Cn implementing semaphores with sets

J. L. Keedy*, K. Ramamohanarao and J. Rosenberg

Department of Computer Science, Monash University, Clayton, Victoria 3168, Australia

It is proposed that semaphores should in some circumstances be extended by associating with each
semaphore, in addition to the usual integer, a set (bit string). There are two separate uses for this
set, which are considered separately and which can be implemented independently of each other.
The first, the available resources set, has a bit identifying each resource controlled by the sema-
phore, which will indicate when the resource is free. When no resources are free the set may then be
used to identify those processes waiting on a resource. The advantages and disadvantages of both
sets are discussed, including the possibility of eliminating MUTEX semaphores from situations
such as producer/consumer activities, and the possibility of entirely ‘automating’ (i.e. controlling by
hardware semaphore instructions) the synchronisation and scheduling of processes.

(Received February 1977)

1. Introduction

This paper is concerned primarily with the efficient implementa-
tion of semaphores, in particular the general semaphore
(Dijkstra, 1968a; 1968b; 1972). The method proposed is to
supplement the semaphore integer with a set (i.e. a bit string
in which each bit position represents the absence (0) or
presence (1) of a member of the set). The set will be referred
to as SEMSET, and may be thought of as occupying one or
more words adjacent to the integer SEMINT.

Just as SEMINT is usually interpreted as holding a count
of available resources (when positive) and a count of processes
waiting to acquire a resource (when negative), so SEMSET
potentially represents the corresponding set of available
resources or the set of waiting processes.t The arguments for
and against implementing these two sets are unrelated, and
are discussed separately. The result is that in a particular
environment it might be preferable it implement neither,
one or both sets, as we shall see.

2. Typical semaphore implementation

The standard method of implementing the semaphore primi-
tives P and ¥V is as operating system routines which execute
non-interruptably in the innermost level (or Kernel) of the
system, usually as part of the process scheduler. As Parnas
(1975) recently pointed out, the code of such primitives should
be small and quickly executed, and one should avoid the
temptation of building higher level abstractions of semaphores
into this level of the system. As the discussion of the waiting
process set unfolds, it will be observed that in favourable
environments the size and complexity of the non-interruptible
Kernel code required to achieve P and V operations reduces
considerably, and can even disappear entirely.

The means of achieving these gains is by suitable hardware
(or microcoded)} instructions. Some computers already
provide basic instructions which indivisibly increment and
decrement a main memory operand. For example, the
ICL2900 Series (Keedy, 1977) implements the following pair
of indivisible operations on (semaphore) integer operands:

INCT (corresponding to P) increments a main memory
location and sets a condition code on the result.§
TDEC (corresponding to V') sets a condition code to indicate2
the status of a main memory location then decrements
it.
Using these instructions P and V can become in-line macros=
in the users’ code (Figs. 1 and 2) provided that the Kernel3
supports a commutative event system.|
Note that in this implementation of P and V the processors
need not be non-interruptible except whilst executing INCT/S
TDEC in the hardware, or within the event system. But theO
main advantages of this implementation are that (@) in ao
considerable number of cases the event system will not beg
called, thus eliminated the overheads associated with super-3
visor calls; and (b) the semaphore integer resides in pageableO
memory allocated to the user rather than in locked-downs
Kernel memory.

apeojumoq

wo.

Qpeode//.

3. Resource sets

3.1 Dijkstra’s General Semaphore
The elegance of Dijkstra’s general semaphore as a mechamsmb
for handling the exclusive allocation of sets of equlvalentb
resources, such as the use of a bounded buffer by a co-operat1ng<9
community of producers and consumers (Fig. 3), especiallys
when compared with previous synchronising attempts (cf»<
Dl_]kstra 1968a), has lulled us into accepting a major 1ncon-
venience: the intrusion of an additional binary semaphorem

Lig/ez/ernie)

INCT (SEM); .
IF (CONDITION CODE INDICATES NO FREE
RESOURCES) THEN suspend on event (semevent);

Fig. 1 The P operation as an in-line macro

20z Iudy 6 U0}

TDEC (SEM);
IF (CONDITION CODE INDICATES WAITING
PROCESSES) THEN cause event (semevent);

Fig. 2 The V operation as an in-line macro

*At Technische Hochschule Darmstadt, Institut fiir Praktische Informatik, Fachbereich 20, 61 Darmstadt, Steubenplatz 12, West Germany,

until May 1979.

tNote that SEMINT can theoretically be replaced by a Boolean variable indicating which set is represented, but in practice the integer has

several uses (e.g. it contains a record of the current set size).

1If these means are not available then non-interruptible software routines (typically in the Kernel) can be made to simulate the hardware

semaphore set operations.

§In ICL2900 semaphores, positive values represent counts of waiting processes, and negative values count available resources.
9In a commutative event system, cause event (x) + suspend on event (x) = suspend on event (x) + cause event (x), i.e. m for an
event channel (unless empty) contains either a record of causes or a record of interested processes; each event releases one waiting process,
and the order in which they occur is immaterial. For the problems associated with non-commutative event systems, see Dijkstra (1972), p. 81.

146

The Computer Journal Volume 22 Number 2

Producer protocol Consumer protocol
P (EMPTY); P (FULL);

P (MUTEX); P (MUTEX);

add a portion to the buffer; take a portion from the buffer;
V (FULL); V (EMPTY);

V (MUTEX); V (MUTEX);

Fig. 3 Dijkstra’s solution to the bounded buffer problem
P (PRINTER);

P (MUTEX);

use the printer;

V (PRINTER);

V (MUTEX);

Fig. 4 An inadequate solution for allocating printers

P (PRINTER);

P (MUTEX);

find which printer;

V (MUTEX);

use the printer;

P (MUTEX);

note which printer is released;

V (PRINTER);

V (MUTEX);

Fig. 5 A correct solution for allocating printers
Producer protocol Consumer protocol
RP (EMPTY, x); RP (FULL, y);

add portion to buffer area x; take portion from buffer area y;
RV (FULL, x); RV (EMPTY, y);

Fig. 6 The bounded buffer solution using resource sets

RP (PRINTER, Z);
user printer Z ;
RV (PRINTER, Z);

Fig. 7 Allocating printers using resource sets

(usually known as MUTEX, mutual exclusion). It is incon-
venient because its use is not intuitively obvious in most
cases and it is therefore likely to be a source of errors. For
example, an unsuspecting programmer might ‘deduce’ from
Fig. 3 that a good solution for allocating printers to processes
is that shown in Fig. 4, and he will be amazed that at any
instance in time only one printer is active. Hopefully he will
modify his algorithm as illustrated by Fig. 5. He might also
sequence the P operations incorrectly. (Fortunately the sequen-
cing of V operations in the example provided is irrelevant, but
will he realise this?)

The use of MUTEX in these algorithms is inescapable unless
the semaphore operations are upgraded such that (@) P returns
an identifier indicating which resource has been allocated
(rather than merely that a resource has been allocated, making
it necessary to have exclusive access to state variables in order
to determine the identity of the resource) and (b) V receives
the identity of the freed resource. Given a new set of semaphore
macros RP (semaphore identity, resource acquired) and RV
(semaphore identity, resource freed) then the MUTEX
semaphore can be eliminated (Figs. 6 and 7), with the added
bonus, in the producer/consumer environment, of increased
concurrency (which could have been achieved otherwise by
additional use of MUTEX). However, such an extension to P
and V operations can only be justified if an efficient implementa-
tion is possible.

3.2 Implementation of resource sets
At this stage the use of a commutative event system is retained
but into the hardware semaphore instructions is introduced

The Computer Journal Volume 22 Number 2

manipulation of available resources set (in SEMSET) whenever
SEMINT > 0. Fig. 8 provides logical flowcharts of the new
hardware instructions RSETP and RSETV (corresponding
to RP and RV). The resource identity parameter is represented
by the symbol R (a dedicated register, a general purpose
register or a memory address) which holds the integer identity
of a resource (corresponding to the integer value of a bit
position in SEMSET, numbered from left to right or from
right to left, as proves convenient).

Typically, SEMINT is initialised to the number of available
resources (as with the general semaphore) and in SEMSET
a bit corresponding to the identity of each available resource
is set. Figs. 9 and 10 show how the macros RP and RV are
implemented, and at this stage it is assumed that a message
can be passed with each event, so that the value of R can be
passed when RSETP cannot immediately allocate a resource.*

>§ : x
éﬁm é’bm

RSETP RS
s $ o
o
2
2
O
o
(=%
@
a
Decrement Increment =
O
SEMINT SEMINT 3
=3
=
o
%)
<
[
Q
o
aQ
[
3
I3)
o
=
°
Q
O
>

Set condition t condition et condition Set condition]
Code= Code=Wait Code= Code-‘hkeulg
Allocated Deallocated| =.
et bit
Pelect and osition in
clear a bit EMSET
fin SEMSET ignified én

Store
selected bit
position into

® ©

Fig. 8 Set semaphore operations for resource allocation

7202 11dy 61 U0 }sanb Aq 901.627/9%|/z/2z/aPMEfu

RSETP (SEMINT, R);

IF (CONDITION CODE = WAIT)
THEN suspend on event (semevent, R);

Fig. 9 The resource allocating P macro

RSETV (SEMINT, R);
IF (CONDITION CODE = WAKEUP)
THEN cause event (semevent, R);

Fig. 10 The resource releasing ¥ macro

*In practice, the association of a message with an event is useful
independently of resource set semaphores, since (a) it allows passing
of status information associated with hardware interrupt events (e.g
I/0 terminations), and (b) it provides users with a message passing
facility. It is implemented in the ICL 2900 event system.

147

3.3 Advantages of implementing resource sets

The most important advantage of implementing resource set
semaphores is the improvement in protocols for allocating
resources. The elimination of MUTEX makes the resource
allocating protocols obvious and natural, thus rendering them
considerably less error-prone.

Eliminating MUTEX also results in greater system efficiency.
First, a semaphore and its corresponding queue of waiting
processes disappears entirely. Second, the associated super-
visor call overheads disappear. Third, the concurrency of the
system will potentially increase (e.g. with producers and
consumers), because it is often not worth the overheads of
increasing the use of MUTEX to reduce by a few instructions
the time that another process is locked out.

Finally, how do resource set semaphores affect the binary
semaphore? Apart from the elimination of MUTEX-type
binary semaphores, there are ‘more genuine’ cases where a
single resource is allocated, e.g. in a single printer system.
In such cases resource sets are not necessary, in that the identity
of the resource can be implied. But the careful programmer will
still prefer the RP and RV operations, just in case his installa-
tion buys a second printer! Even in the case of allocating
entries in-a global table, the RP and RV operations can offer
considerable advantages, if the entries can be considered
as equivalent resources (but a MUTEX semaphore may prove
to be useful for accessing, rather than allocating, table entries,
either on a one-per-table or one-per-entry basis).

3.4 Limitations of resource sets

A potential limitation of resource sets is the number of bits
available in SEMSET. For most practical purposes a single
computer word will suffice, because typically where large sets
of resources are being controlled, a more sophisticated (i.e.
software implemented) algorithm is required. } It is convenient
at this point to underline the fact that resource set semaphores
are primitive operations, and not a general panacea for all
resource allocation problems. Like general semaphores,
resource set semaphores do not solve deadlocks, nor resource
allocation by priority of waiting processes, nor can non-
equivalent resources be scheduled together.

A further limitation is discussed (and resolved) in the next
section.

3.5 The cyclic resource set semaphore

Previous discussion of RSETP ignored the criterion used for
allocating a free resource. An efficient algorithm might search
the bits in SEMSET from left to right (or right to left as
appropriate) starting at the first (or last) bit. Unfortunately
this has at least two side effects. First it imposes on resources
an allocation priority depending on the identity of each re-
source. Whilst this will usually have a neutral or beneficial
effect with software resources such as table entries (always
allocating entries in a fixed length table from the top may
reduce search times), for printers and other mechanical
devices it may have the effect of wearing out printer 0 long
before printer 1 or printer 2.}

Of more importance, the allocation algorithm is likely to
produce incorrect results where a single producer creates a
significant sequence of outputs to be consumed by a single
consumer (e.g. a user program produces print lines to be
printed by a printer process).

Both problems are solved by adding a pointer SEMSETPTR)
to the semaphore, which indicates where the next search of

te.g. allocation of cylinders on a disc pack usually requires the
capability of allocating as a unit several adjacent cylinders; equally,
the problem of allocating page frames of a main memory is primarily
a discard problem. ‘

1This is probably also true of most software schedulers.

148

SEMSET should begin (i.e. with the bit following that cor-
responding to the last resource allocated).

4. The waiting process set

Unlike the resource set, the waiting process set does not extend
the scope of P and V operations. It does, however, offer
possibilities for efficient implementation of semaphores in
certain scheduling environments.

4.1 Implementation of waiting process sets

Whenever SEMINT < 0, each bit in SEMSET represents a
unique process and its bit position in the set corresponds to its
process number. Processes appear in the set as a result of
suspensions during a P operation, and are removed from the
set by subsequent V operations. Logical flowcharts of the
appropriate hardware instructions WSETP and WSETV
are shown in Fig. 11. Resource set operations are ignored
in order to concentrate attention on waiting process sets,
but the symmetry with resource set handling is clear. For the
WSETP operation an input register W (which might be set
up by the calling process, or could be an implied system
register which holds the integer identity of the current process)
is assumed. This is used by the hardware if the calling process
is suspended. Correspondingly, the WSETV operation may
advise the caller that a certain process should be woken up,
in the W register (which in this case cannot be a system status
register, but may be a dedicated or general purpose register
or a reference to a main memory location).

Incorporation of these hardware instructions into user level P

WSETP WSETV
Decrement Increment
SEMINT SEMINT

X
EMINT 30?

Set Condition Set Conditioq [Set Condition Set Condition|

Code= Code=Wait Code= Code=Wakeup
Allocated Deallocated
Set bit Select and
position in lear a bit
SEMSET in SEMSET
signified b W
tore

Belected bit
position into
w

©

©
Fig. 11 Set semaphore operations for waiting processes

WSETP (SEMINT, W);
IF (CONDITION CODE = WAIT)
THEN suspend (W);

Fig. 12 An in-line macro for P using waiting process sets

WSETV (SEMINT, W),
IF (CONDITION CODE = WAKE UP)
THEN wake up (W);

Fig. 13 An in-line macro for V using waiting process sets

The Computer Journal Volume 22 Number 2

20z udy 61 U0 188n6 Aq 9016ZH/9% |/2/22/31014e/|ufoo/Wod"dno-oiWepeD.//:SARY WOy PAPEo|umoQ

and ¥V macros (Figs. 12 and 13) allows us to reduce the
previously necessary commutative event system into a straight-
forward process scheduling system which implements directives
to suspend and wake up processes.* It also must be com-
mutative in case an interrupt occurs between WSETP and the
subsequent suspend call. The appropriate mechanism is easy
to implement, being analogous to Dijkstra’s one-per-process
private semaphores (1968b).

4.2 Selecting a process from the waiting process set

As with the RSETP instruction (Section 3.5), the two selection
criteria which can feasibly be implemented are (a) to begin all
searches at one end of SEMSET, or (b) to maintain a cyclic
pointer (SEMSETPTR). Neither of these corresponds to the
FIFO queueing discipline usually associated with semaphores.
Searches of type (@) imply a fixed priority of processes, with
process numbers directly related to priority. Searches of type (b)
correspond neither to FIFO nor to priority queueing, but
ensure that where process numbers are arbitrarily assigned no
process is permanently disadvantaged by its process number,
and furthermore that the only queueing condition imposed by
Dijkstra (1972), viz. that ‘no process will be blocked in-
definitely’, is fulfilled.

Although the inability of the set implementation to provide
FIFO queueing is unfortunate, it should be remembered that
according to Dijkstra (1968b) it is undefined which process is
removed from the waiting list following a V operation.

4.3 Advantages of implementing waiting process sets

In addition to the efficiency gains resulting from implementing
P and V as in-line user macros (cf. Section 2), waiting process
sets are capable of enabling operating system designers to
replace a fairly complex event system by a more trivial process
scheduling system. This reduces the size -and complexity
of the Kernel, and allows the processor to spend less of its
time executing non-interruptably. In other words the result
will be, in Parnas’ terms (1975), a very primitive set of kernel
mechanisms.

4.4 Limitations of waiting process sets

Apart from the limited criteria available for selecting a process
from the waiting process set, the chief limitation of waiting
process set semaphores (like normal semaphores) is that they
genuinely are primitive operations. Thus, it is not easy to use
the hardware or process scheduling primitives to achieve
complex synchronising requirements (e.g. to suspend a process
on the union of several events, may be a timer interrupt or a
normal command or a break-in; or to allow a process to be
interrupted (to a nominated procedure) when an event occurs).

4.5 ‘Automatic’ scheduling

Assuming that either the priority or the cyclic selection algo-
rithm is acceptable, then it may be feasible to ‘automate’
process scheduling entirely if the process scheduler finds the
same criterion acceptable. In this case the WSETP and

WSETY instructions will also maintain on a system wide basis
a further set, the set of ready processes, which for convenience
is assumed to reside in a system register RP, and uses the same
selection criterion as that for selecting a process to wake up
on a WSETV operation (with a global cyclic pointer if
necessary).

Each WSETP and WSETV instruction (Fig. 14) will, if
necessary, conclude by selecting a new process from RP and
effect the necessary process switch by storing and loading
registers, etc. (To do this the instructions will require to know

*If- resource sets are also implemented then a simple facility for
passing a message must be associated with these Kernel routines.

The Computer Journal Volume 22 Number 2

WSETP WSETV
®
Decrement
I
smavt St

mm}g
Select and

clear a bit
in SEMSET

Set

corresponding
pit position
in RP (]

signified
in CP

oju

Select
process from
RP and switch
processes

]

® O,

Fig. 14 Automatic scheduling using semaphores

Select
Process fro
RP and swit
processes

fwbpeoe)/:sdpy wiol

the address of a save area for each process’s registers and W1ﬂ
maintain a further register CP which holds the integer 1dent1tg
of the current process. Such instructions are quite feasible
and may be compared with process switching instructions sucﬁ
as ‘move to stack’ on the B6700 (Burroughs, 1972) The proce

selection algorithm must be capable of handling the speci i}
case where no processes are ready to run (i.e. where all processe3
are suspended on V operations—including hardware mterruptsg

Lieieer

5. Conclusion
Subject to the limitations already mentioned, 1mplementmg
semaphores with sets of resources and/or waiting processes
can achieve considerable gams in the efficiency of a systemo
by reducing the overheads in calls to the operating systemS
by reducing the size and complexity of operating systesd
code; and by increasing the potential for parallel processin

Additional advantages of resource sets are that they increase
the power of P and V operations, and simplify their use in the
allocation of multiple equivalent resources, whilst at the samg
time offering an efficient implementation.

20T |udy

Appendix
The ideas expressed in this paper have arisen in the contex*f
of the design work for the MONADS operating system, a
research project being developed in the Computer Science
Department of Monash University using a modified HP2100A
computer.

An initial version of the MONADS ‘Hardware Kernel’
(the innermost operating system level, whose function is to
offer an improved ‘hardware’ interface) has been developed
using microcoded resource set semaphores. This limited
experience confirms their usefulness and simplicity of use.
So far they have given rise to no problems. We have also found
that if the SEMINT and SEMSET manipulations in RSETP
and RSETYV are implemented as subroutines in the microcode,
then the subroutines can also be usefully employed to imple-
ment (a) standard P and V semaphore instructions, and
(b) non-semaphore instructions for searching bit strings and

149

setting named bits, at virtually no extra cost.

These same subroutines will also be employed to implement
the automatic scheduling philosophy described in Section 4.4,
in a trial reimplementation of the Hardware Kernel’s process

References

scheduler (using priority scheduling). We chose not to imple-
ment this in the first version, out of respect for the problems
of debugging the microcode, the synchronising design and the
code of the Kernel processes simultaneously !

BURROUGHS. (1972). The Burroughs B6700 Information Processing Systems Reference Manual, Burroughs Corporation, Detroit, Michigan,

1972.

DUKSTRA, E. W. (1968a). Cooperating Sequential Processes in Programming Languages, ed. F. Genuys, Academic Press, London and New

York, 1968.

DUKSTRA, E. W. (1968b). The Structure of the ‘THE’-Multiprogramming System, CACM, Vol. 11, No. 5, p. 341.
DUKSTRA, E. W. (1972). Hierarchical Ordering of Sequential Processes in Operating System Techniques, ed. C. A. R. Hoare and R. H.

Perrott, Academic Press, London and New York, 1972.

KEepy, J. L. (1977). An Outline of the ICL2900 Series System Architecture, Australian Computer Journal, Vol. 9, No. 2, July, 1977.
PArNAS, D. L. (1975). On a Solution to the Cigarette Smokers’ Problem (without conditional statements), CACM, Vol. 18, No. 3, p. 181.

Book reviews

Compiler Design Theory, by P. M. Lewis II, D. J. Rosenkrantz and
R. E. Stearns, 1976; 647 pages. (Addison Wesley, £18:50)

This book is intended as an undergraduate course on compiler
design theory. Some teachers may prefer not to base their course on
such a formal, and largely automata theory, footing but all should
find the book a rich source of ‘academically respectable’ material
which could supplement a more practical treatment of the subject. It
is meticulously prepared with many worked and even more unworked
examples. The authors’ claim that it should be understandable to a
wide range of readers is justified, but it is by no means light reading.

Although the approach is consistently and deliberately formal the
application of the concepts is demonstrated on the design of an
actual compiler. Unfortunately, in the reviewer’s opinion, the
language -chosen for this demonstration, a subset of BASIC,
presents little challenge to the compiler writer. A reader might be
excused for feeling that the techniques described represent ‘sledge
hammer to crack a nut’.

The first four chapters give a good and adequate introduction to
finite state machines leading up to the design of the lexical analysis
stage for the BASIC subset compiler. At this point push down
machines are introduced and their application as recognisers and
translators of abstract input sequences is considered.

After a diversion in Chapters 6 and 7 to introduce the basic theory
of context free grammars, translation grammars and attributed
translation grammars, the application of push down machines to
top down parsing and translation is developed. This leads in Chapter
10 to the detailed design of the syntax analysis phase of the BASIC
subset compiler.

The alternative of bottom up analysis is described in Chapters 11, 12
and 13, again in terms of a push down machine implementation. An
alternative (compatible) design for the syntax analysis phase of the

_PASIC subset compiler is given.

Code generation and optimisation are the subject of the final two
chapters of the book. Many compiler writers might feel that this is
the area where the main problems lie, but this book devotes only 31
of its 600-odd pages to them. Perhaps the problems are symptomatic
of the dearth of formal treatment of the subject.

In conclusion it must be said that this book presents a great deal of
compiler theory in a new way and is worthy of a place on any
computer scientist’s bookshelf. However, if funds are a limiting
factor, the book Principles of Compiler Design by Aho and Ullmann
might be a preferred alternative since it is more broadly based.

D. Morris (Manchester)

An Introduction to Programming and Problem Solving with Pascal, by
G. Michael Schneider, Steven W. Weingart and David M.
Perlman, 1978; 394 pages. (John Wiley, £9-20)

This book, like a growing number in recent years, is derived from
programming courses which have been taught at university, and is
based on the PASCAL programming language. The main aim of the
book is to introduce all of the aspects concerned with programming

150

a

and problem solving, from problem specification to design, imple-g
mentation, debugging and documentation and maintenance. 2
Secondary aims are to teach what constitutes a good programmmg a
style, and to teach the syntax of PASCAL. 2
Following the introduction, Chapter 2 informally introduces the 3
concepts of algorithms and the basic forms of flow of control. The 3
chapter also discusses the eﬂicnency of algorithms and recursion. =
Chapters 3 to 8 introduce various aspects of PASCAL, with Chapter]
6 devoted to the important topic of debugging and testing programs. m
Chapter 9, entitled ‘Building quality programs’, is rightly rega.rdedm
by the authors as being one of the most important chapters in theg
book and discusses techniques for developmg and managing largeo
‘real world’ programs. :
The book is well presented and has many illustrative examples.> 3
Each chapter is followed by exercises and some solutions are pro-3
vided. Some people will no doubt find minor faults with the order of g
presentation or with the emphasis given (or not given) to some topics. 3
However, the book does appear to have been well thought out’
(probably at the expense of many undergraduates!) and to satisfy 1ts:
aims. It should certainly be considered as a contender for a recom-$
mended textbook for introductory programming courses, pa.rti-

cularly those based on PASCAL.
P. A. Lee (Newcastle)

Principles of Compiler Design, by A. V. Aho and J. D. Ullmann,
1977; 604 pages. (Addison-Wesley, £15-20)

q90L6v/9vLic/ee/d

This book will be valuable as an encyclopaedia of techniques used inJ
the construction of compilers. It deals in depth with the constructiong
of lexical scanners, basic parsing techniques, the mechanical con—~
struction of LR, SLR, and LALR parsers (including a useful ex-3
position of the treatment of ambiguous grammars by parser generators
for LR grammars), syntax-directed translation, symbol tables, rurxo
time storage administration, and error detection and recovery—-
during parsing.

The book also contains a comprehensive three-chapter treatment of'\)
code optimisation. The usefulness of the extensive bibliography is
enhanced by the notes and references at the end of each chapter.
These give valuable refetences to further works of relevance to the
topics covered in the chapter.

Unfortunately the book’s suitability as a text for an undergraduate
course in compiling is somewhat reduced by the lack of a detailed
case study of a working compiler. A companion volume containing
the authors’ own implementation of the project which they suggest
in Appendix B—the building of a compiler for a subset of PASCAL
—would remedy this. Another important omission is any treatment
of the relationship between compilers and debugging aids. Finally,
the book is marred by several typographical errors which could be
misleading to the uninformed reader.

Despite these shortcomings the book will, as the authors claim, be
useful as a source of ideas and techniques for software designers
working both within and outside the field of compiler design.

BERNARD SUFRIN (Oxford)

The Computer Journal Volume 22 Number 2

