe;/:sdiy WoJj pepeojumoq

vilie/ee/an

This program uses the mechanisms provided to prevents
many types of program failure from being catastrophic.S

Two of the most important of these are
proc set process event = (proc void recover)

6 Aq €0

n

which associates a label—defining response to errors—withg
the current process so that it may be called after a subsequento

fault, and
proc process event = void

idy /|

which calls the event procedure most recently associated withy,
the current process. Throughout the Strike Command pro-§

gram, the error recovery procedure changes from function to
function, the main differences being caused by the need to
ensure that in a failure and recovery situation the global
data base is left consistent.

The Strike Command application program

The Strike Command application program was structured
as 41 separately compiled segments, totalling 400K words in
two albums, overlaid into 17K. The total core space required
by the program is 47K. There are 157 frame formats on backing
storage.

1. Structured programming
High speed computer stores contain millions of bits stored in a
monotonous sequence of consecutively numbered but other-

The Computer Journal Volume 22 Number 2

segment name with rtdriver, vduframes from
rtalbum

begin

proc r¢ demo = (ref charput vdu in,
begi*\
\
User dialogue which calls
proceclures like that shown in Fig. 3.
\
end; \
define configuration
((vdu 7181, vdu 7181), 1); present copies
\ of this procedure
start configuration; at 2 terminals. T

vdu out):

for n to 2 do \

start iden (n, rt demo);
scan configuration
end
finish

Fig. 4 Outline example of ALGOL 68-RT program

Commentary

rtdriver contains procedures for ‘co-ordinator’
vduframes contains procedures to manipulate vdu screen.

Procedure parameters are input and output channels.

Procedures to start system
going—see Section 1.

wise equivalent storage locations. We can only attach a mean-
ing to such a vast amount of bits by grouping them in such a
way that we can distinguish some sort of structure in the vast
amount of information. This structure is our invention and not
an inherent property of the equipment. It follows that it is our
obligation to structure ‘what is happening where’ in a useful
way (Dijkstra, 1972). One of the main aims in writing this
program was to give it a meaningful structure because of the
great benefits that derive from this. The use of ALGOL 68-R
as the sole programming language (system) has greatly facili-
tated the application of ‘structured programming’ principles
and has, indeed, often forced the programmer to apply these
principles. Throughout the 400K of application software,
GOTOs are used in only three situations; in the system soft-
ware, they are used in very exceptional cases (Dijkstra, 1968).
This program has demonstrated that:

(@) structured programming produces a better documented
program with greater readability

(b) a programmer can read a program segment from top to
bottom without having to follow through a number of
transfers of control

(c) structured programs are easier to debug and understand
at some later date, making it easier to avoid subsequent
‘structural decay’

(d) structured programs are easier to modify, especially when
the changes are made by someone other than the original
programmer, since modifications can be made to isolated
blocks of code without affecting other major segments of
the program.

Data structures

Mode declarations were selected to make the programming
as easy as possible while allowing relatively efficient execution
of code. The criteria for deciding these mode specifications
were:

(a) they were to define the entities for direct-access records

(b) they were to make the code as readable and as self-
documenting as possible

(c) subscripting was to be kept to one level if possible.

Modular program construction
In this program, modular programming is based on ALGOL

The Computer Journal Volume 22 Number 2

| pppeOojUMOQ

68-R procedures. A major advantage of the use of procedug:s
as the logical unit of processing in ALGOL 68-R is the rigorous
compile time checking of data modes specified for use by e@:h
procedure; this has proved to be an invaluable aid to the
development of an error-free program. These procedug_es
have been grouped into segments, the segment being the unitiof
overlay, and these segments have then been put into two albums.
The compile time mode checking that occurs when each s@)-
sequent segment is put into the album—and on many otker
occasions—has also proved an invaluable aid to progr@m
development, although the computer has undoubtedly had&to
work hard when fundamental changes in the segment amd
album structure have been made. o

cc/apie

Data files, indexes, and main records N
The data defining each of the items to be held in the systén
has been split between an index and a main record held
on GEORGE ‘exofiles’ (i.e. outside the filestore), the position
of the main record corresponding to the position of its entry
in the index. The data going into the index, apart from the
identity itself, comprises—in the main—‘gating’ data, “to
facilitate retrieval on multiple keys (Yourdon, 1972). the

indexes then serve a double purpose: =
(@) to list items according to criteria (i.e. inverted recoix‘
retrieval) >

. . . . S
(b) to justify the retrieval of main records from direct-access
storage when doing mathematical comparisons, greaﬁy
reducing disc-accesses. =

Record retrieval is performed using the random access from
backing store (binary transput) procedures available in
ALGOL 68-R.

Program data
Two categories of program data are global:

1. Record indexes Protection mechanisms are incorporated to
reserve positions in the record indexes at which data is being
input or amended during multi-threading/multi-access use.

2. Variables used by mathematical processes The penalties of
making the variables for solving the mathematical problems
local to each process were considered to be too high because
this would necessitate many procedure parameters. Con-
sequently, these processes were made to be single-threading,

17

which was enforced by belt and braces:
(a) access to certain facilities was by a password

(b) semaphores, these being special variables that control the
relative progress of the different parallel processes (Pagan,
1976).

All other variable data—other than certain controlling variables
—is local, being generated dynamically as processes (pro-
cedures) are activated.

Programmer productivity

As some areas of industry are beginning to realise, an ALGOL
68 programmer can actually enjoy what he is doing and, as
a consequence, can be very productive (one of the authors
suffered under PLAN and COBOL before being released from
his misery!). ALGOL 68 is a language for those who do not
believe that life is infinitely long; it is for those who wish to
avoid the experience of trying to drain a swamp with a teaspoon.
There is no denying that (like religion ?) ALGOL 68 does require
some initial intellectual effort, but this is not as great as some—
who have not tried—would maintain. At HQ RAF Strike
Command, all of those servicemen or civilians who wanted
to use the language for their programs have succeeded, some-
times with some initial assistance. The additions to ALGOL
68-R to obtain ALGOL 68-RT are not great and are totally
consistent with its elegance and the need to protect the poor
applications programmer, who has his own problems,
particularly in any large system, from the intricacies of an
online, multi-access system. The advantages of this clean inter-
face and the relative ease with which VDU frame formats

References

can be produced and the user dialogue programmed cannot
be emphasised too much. With the RAF Strike Command
system, 400K of error-free ALGOL 68-RT code was produced
with three man-years of work. Perhaps some commercial DP
managers should note that ALGOL 68 programmers can
become obsessed with the desire to produce large, overlaid,
‘error-free’, ‘structured’ programs in short timescales!

Conclusions

The combination of ICL 1904s*, GEORGE 3, and ALGOL
68-RT has proved to be a suitable environment for the develop-
ment of this online, multi-access program with its combination
of mathematical and data handling activity for local or remote
users.

The complete dedication to ALGOL 68-R for all of the
applications program, the clean interface between system and
application software, and the powerful facilities to manipulate
VDU screens provided by the ALGOL 68-RT online system
have made it possible to produce a large, complex program in a
short timescale which has high levels of readability, self docu-
mentation, reliability, growth potential, and flexibility to
change.

Acknowledgements
The authors thank Dr David Jenkins, Miss Susan Bond and
Mr David Hunter and the other members of the ALGOL 68
Group at RSRE Malvern for their considerable help in the
implementation of this ALGOL 68-RT system at HQ RAF
Strike Command.

Bonp, S. G. (Ed.) (1970). ALGOL 68-R Programmers Manual, RSRE Malvern.

DuksTRA, E. W. (1968).
DuksTtrA, E. W. (1972).
niques, Academic Press.

NEewToN, R. S., HUNTER, D. W., JENKINS, D. P. and MANDER, K. C. (1976).
A Practical Guide to ALGOL 68, John Wiley & Sons.
Time Sharing Computer Systems (3rd Ed.), pp. 36-38, MacDonald and Jane’s/American Elsevier Computer Mono-

PaGaN, F. G. (1976).
WILKES, M. V. (1975).
graphs.

GO TO Statement Considered Harmful, (Letter to the Editor), CACM, Vol. 11, No. 3, pp. 147-148.
Hierarchical Ordering of Sequential Processes, APIC Studies in Data Processing No. 9, Operating System Tech-

The ALGOL 68RT Online System, RSRE Malvern.

WO0ODWARD, P. M. (1973). Parallel Processing and Simulation, An Introduction to the Use of ALGOL 68-RT, RSRE Malvern.

WoOoDWARD, P. M. and BonD, S. G. (1974).
YouRrDON, E. (1972).

Ministry of Defence ALGOL 68-R Users Guide (2nd Ed.), HMSO.
Design of On-Line Computer Systems, p. 285, Prentice Hall.

The Computer Journal Volume 22 Number 2

20z udy /1 uo1s8nb Aq 0062 /1| L/2/22/310n4e/|ufuoo/Wwoo"dno-oiwepeoe//:sdiy Wo.y papeojumod

