CONSIM: a stUdy of control issues in conversational
simulation

Sallie S. Nelson
Department of Computing Science, Texas A & M University, College Station, Texas 77843, USA

CONSIM is a prototype conversational simulation language which provides simulation types of
control and allows mid-execution editing of both programs and data. In its development CONSIM
served as a vehicle for exploring the control issues inherent in the design, implementation, and use of
such a programming system.

SIMULA 67 was used in the development of the prototype system both as a model for CONSIM’s
control features and as its implementation language. SIMULA was selected primarily because of its
high level control facilities, including both coroutine and simulation sequencing. The dual use of
SIMULA in this project allowed an implementation strategy called interpretive control self-
modelling to be used.

This paper provides an overview of the CONSIM development by discussing the motivation of the
research, highlighting CONSIM’s interesting and unique features and illustrating its utility with
excerpts from a model-building scenario. The prototype implementation is described and, finally,
the results and promising areas for future research are summarised.

This work was supported in part by the National Science Foundation under grant DCR73-03441

AO01 to the University of Pittsburgh.
(Received January 1978)

1. Conversational simulation

1.1 Background
In higher level programming languages the control related
features, which deal with overall program logic and the manage-
ment of run time environments, can be distinguished from the
data related features. These control related facilities can be
further categorised as either control simple (e.g. aspects such
as operators, expressions, conditionals, and iterations) or
control rich (e.g. aspects such as blocks, procedures, and
coroutines).

A three year study of control definition in programming
languages has recently been completed at the University of
Pittsburgh (Lindstrom, 1977a). Our goal in this research was
to seek ways to refine, formalise and appraise control as an
avenue for systematic language design. This study has provided
a better understanding of and insight into the control aspects
of higher level languages which we hope will be of interest
and benefit not only to language users but also to other
language researchers, designers, and implementers. Some of the
results of this study have been reported in Lemon, Lindstrom
and Soffa (1977), Lindstrom (1977b), Lindstrom and Nelson
(1976), Nelson (1978), Nelson and Lindstrom (1977), Soffa
and Lindstrom (1976; 1977), Strauss (1976). This paper
concentrates on one aspect of this research, namely the
development of an experimental conversational simulation
language called CONSIM (Nelson, 1977).

1.2 Research value of CONSIM

The development of a conversational simulation language
contributed to our research in control definition in several
ways. First, in designing CONSIM two control rich language
types (i.e. conversational and simulation) were merged. To
meet our definition of conversational, CONSIM had to support
mid-execution editability of both programs and data, as well
as provide an interactive user/system interface. To be classified
as a simulation language CONSIM had to provide traditional
facilities such as pseudoparallel processing, scheduling, and
queue handling. Supporting the control richness of conversa-
tional and simulation processing simultaneously required
new approaches and techniques. CONSIM, therefore, served
as a vehicle for exploring the problems and possible solutions
encountered in designing and implementing a control rich

The Computer Journal Volume 22 Number 2

environment.

Because CONSIM explores a programming environment
use to simulation programmers and model builders, its develoi-
ment is of more interest than just as an academic exercise
in control design and implementation. Conversational simulg-
tion has been proposed and advocated by several authors
(Kiviat, 1974; Lindstrom, 1973) as a means of providi
more powerful and useful language tools for simulati%
applications. Although designs for such languages have beénh
proposed (see for example Jones, 1963), we know of no imple-
mentations which meet our definition of conversational simulgi-
tion. CONSIM’s implementation, therefore, serves as a vehicle
for establishing the feasibility and utility of this new language
environment.

ewaogé/:sdnu luoJ) pepeojumoq

cyiBLLIC]

1.3 Control issues
The CONSIM research concentrated on the control aspects
involved in the design and development of this high levél
language and its required support systems. Issues such as thie

following were considered: 5
(2]

(a) control statements in the conversational 31mulat1 33
language 5

(b) user control over operation of the system (e.g. modgl
initiation, interruption, and termination)

(c) inclusion of the user as a control entity within the modﬁ

(d) control aspects of the implementation of the above features
and

(e) styles of programming possible in the control enriched
environment provided by the conversational simulation
language.

Each of these areas is discussed in more detail later. Section 2
considers some of CONSIM’s unique or interesting design
features while Section 3 illustrates the utility of CONSIM’s
control richness, especially in model building. Section 4
provides an overview of the prototype implementation. The
last section summarises our conclusions from the CONSIM
study and suggests additional research based on this work.

2. CONSIM’s design
The philosophy followed in CONSIM’s design was to maximise

119

user flexibility by minimising user restrictions. Because the
CONSIM implementation was intended to be an experimental
system for language study, an attempt was made to avoid
a priori decisions as to what might or might not be useful
and desirable from the user’s perspective. In the prototype
implementation the user is assumed to know what he or she
is doing; processing continues at the user’s direction as long
as possible, even overriding CONSIM error warnings. Opera-
tion of the resulting system, therefore, requires that the user
have some knowledge of the internal organisation of the
system.

2.1 SIMULA as CONSIM’S syntax model

The syntax and simulation facilities of CONSIM are patterned
after those of SIMULA 67 (Dahl, Myhthang and Nygaard,
1968). In addition to the facilities of ALGOL 60, SIMULA
offers the class and coroutine concepts, reference variables,
simulation primitives, and extensive text and input/output
capabilities. SIMULA was selected over other candidate
languages (notably SIMSCRIPT and GASP) primarily because
of its high level control facilities for both coroutine and simula-
tion sequencing. This approach of modelling CONSIM after
an existing simulation language offered several advantages
over designing a totally ‘new’ language. First, it shortened the
design phase by allowing us to take full advantage of work
already done by SIMULA’s designers. Since SIMULA 67
is itself a ‘second generation’ simulation language (benefiting
in its design from users’ experiences with its ancestor SIMULA
I), it provided a particularly stable and well tested basis for
CONSIM.

Secondly, fashioning the conversational language after an
existing compilation oriented language ensures that CONSIM
has as its core a regime which is known to be suitable for later
compilatiorz. Thus, although CONSIM is implemented via
an interpreter, stabilised programs are readily translatable
into SIMULA for maximum production efficiency. Because
CONSIM is a prototype language, only a subset of the facilities
which would be desirable for a full user oriented implementa-
tion have been included. Features which relate to the control
issues enumerated above as well as other representative simula-
tion facilities were selected for implementation in CONSIM.
A BNF specification of CONSIM is given in Appendix 1.

2.2 Uniform language

Language elements are needed in the conversational system
which enable the user to direct the operation and processing
of programs (e.g. run, stop, edit, etc.). Such elements may be
separated into a distinct language, as in the job control lan-
guage of batch environments. Alternatively these directives,
which we call commands, may be integrated with the language
statements used in expressing the algorithmic steps of the
program, thus forming a single uniform language.

In the conversational environment the uniform language
concept greatly simplifies system operation for the user since
he or she is not required to distinguish between the command
and statement sublanguages. He or she does not have to keep
track of the currently valid sublanguage and the sublanguage
membership of each element: all commands and statements
are acceptable at any time. Because CONSIM was designed
as a uniform language, its commands and statements belong
to a common language as can be seen by the BNF specification
given in the appendix.

2.3 Commands and increments

Special instructions called ‘commands’ have been included
in CONSIM to aid the user in directing the construction,
testing, and execution of programs. Table 1 shows some of these
and briefly describes their meaning.

120

Table 1 CONSIM user commands

Function Command Meaning

Entry NEW-TASK Set up a new task to be
associated with user sup-
plied identifier.

‘Compile’ disc source code
saved from' previous session
into post syntactic form
for interpretation.

Accept and compile new
source statements into post
syntactic form for later
interpretation.

Display entire CONSIM
source program.

Display increment n of
source program.

(Must be preceded by com-
mand SHOW n). Search
increment n for ‘old’ text
and if found replace by
‘new’ text. Post syntactic
representation of edited text
replaces previous version.
Delete increment n from
both source and post syn-
tactic form files.

Take the given CONSIM
source and execute it in the
immediate mode. Source
and post syntactic forms
are not saved.

Begin execution (i.e. inter-
pretation) of CONSIM pro-
gram.

Halt processing of CON-
SIM program.

Continue processing of
program from point of
interruption.

Continue processing of
CONSIM program from
the beginning of incre-
ment 7.

Terminate this task.
Terminate this interactive
session.

Display a status report of
current system activity.

COMPILE

SOURCE

Edit SHOW

SHOW n

FIX\old\new\

DELETE n

Execution IMMEDIATE

RUN

HALT

CONTINUE

CONTINUE n

FINISHED
STOP

Termination

Status STATUS

The reader will note that several of these commands make
reference to ‘increments’ (e.g. source, show, fix, delete, and
continue) An increment is a program fragment capable of
being accepted by CONSIM’s syntax analyser. It consists
of a string of program elements (tokens) ending with a token
from the distinguished set of terminal symbols {*“‘end”, ““;”}.
Additional restrictions require that no more than one un-
matched begin or end may occur within a single increment.
(These restrictions could be relaxed by increasing the size of
CONSIM’s defining grammar but were considered acceptable
in the prototype implementation).

The notion of increment in CONSIM provides a means of
referencing partial programs, thus enhancing communication
between the user and the system. The user supplies an identify-
ing number with each increment at source entry. Because
syntax analysis occurs as the code is entered or edited, the user
is notified and allowed to correct any syntax errors im-

The Computer Journal Volume 22 Number 2

20z udy 61 U0 188n6 A 1106ZH/61 L/2/2Z/310n4e/|ufoo/Wwoo"dno-oiepeoe//:Sdy Wo.y Papeojumoq

mediately, rather than after all code for an entire program
has been entered (as with most compiler systems). The syntax
analyser produces an independent module containing an inter-
mediate post fix form of the source code for each increment.
The CONSIM source and intermediate-form modules are
maintained by the system in ascending order by user supplied
increment number. Thus, the increment numbers not only
provide a means of identifying a particular increment (e.g. as
required in the show, delete and continue commands) but also
specify the order in which increments are to be combined to
form the CONSIM program. This allows the user to enter
or edit source code for increments in any order, with the
system automatically updating the current source and inter-
mediate-form modules as appropriate.

2.4 Multiple tasking

Multiple tasking in the CONSIM environment refers to a
facility whereby the user may have more than one ‘task’ in
progress simultaneously under a single computer job. Each
task may consist of any of the CONSIM activities such as
constructing, modifying, or executing programs. As each task is
initiated (via the mew task command) the user chooses an
identifier for the task which is used in task specific user/
system communication.

The possibility of multiple tasking in CONSIM was suggested
by the multiple processing feature of Swinehart’s COPILOT
system (1974). (Because of the special connotations of the term
‘process’ in a simulation environment, the term ‘task’ was
substituted in the CONSIM work.) One of Swinehart’s
primary goals was to create a programming environment in
which the user could achieve a good ‘behaviour match’ with
his or her normal working patterns. He believes that even while
pursuing a single goal the user’s attention may be swapped
among several related or unrelated activities.

The multiple tasking facility appears especially useful in the
conversational simulation environment in two ways. First,
after initiating a long execution of one model which will
require only infrequent monitoring, the user may wish to
begin entering source code for another (related or unrelated)
model. Because both tasks are being done under one computer
job, any messages from the executing model will appear on the
single terminal. When such messages appear the user can ignore
them or respond at a convenient time.

The second way in which multiple tasking could prove useful
is if the user had two related models, for example submodels
of a single system. While such situations can be handled in a
single task environment, by declaring each submodel as a
separate task in a multiple tasking system the user would
have additional control over their interaction and assistance
from the system in keeping their declarations separate.

3. Utility of CONSIM’s control enrichment features

Although only an experimental implementation, the CON-
SIM prototype is a true conversational simulation language:
i.e. it provides simulation facilities while supporting mid-
execution editability of programs and data. Thus, CONSIM
offers an environment in which to assess the utility of conversa-
tional simulation, allowing exploration of the types of model
building possible with the new language.

In the following subsections the utility of some of CONSIM’s
control rich features are illustrated by excerpts from a scenario
of a model building session, given in more detail in Nelson
(1977). The model being developed is one of an automated car
wash installed at a service station. The example was suggested
by Birtwistle, Dahl, Myhrhang and Nygaard (1973), who
described the problem and developed a possible solution in
SIMULA.

The Computer Journal Volume 22 Number 2

3.1 User control over operation

CONSIM offers the user considerable control over operation
since the user, working at an interactive terminal, dynamically
determines what processing or actions are to be undertaken
by the system. Two operational modes are available: an
immediate mode in which the user’s directions are executed
upon receipt and a stored mode in which the user’s input
undergoes syntax analysis before being stored for later
execution upon user command. The modes may be intermixed
as appropriate to carry out the desired processing.

Typically the user begins constructing a model by entering
source statements for later execution. If an error is identified,
the system returns an appropriate message and the user may
either edit the source just entered to make appropriate correc-
tions or may elect to re-enter that increment of source. In
either case, the new statement is reanalysed for additional
syntax errors. This process is illustrated in the following
dialogue. (System messages will be shown in lower case with
user responses in upper case).

initialisation complete

ready for next task

$CAR 9%, NEW-TASK

consim source file name?

WASHER .CSM

car command ?

% SOURCE

next increment number ?

2

enter increment ending with #

PROCESS CAR; #

next increment number ?

4

enter increment ending with #

IF LOUNGE.CARDINAL GT 0 THEN INVOKE
GETWASHER;

syntax error in increment with stack of

@@@ ifcl unlabst;

car command ?

% SHOW 4

4 if lounge.cardinal gt O then invoke getwasher;

car command ?

7 FIX\R;\R FI; 4\

if lounge .cardinal gt O then invoke getwasher fi;#

car command ?

In this excerpt the user opened a new task named CAR ands
began supplying CONSIM source, which is stored in a discghf,
file, with the user named WASHER .CSM. During the syntaxo
analysis of increment number 4, an error was identified..
The prototype system does not provide comprehensive;?
diagnostics: syntax errors are simply noted and currentS.
contents of the syntax stack are printed. In this example theX
user failed to enter the fi required by CONSIM’s syntaxs
to mark the end of the conditional statement. The error was
corrected using CONSIM’s edit command fix. The “9”
which the user supplied preceding each command indicates
that the instruction is to be executed upon receipt.

Once the model is sketched out, the user may request its
execution by issuing the run command.

Aq 171.062¥/6 1 L/2/Zz/3191uE/|ulod/woo dno-olwapede//:sdiy Woly papeojumoq

car command ?
o

% RUN
consim running
car command ?

Upon receipt of this command the CONSIM system completes
a global syntax analysis on the stored statements (e.g. to
match begin/ends, etc.) and initiates their interpretation. While
the execution is in progress the user may interrupt by entering
any command at any time. If the interrupting command calls

121

for interrogation and/or updating the current data or program,
interpretation of that task must be explicitly continued, either
from the point of interruption or some other user selected
location. If the interrupting command indicates a change in
the focus of attention to some other task, then execution of
the CAR task will be automatically continued in a ‘background’
mode of execution.

The ability to perform mid-execution editing is especially
useful in debugging and testing a model. When an error is
identified (either by the user during model interrogation or
by the system during execution), the user can edit the source
program and, if necessary, modify data values. Execution can
be continued, thus saving the time and effort which would
be required to start the run over from the beginning. This
process is illustrated in Section 3.3.

3.2 The user as a control entity

Besides controlling the overall operation of the CONSIM
system, the user can be included in the model itself through a
mechanism called the user portrayed process. When such a
process is called for execution, interpretation of the model
is temporarily suspended pending a continue command from
the user. In the interim, the user has the full facilities of the
CONSIM system at his or her disposal. The user may, for
example, enter data, execute CONSIM code in the immediate
mode to perform calculations or schedule processes, enter
additional source for stored mode execution, or modify the
model. Specification of these operations in the user portrayed
process is facilitated and simplified by CONSIM’s uniform
language design.

Via user portrayed processes the model builder can direct
processing for sections which have not been coded or for special
testing and debugging. Through this mechanism the user may
‘substitute’ for uncoded portions of the model, either tem-
porarily during model construction or permanently as a
means of including the user within the model.

In the car wash scenario this facility may be used to allow the
user to personally simulate the arrival of cars and their entry
into the waiting line. The CONSIM source code for the
generator routine is shown below:

20 process cargen; #

21 begin label loop; #

22 loop: immediate; #

23 go to loop end; #
When this CARGEN process is called for execution, interpre-
tation will be suspended at the immediate instruction in
increment 22 and the user will be given control. Any valid
instruction supplied by the user at that time is then executed
as shown below:

incr 22
enter statement for immediate execution ending with #
BEGIN REF C;
C: = NEW CAR;
C INTO WAITLINE;
ACTIVATE C;
HOLD 3
END #

Note that the immediate instructions included a scheduling
statement hold which in effect causes this generator process
to be rescheduled in three time units. The user may continue
in this way, rescheduling the CARGEN process to occur when-
ever a car arrival is to be simulated. At some point the user
may replace this user portrayed process with code, typically
using pscudorandom numbers with a suitable distribution
to simulate the arrival pattern.

Besides heing useful in special testing of the debugging
operations the user portrayed process is useful in providing

122

for error processing within the model itself. By making certain
error routines user portrayed, the model builder can dynamic-
ally determine the appropriate recovery procedure.

On a more permanent basis, user portrayed processes provide
a means of actually including the user within the model,
allowing certain portions of the simulated system to be
reserved for dynamic modelling by the user. This is especially
appropriate for sections of the model which require logically
complex algorithms to provide for all possibilities, but which
can be easily decided during execution by the user.

3.3 New styles of programming
In order to explore the types of programming possible in the
new conversational environment, a number of test programs
have been written and executed, using the prototype imple-
mentation. Although this phase of the research is by no means
complete, this initial experience has shown that conversational
simulation makes possible new techniques and styles of
programming. Some of these are summarised below.

Examples in previous subsections of this paper have illustratedy
the highly interactive nature of the user/system interface3
We have shown how features such as CONSIM’s incrementaR
syntax analysis and edit capabilities can facilitate the initia@
construction of programs. User portrayed processes can bes
used in program construction and testing as well as a means o8
including the user in the program to provide dynamic controE
decisions. We have also noted how the multlple task featuréﬁ
enables the user to pursue different. programming actlvmesO
all under a single computer job. Q

Perhaps the most unique and powerful feature offered by3
CONSIM is its mid-execution edit facility. This is espec1allyo
useful in program debugging since, when an error is ldentlﬁedU
both the code and program data can be corrected, as appro-%
priate, and execution continued without restarting the programo
from its beginning.

The utility of this facility can be illustrated by a furthef’
excerpt from the car wash scenario described earlier. Afterg
the model has been executing for some time the user interroo
gates the model’s statistics being maintained by the car washS
program and discovers that a variable which is supposed to>
contain maximum queue length has an incorrect value. Theo
source of the error is identified as a missing statement in them
program. This statement may be added to the a.pproprlateO
increment as shown below:

% SHOW 3

3 glength: = waitline.cardinal; #

% FIX\#\IF MAXLENGTH LT QLENGTH THEN

MAXLENGTH: = QLENGTH FI; #\
3 glength: = waitline.cardinal; if maxlength It qlength then
maxlength: = glength fi;#

car command?
The fix command corrected the error in the source, auto-
matically updating increment 3’s module of intermediate code.
This solves the problem for the future but the current value
of MAXLENGTH is incorrect. Rather than reinitiating the
model from the beginning, the user may update the value
using the immediate command.

% IMMEDIATE

enter statement for immediate execution ending with #

BEGIN MAXLENGTH := | END #

car command ?

% CONTINUE

Once both code and data have been corrected the user is
ready to CONTINUE execution. In the above example execu-
tion would continue from the point of interruption although
the user could have specified some other resumption point.
Although the error illustrated above was simple, in a non-

¥20¢ I!JdV 61 uojsenb Aq |

The Computer Journal Volume 22 Number 2

conversational environment the user would have had to
recompile the source and restart the model from the beginning
in addition to correcting the statement. Restarting a model
as small as the car wash represents only a minor inconvenience
to the user but in larger and more complex simulation models
significant amounts of user and computer time may be re-
quired for initialisation and achievement of steady state.
With such models the mid-execution editability provided by a
conversational environment can offer tremendous savings in
both user and computer time.

CONSIM’s mid-execution editing facility can also be used in
modifying models during production phases. Unlike the
debugging use, where mid-execution editing corrects a ‘mis-
take’ in a model, this second type of editing is planned as part
of the model study. For example, a model of an assembly
line may be constructed to be used to study the effect of
upgrading one machine on the line with a newer version which
contains more sophisticated quality control logic. In a con-
versational environment, such as that provided by CONSIM,
the upgrade to the machine can be effected by allowing the
user the halt the model at the ‘time’ of the upgrade, change the
code which simulates the machine to conform to its modified
specifications, and then continue the model’s execution. Since
only the internal configuration of the model for the affected
machine is changed, the dynamic interrelationships among
the components of the model are left intact: any queues,
pending events, etc. are undisturbed by the changes.

Because of CONSIM’s uniform language concept, modifica-

tions to executing models can be done in the immediate mode

(as described above) or in stored mode. If the user, for example,
wanted to study the effect of the machine upgrade under
varying backlog conditions, he or she could write a CONSIM
process which would modify the code for the machine to be
upgraded (e.g. using fix in stored mode) and schedule this
process to occur at the desired time of the machine
modification.

The user, of course, is not limited in the number of either
immediate or stored mode changes which he or she can make
to an executing model. As a result in the CONSIM environ-
ment the model itself may be dynamic, undergoing various
edits in the course of its execution. This aspect of conversa-
tional simulation is especially appealing in the use of simula-
tion models in perturbation studies, where models are executed
repeatedly with varying inputs. In the conversational environ-
ment more than just the inputs may be changed: the models
themselves may be ‘perturbed’.

Other new styles of programming are possible in this conversa-
tional simulation system. For example, since CONSIM
supports execution of incomplete programs, it provides a good
environment in which to apply some of the techniques of
structured programming. One such technique, top-down model
construction, was recently advocated by Chattergy and
Pooch (1977). They note that top-down construction allows
the integration of simulation program design and verification,
resulting in better error detection and simplification of verifica-
tion problems. In CONSIM the portions of the model not
yet specified in detail can either be handled with ‘program
stubs or dummy subroutines’ as described by Chattergy and
Pooch (1977) or can simply be left undefined, allowing the user
to model dynamically the activity to the desired level of detail
at execution time via CONSIM’s user portrayed facility.

4. The prototype implementation

The implementation of the conversational simulation language
not only combines the problems of its conversational and
simulation ancestors, but introduces some additional com-
plexities inherent to the combination. A major goal of this
research was to study these problems and explore their possible

The Computer Journal Volume 22 Number 2

solutions. To facilitate this study an implementation language
for the prototype was needed which was high level and rich
in control and data structuring features. SIMULA 67 met these
criteria. The availability of the DEC system-10 implementation
(version 3) of SIMULA for use in this study further enhanced
SIMULA’s appeal. Therefore, SIMULA was used as both
the model for CONSIM’s syntax and as the implementation
language for the prototype system.

4.1 Overview of system structure

CONSIM’s implementation is arranged into five major
components, each having a logically separate function. These
divisions are intended to remain invisible to the user and were
established to facilitate experimentation with implementation
approaches in each of the areas. The five components of
CONSIM’s implementation are:

(@) the user input receiver which accepts all messages from
the user, discriminates whether they are user commands,
source entry, or data for an executing model and initiates
appropriate system action

(b) the user command processor which provides the requlred:
processing for each of the user commands

(c) the source analyser which accepts the CONSIM source(_g-h
statements, performs a lexical scan and syntax analysisS
and produces a post-syntactic program representation 3

(d) the interpreter which, using the intermediate form produced8
by the source analyser, effects the appropriate semantlcm
processing, thus ‘executing’ the program 8

(e) the system driver which monitors overall operation of the3
system, executing an ‘idle-loop’ when no other actions arf:ro
pending.

O
o

peoj|

[Woo/woo:dn

4.2 Use of coroutines
Each of CONSIM’s components is implemented by one or3
more coroutines (SIMULA class instances). Like the block\
and procedure concepts, the coroutine concept facilitates=.
modularisation by allowing the definition of local vanablcsa
and code to handle specific subalgorithms. As a control module,.\,
however, the coroutine notion offers two additional advantages®
over those of block and procedure. First, variables local to as
coroutine retain their values between reactivations and,
secondly, upon coroutine reactivation control continues fromS
the point of suspension rather than at the beginning of theh
module. <
The retention of local variable values between actlvatlonsC
enables coroutines to retain local state information or prc-(;
viously determined results, reserving global structures exclu—
sively for common data accessible from all components.©
This differs from a system utlhsmg procedures as the primaryc
unit of program modularisation, in which case global structures.\J
must be used to retain values and state information betweenm
activations. This facility, coupled with the ability to resume
control at the point of suspension, may be used to implement
two types of coroutine control:

(a) parallel in which coroutines operate independently,
logically separated from the processing of other coroutines
and

(b) co-ordinated in which two or more coroutines each imple-
menting partial algorithms ‘co-operate’ on required
processing.

Since both parallel and co-ordinated relationships exist
among the components of CONSIM, the coroutine construct
was a logical choice as a basic control module and has been
used extensively in the prototype implementation. Separate
coroutines were constructed for the five components with
appropriately defined inter-routine control paths. The actual

123

sequencing of control among the coroutines is dynamically
determined by user provided commands.

Several benefits were realised by the extensive use of co-
routines in the prototype implementation. First, the high level
of modularity among the modules enabled faster construction
and debugging of the code. It also encouraged experimentation
since modules representing differentimplementation approaches
could be developed and linked together to form various
CONSIM ‘systems’. A further advantage of implementing
the components as coroutines was that it reduced time and
ordering constraints required on user responses and requests,
since the components issuing the request for user input could
simply be suspended at the point of the message until the
required response was received from the user. Upon receipt
of a response the appropriate coroutine was reactivated to
continue processing at the point of the request.

The use of coroutines in the prototype system also greatly
facilitated the implementation of CONSIM’s multiple tasking
feature. Multiple tasking is supported by creating multiple
instances of the command processor component, each respons-
ible for a particular task. It first appeared that a separate
instance of the source analyser would also be required for
each task. However, by using SIMULA’s remote accessing to
associate all data of a particular task with the appropriate
instance of the command processor, one source analyser is
sufficient. This means, for example, that as the intermediate
form of each increment is generated by the syntax analyser it is
remotely stored in the appropriate command processor. Thus
only one instance of the syntax analyser is required for all
tasks. Because all task-specific data is associated with the
command processor, the user may switch among tasks (utilising
their assigned identifiers), performing syntactical analysis
without destroying or overwriting the data of one task with
that of another.

4.3 Interpretive control self-modelling

The dual use of SIMULA as CONSIM’s syntax model and as
its implementation language allowed a strategy called interpret-
ive control self-modelling (ICSM) to be used in the implementa-
tion of the interpreter component (Nelson and Lindstrom,
1977). ICSM is achieved when a language has its control
features ‘reflexively’ expressed in a self-interpreter. That is,
recursion in the subject program is implemented via recursion
in the interpreter, coroutines via coroutines, etc. The foremost
example of this effect is the definition of LISP in terms of
EVAL, a form evaluation function. The primary advantage
of ICSM as an implementation strategy is that it allows
extensive reuse of the base language implementation (i.e.
SIMULA), thus expediously producing a concise and lucid
interpreter.

Following the ICSM strategy, the CONSIM interpreter is
organised so that its run time control state evolves in a manner
directly parallel that evolving in the CONSIM subject pro-
gram. Control simple features are administered by local control
in the interpreter while control rich features are administered
by the corresponding control action on an interpreter instance
acting as a surrogate for its subject program control module.
Thus, an interpreter instance is created for each CONSIM
procedure, coroutine, and process being ‘executed’, as well as
for CONSIM’s main program. These interpreter instances
then enter and leave SIMULA’s run time operating chain in a
manner paralleling that of the CONSIM program being
interpreted.

This strategy requires multiple instances of the interpreter
which can assume different modes of usage depending on the
CONSIM subject program control events. It first appeared
that four slightly different, but highly redundant, interpreter
definitions would be required for processing the main program,

124

procedures, coroutines and processes because of the variations
in the semantic restrictions of each of these units (for example,
detach is valid only in class bodies). The prefixing feature of
SIMULA, however, facilitated a solution to this problem.

A basic interpreter definition was written as a class declara-
tion called INTERP for one control environment, namely
for procedure activations. This interpreter processes the
intermediate form of the CONSIM source via a switch state-
ment, branching to appropriate semantic processing routines
each of which end with a goto back to the beginning of the
loop. Although INTERP is actually a SIMULA class, it is
coded so that it behaves like a procedure. The label for each
semantic routine which is unique to the procedure environment
is declared to be virtual. Definitions of interpreters for the other
control environments (COINTERP for CONSIM classes and
PINTERP for CONSIM processes) are then declared by using
INTERP as a prefix and supplying appropriate redefinitions
of the virtual labels of the semantic routines as needed.
CONSIM’s main program is interpreted by an INTERP-
prefixed block within the main program of the implementation.
A very brief skeleton of the interpreter structure, illustrating
the redefinition of the semantic routine for CONSIM’s
detach (EX37), is shown below:

SIMULATION begin . . . ;
class INTERP (. . .);
virtual: label EX9, . .., EX37,...;
begin . . . ;
switch SWGO: = EXI, EX2, ..., EX37, ..., EX128;
comment sequential interpreter cycle;
MAINLOOP: NEXTCODE;
goto SWGO [TR2]; ... ;
comment DETACH illegal unless in a coroutine;
EX37: ERROR (7, 1);
goto MAINLOOP:

end INTERP;
INTERP class COINTERP;

begin . . . ;
comment DETACH for coroutines;

EX37: CORTN.SELF:—none;
detach;
CORTN.SELF:—this COINTERP;
goto MAINLOOP;

end COINTERP;
INTERP class PINTERP;
begin . . . ;
comment DETACH for processes;
EX37: CORTN.PSELF :—none;
resume (MAIN);
goto MAINLOOP;

end PINTERP;
com;llent main program;
INTERP (. . .) begin

' 'cm;nment main program may not detach;
EX37: ERROR (7, 3);
goto MAINLOOP;

;31.1('1 ,prcﬁxed block;
end

Although the reuse of implementation through ICSM did
shorten the time required to construct and debug the system
and reduce the size of the prototype implementation (the
interpreter, for example, is only 735 lines of SIMULA code

The Computer Journal Volume 22 Number 2

202 udy 61 U0 1s8n6 A 1106ZH/61 L/2/22/310n4e/|ufoo/Wwoo"dno-oiWwepeoe//:Sdy Wo.y papeojumod

including generous comments), the resulting system is not very
efficient in terms of memory requirements and execution time.
For a full user oriented system some more efficient implementa-
tion techniques are required. The ICSM strategy, however,
was found to be a good choice for the prototype system since
it provided an environment which fostered experimentation
and enhanced system clarity.

5, Results, conclusions and future research
Specific results obtained from the CONSIM project include
the following:

(@) a running prototype system illustrating that conversational
control and simulation control types can be coherently
combined into a single usable system

(b) a non-trivial demonstration that ICSM can be used to
express concisely and expediously a source language
interpreter

(¢) a further demonstration that SIMULA 67, in particular,
has sufficient control richness to support both ICSM and
control extensions appropriate to conversational computing
and

(d) representative - examples of new techniques for model
development made possible in this new control domain.

Based on these findings and the insight gained from this
research experience we have reached several conclusions.
For example, combining other high level control types such as
back-tracking and simulation appears a promising area of
research. We anticipate that the major implementation prob-
lems which would be encountered in such projects would stem
from the complexity of the internal control linkages required
to support the control richness offered to the user.

Secondly, based on our successful use of ICSM in the
CONSIM project, we feel that it can be a useful technique in
other language experimentation studies. When experimenting
with high level language forms, tools are needed which can
help make the complexity manageable. We found ICSM to be
such a tool since it allowed us to make extensive use of the
control features of the underlying language (in our case
SIMULA), thus enabling us to focus our attention on the
extension to the control forms rather than the implementation
of those control forms already included in SIMULA.

Our experiences further suggest that SIMULA should be
given serious consideration as an implementation and experi-
mentation language. We found SIMULA to be a well designed
language, offering a richness in both control and data structur-
ing facilities. The implementation of SIMULA which we used
was remarkably error-free and its checkout package, called
SIMDDT, was useful both in debugging the code and in
monitoring the operation of the CONSIM system.

Based on our experiences in implementing and using CONSIM
we feel that the following topics need further study pre-
paratory to beginning a full implementation of a conversational
simulation language:

1. User guidance

To be of maximum use systems as sophisticated as that re-
quired to support conversational simulation need to provide
the user with some form of guidance in system use and opera-
tion. For example, consideration should be given to providing
facilities for the user such as an on-demand menu of available
options; warnings during syntax analysis of possible semantic
errors (as a means of reducing run time errors); and suggestions
and warnings on resumption points following user interrupts.

2. System monitoring
The system must provide the user with a comprehensive
monitoring facility so that he or she may keep track of the

The Computer Journal Volume 22 Number 2

status of operation. The work of Swinehart (1974) offers
guidelines here.

3. System state saving

A mechanism for saving the state of the system is needed
which can be used to ‘reset’ the system to a previous state of
operation. Such a facility is useful for continuing work at one
session from that done at a previous session and in implement-
ing forget and backup features for the user.

4. Compilation of stable programs
Methods, such as incremental compilation, should be explored
for use in optimising processing of stable programs.

5. New programming styles and techniques

Further work is needed in exploring the programming styles
and techniques possible in the conversational simulation
environment for both simulation and non-simulation use.
CONSIM’s multiple tasking facility appears to offer particularly 5

enticing opportunities. g
3

Appendix BNF specification of CONSIM 8

Increment syntax g

1 <block> 33= <bh> <cpt> ! o

2 <blkhd> <cpt> 2

3 <bh> t3= BEGIN =

4 <blkhd> 33= <bh> <decl> ! @

5 <blkhd> <decl> N

6 <decl> s3= LABEL IDENT 3 ! 8

7 INTEGER IDENT 3 !)

8 REF IDENT & ! 3

9 <cdegl> 3 ! o

10 QUEUE IDENT 5

1 <cdecl> t3= <cohead> 3 <block> ! 38

12 <coparam> § <block> 3

13 <cohead> t3= COROUTINE IDENT ! 8

14 PROCESS IDENT 3.

15 <clhead> t3= <fplist>] 3 2

16 <fplist> :1= <cohead> [IDENT ! =1

17 <fplist> , IDENT o

18 <coparam> t3= <clhead> INTEGER IDENT !

19 <clhead> REF IDENT ! S

20 <coparam> § INTEGER IDENT ! =

21 <coparam> § REF IDENT ©

22 <cpt> t3= <ct> <stmt> END ! S

23 <stmt> END 8

24 <ct> 2= <stmt> ;5 ! N

25 <ct> <stmt> 3 o

26 <stmt> st= <unlabst> ! N

27 <labl> <unlabst> ! s

23 <cmd> ! @

29 <labl> <cmd> S

30 <labl> st= IDENT 3 2

31 <unlabst> 13= <assign> ! >

32 <condl> ! =

33 GOTO IDENT ! N

34 READ IDENT ! S

35 PRINT <expl> ! ®

36 <block> !

37 DETACH !

33 RESUME IDENT !

3y <sub> !

40 <subp> !

41 <sched> !

42 IDENT INTO IDENT !

43 IDENT OUT

44 <assign> t3= IDENT t= <expl> !

45 IDENT 3= <RASS> !

46 IDENT t= <rp> !

47 IDENT 3= <locref> !

48 IDENT 3= <qref>

49 <rp> 3= <rass> <aplist> 1

50 <aplist> 3= [<exp3> !

51 [<locref> !

52 [IDENT !

53 <aplist> , <exp3> !

54 <aplist> , <locref> !

125

55 <aplist> , IDENT ‘ 99 <cmd2> 33= RUN !

56 <sub> s3= INVOKE IDENT 100 HALT !

57 <subp> $31= <sUb> <aplist> 1] 101 CONTINUE !

58 <rass> t3= NEW IDENT : 102 CONTINUE CONST !

59 <locref> s$3= THIS IDENT ! 103 FIX <TXTSTR> !

60 CURRENT 104 FINISHED !

61 <qref> t3= IDENT . FIRST 105 STOP !

62 <expl> 31t= <expl> + <exp2> ! 106 ST ATUS

63 <expl> - <exp2> ! 107 <txtstr> 33= TXT

64 - <exp2> ! 108 <ch> ts= <coparam> § !

65 <exp2> 109 <cohead> 3

66 <exp2> t11= <exp2> * <exp3> ! 110 <rtl> s3= @ <block> # !

67 <exp2> / <exp3> ! 1 @ <block> i # !

68 <exp3> ! 12 @ <blkhd> # !

69 IDENT 113 @ <blkhd> <ct> # !

70 <exp3> t#= CONST ! 114 @ <bh> <ct> #

71 (<expl>) ! 115 <rt2> 331= @ ¢ct> # !

72 TIME ! 116 a <cpt> # !

13 IDENT . CARDINAL 117 Q@ <cpt> & !

74 <condl> 833= <ifcl> <unlabst> FI ! 118 @ END # !

75 <ifthel> <unlabst> FI 119 @ END 3 #

76 <ifcl> s3= [F <relexp> THEN 120 <rt3> st= @ <ch> # !

11 <ifthel> t3= <ifcl> <unlabst> ELSE 121 @ <bh> <ch> # !

18 <relexp> 11= <expl> EQ <expl> ! 122 @ <blkhd> <ch> # o

79 <expl> NE <expl> ! 123 <rt4> 311= @ <decl> # ! g

80 <expl> GT <expl> ! 124 a <decl> <ct> # 2

81 <expl> LT <expl> 125 <root> 313= @ <rtli> # !]

82 <sched> $3= <act> ! 126 @ <rt2> # ! 2

83 <act> AT <exp3> ! 127 @ <rt3> # ! =

84 HOLD <exp3> ! 128 Q@ <rt4> # S

85 PASSIV ATE) =

86 <act> t3= ACTIVATE IDENT ! Global syntax g

87 ACTIVATE CURRENT ! =

83 ACTIVATE <rass> ! | <blk> 3t= <bhead> <ctail> 9

89 ACTIVATE <rp> 2 <bhead> t3= BLKHD ! 3

90 <cmd> 3= <cmdl> ! 3 BH ! g

9l <cmd2> 4 <bhead> DECL ! 2

92 <cmdl> 33= NEWN_TASK ! 5 <bhead> <cdecl> el

93 COMPILE ! 6 <cdecl> ss= CH BLOCK i ! o

94 SOURCE ! 1 CH <blk> 3 8

95 SHOW ¢ 8 <cstmt> s1= CT ! 3

96 SHOW CONST ! 9 <cstmt> CT 8

97 DELETE CONST ! 10 <ctail> s3= CPT ! %

98 IMMEDI ATE R <cstmt> CPT ! =
12 <cstmt> END 2
13 <pgm> 33= @ BLOCK # ! S
14 @ <blk> # E

References N

BIRTWISTLE, G. M., DAHL, O. J., MYHRHAUG, B., and NYGAARD, K. (1973). SIMULA BEGIN, Auerbach Publishers Inc., Philadelphia, Pa. —

CHATTERGY, R., and PoocH, U. W. (1977). Integrated Design and Verification of Simulation Programs, Computer, Vol. 10, No. 4, pp. 40-45§

DaHL, O. J., MYHRHAUG, B., and NYGAARD, K. (1968). SIMULA 67: Common Base Language, Norwegian Computing Center, Forskringss
veien 1B, Oslo 3, Norway. . <

Jones, M. M. (1963). Incremental Simulation on a Time-Shared Computer, (Ph.D. Thesis) MIT MAC Report TR-48. o

Kiviat, P. (1974). Requirements for an Interactive Modelling and Simulation System, Multi-Access Computing: Modern Research and,
Requirements (ed. Paul H. Rosenthal and R. K. Mish), Hayden Book Co., Rochelle Park, NJ., pp. 53-61. &

LeMoN, M. J., LINDSTROM, G., and SOFFA, MARY Lou. (1977). Control Separation in Programming Languages, 1977 ACM Annual Conf-
Proceedings, pp. 496-501.

LinpsTROM, G. E. (1973). Prospects for Conversational Simulation, 4th Annual Pittsburgh Conference on Modeling and Simulation.

LiNDSTROM, G. (1977a). Final Technical Report: Control Definition in Programming Languages, Grant no. DCR73-03441 A01 from Nationaf
Science Foundation to University of Pittsburgh. ‘

LINDSTROM, G. (1977b). CACTUS: A LISP Self-Extension with Generalized Control, Dept. of Computer Science, Univ. of Utah, 41 pp.@
being revised for journal submission. &

LiNDSTROM, G., and NELSON, SALLIE S. (1976). Implementing Simulation Languages Through Simulation Language Programming, Proc. 7th
Annual Pittsburgh Conf. on Modeling and Simulation, pp. 249-253; expanded version available as Tech. Report 76-3, Dept. of Computer
Science, University of Pittsburgh, 20 pp.

NELSON, SALLIE S. (1977). Control Issues in the Development of Conversational Simulation Language, (Ph.D. Thesis) University of Pitts-
burgh, Pittsburgh, Pa., USA.

NELSON, SALLIE S. (1978). Conversational Simulation: A Control Enriched Environment for Model Building, Spring COMPCON 78 Digest.

NELSON, SALLIE S., and LiNDsTROM, G. (1977). CONSIM: A Conversational Simulation Language Implemented Through Interpretive
Control Self-Modeling, Technical Report UUCS-77106, University of Utah, Salt Lake City, Utah, USA, submitted for journal publica-
tion.

SoFFA, MARY Lou, and LINDSTROM, G. (1976). Describing and Testing Generalized Control Regimes Through Implementation Modeling,
Tech. Report 76-11, Dept. of Computer Science, Univ. of Pittsburgh; being revised for journal submission.

SoFFA, MARY Lou, and LinsTrROM, G. (1977). Analytical Properties of Generalized Coroutines, Tech. Report 76-10, Dept. of Computer
Science, Univ. of Pittsburgh, 35 pp.; submitted for journal publication. _

STRAUSS, D. (1976). Data Flow as a Run-Time Control Discipline, Proc. Conf. on Information Sciences and Systems, Johns Hopkins Univ.
available as Tech. Report 76-9, Dept. of Computer Science, Univ. of Pittsburgh, 54 pp.

SWINEHART, D. C. (1974). COPILOT: A Multiple Process Approach to Interactive Programming Systems, (Ph.D. Thesis) Stanford
University, Palo Alto, California.

14

6l uo

1

126 The Computer Journal Volume 22 Number 2

