setting named bits, at virtually no extra cost.

These same subroutines will also be employed to implement
the automatic scheduling philosophy described in Section 4.4,
in a trial reimplementation of the Hardware Kernel’s process

References

scheduler (using priority scheduling). We chose not to imple-
ment this in the first version, out of respect for the problems
of debugging the microcode, the synchronising design and the
code of the Kernel processes simultaneously !

BURROUGHS. (1972). The Burroughs B6700 Information Processing Systems Reference Manual, Burroughs Corporation, Detroit, Michigan,

1972.

DUKSTRA, E. W. (1968a). Cooperating Sequential Processes in Programming Languages, ed. F. Genuys, Academic Press, London and New

York, 1968.

DUKSTRA, E. W. (1968b). The Structure of the ‘THE’-Multiprogramming System, CACM, Vol. 11, No. 5, p. 341.
DUKSTRA, E. W. (1972). Hierarchical Ordering of Sequential Processes in Operating System Techniques, ed. C. A. R. Hoare and R. H.

Perrott, Academic Press, London and New York, 1972.

KEepy, J. L. (1977). An Outline of the ICL2900 Series System Architecture, Australian Computer Journal, Vol. 9, No. 2, July, 1977.
PArNAS, D. L. (1975). On a Solution to the Cigarette Smokers’ Problem (without conditional statements), CACM, Vol. 18, No. 3, p. 181.

Book reviews

Compiler Design Theory, by P. M. Lewis II, D. J. Rosenkrantz and
R. E. Stearns, 1976; 647 pages. (Addison Wesley, £18:50)

This book is intended as an undergraduate course on compiler
design theory. Some teachers may prefer not to base their course on
such a formal, and largely automata theory, footing but all should
find the book a rich source of ‘academically respectable’ material
which could supplement a more practical treatment of the subject. It
is meticulously prepared with many worked and even more unworked
examples. The authors’ claim that it should be understandable to a
wide range of readers is justified, but it is by no means light reading.

Although the approach is consistently and deliberately formal the
application of the concepts is demonstrated on the design of an
actual compiler. Unfortunately, in the reviewer’s opinion, the
language -chosen for this demonstration, a subset of BASIC,
presents little challenge to the compiler writer. A reader might be
excused for feeling that the techniques described represent ‘sledge
hammer to crack a nut’.

The first four chapters give a good and adequate introduction to
finite state machines leading up to the design of the lexical analysis
stage for the BASIC subset compiler. At this point push down
machines are introduced and their application as recognisers and
translators of abstract input sequences is considered.

After a diversion in Chapters 6 and 7 to introduce the basic theory
of context free grammars, translation grammars and attributed
translation grammars, the application of push down machines to
top down parsing and translation is developed. This leads in Chapter
10 to the detailed design of the syntax analysis phase of the BASIC
subset compiler.

The alternative of bottom up analysis is described in Chapters 11, 12
and 13, again in terms of a push down machine implementation. An
alternative (compatible) design for the syntax analysis phase of the

_PASIC subset compiler is given.

Code generation and optimisation are the subject of the final two
chapters of the book. Many compiler writers might feel that this is
the area where the main problems lie, but this book devotes only 31
of its 600-odd pages to them. Perhaps the problems are symptomatic
of the dearth of formal treatment of the subject.

In conclusion it must be said that this book presents a great deal of
compiler theory in a new way and is worthy of a place on any
computer scientist’s bookshelf. However, if funds are a limiting
factor, the book Principles of Compiler Design by Aho and Ullmann
might be a preferred alternative since it is more broadly based.

D. Morris (Manchester)

An Introduction to Programming and Problem Solving with Pascal, by
G. Michael Schneider, Steven W. Weingart and David M.
Perlman, 1978; 394 pages. (John Wiley, £9-20)

This book, like a growing number in recent years, is derived from
programming courses which have been taught at university, and is
based on the PASCAL programming language. The main aim of the
book is to introduce all of the aspects concerned with programming

150

a

and problem solving, from problem specification to design, imple-g
mentation, debugging and documentation and maintenance. 2
Secondary aims are to teach what constitutes a good programmmg a
style, and to teach the syntax of PASCAL. 2
Following the introduction, Chapter 2 informally introduces the 3
concepts of algorithms and the basic forms of flow of control. The 3
chapter also discusses the eﬂicnency of algorithms and recursion. =
Chapters 3 to 8 introduce various aspects of PASCAL, with Chapter ]
6 devoted to the important topic of debugging and testing programs. m
Chapter 9, entitled ‘Building quality programs’, is rightly rega.rdedm
by the authors as being one of the most important chapters in theg
book and discusses techniques for developmg and managing largeo
‘real world’ programs. :
The book is well presented and has many illustrative examples.> 3
Each chapter is followed by exercises and some solutions are pro-3
vided. Some people will no doubt find minor faults with the order of g
presentation or with the emphasis given (or not given) to some topics. 3
However, the book does appear to have been well thought out’
(probably at the expense of many undergraduates!) and to satisfy 1ts:
aims. It should certainly be considered as a contender for a recom-$
mended textbook for introductory programming courses, pa.rti-

cularly those based on PASCAL.
P. A. Lee (Newcastle)

Principles of Compiler Design, by A. V. Aho and J. D. Ullmann,
1977; 604 pages. (Addison-Wesley, £15-20)

q8L16cy/0SL/e/ee/d

This book will be valuable as an encyclopaedia of techniques used inJ
the construction of compilers. It deals in depth with the constructiong
of lexical scanners, basic parsing techniques, the mechanical con—~
struction of LR, SLR, and LALR parsers (including a useful ex-3
position of the treatment of ambiguous grammars by parser generators
for LR grammars), syntax-directed translation, symbol tables, rurxo
time storage administration, and error detection and recovery—-
during parsing.

The book also contains a comprehensive three-chapter treatment of'\)
code optimisation. The usefulness of the extensive bibliography is
enhanced by the notes and references at the end of each chapter.
These give valuable refetences to further works of relevance to the
topics covered in the chapter.

Unfortunately the book’s suitability as a text for an undergraduate
course in compiling is somewhat reduced by the lack of a detailed
case study of a working compiler. A companion volume containing
the authors’ own implementation of the project which they suggest
in Appendix B—the building of a compiler for a subset of PASCAL
—would remedy this. Another important omission is any treatment
of the relationship between compilers and debugging aids. Finally,
the book is marred by several typographical errors which could be
misleading to the uninformed reader.

Despite these shortcomings the book will, as the authors claim, be
useful as a source of ideas and techniques for software designers
working both within and outside the field of compiler design.

BERNARD SUFRIN (Oxford)

The Computer Journal Volume 22 Number 2





