Recursion elimination with variable parameters

R. S. Bird

Department of Computer Science, University of Reading, Whiteknights Park, Reading RG6 2AX

Standard methods of recursion elimination are not immediately applicable to recursive procedures
which possess variable (reference, name) parameters. Two methods of overcoming this problem are
described. One method involves a transformation which replaces such parameters with constant
ones, while the second involves the creation of a new level of reference variables, a device only
possible in a language such as ALGOL 68. As examples of the techniques, iterative versions of a
procedure to build a balanced tree are derived in both ALGOL 68 and PASCAL.

(Received January 1978)

1. Introduction

Among the growing number of techniques for efficient recursion
elimination (Knuth, 1974; Bird, 1977; Partsch and Pepper,
1976) perhaps the simplest is the one embodied in the following
rule:

“if the last action of procedure p before it terminates is to call
procedure g, simply go to the beginning of procedure g instead’.
This rule, which is discussed more fully in Bird (1977) and
Knuth (1974), works just as well when ¢ = p and so can be
used to replace terminal recursive calls by simple loops. For
instance, we can translate the recursive procedure

proc P; if T then A; P fi
into the equivalent iterative version
proc P; while 7" do A.

The rule can also be used with procedures which possess
constant (or value) parameters, the only modification neces-
sary being. the injunction to assign such parameters their new
values just before the jump is made. To take an example in
ALGOL 60, consider

procedure P(x); integer x; value x;
if T'(x) then begin A (x); P(f(x)) end
This translates into the iterative procedure

procedure P(x); integer x; value x;
while 7'(x) do
begin A(x); x := f(x) end

(Actually, ALGOL 60 does not permit while statements of this
form, but the idea is clear enough). The semantics of ALGOL
60 guarantee that on entry to the procedure body a new local
variable x is automatically created, so the assignment x := f(x)
is permissible. In ALGOL 68 we have to create this local vari-
able ourselves, but otherwise the method is just the same.
Thus

proc P = (int x) void:
if T(x) then A(x); P(f(x)) fi
becomes
proc P = (int x) void:
begin int y := x;
while 7'(y) do

AY);y = f(p) od
end.

The trouble with the rule arises as soon as we consider other
forms of parameter passing, and it is the purpose of the present
paper to explore this problem a little further. Consider the
ALGOL 60 procedure

procedure P(x); integer x;
if x # O then P(L[x])
else x := 1

The Computer Journal Volume 22 Number 2

Here x is a parameter called by name and the effect of a call
P(L[1]) is to set L[y] = 1 where y is the first integer of the
formL[...L[1]...]suchthat L[y] = 0. It doesn’t take much
thought to see that in this case we cannot simply replace the
procedure body with the code

while x # O0do x := L[x];

x:=1

In ALGOL 60 the solution to the problem lies in a preliminary
transformation which changes parameters called by name into

|w)
<]
S
=3
o
o

1Y Wouj pap

f=o
e

for then the call P(L[1]) would have an entirely different effect.©

=
=
QO

Q
W)

parameters called by value. For the above example, we first®

change procedure P into a procedure Q designed with the

intention that the call Q(x) should be equivalent to the call2

©

P(L[x]). Q has the definition

procedure Q(x); integer x; value x;
if L[x] # 0 then Q(L[x])
else L[x] :=1

and recursion elimination can be applied to Q in the standard
way. As long as the only calls to P are calls of the form P(L[...])
no further problem arises; if not, then some additional copying
into and out of a particular element of L has to be performed.
This is perhaps a rather artificial example but we shall see
the same principle at work on a much more natural example in
Section 2.

There is an alternative way of attacking the problem, but

.(_3-

/lulwoo/woo

e

=
Q
©

o
N
[N}
N
N
»
=
o
=
=

=
N

w

q€eL6

it is only possible in a language such as ALGOL 68 which

permits arbitrary levels of reference variables to be defined.
The following section explains the idea.

2. Recursion elimination in ALGOL 68

o
[0]

VvV 61 Uojs

One feature of ALGOL 68 which turns out to be useful inS

recursion elimination is the fact that for any object of mode
thing one can create an object of mode ref thing. The example
of an ALGOL 68 program given in the last section suggests
a way in which this fact can be used. There, in order to eliminate
the recursion from a procedure with a parameter of mode int,
we had to create an object y of mode ref int. The same idea
can be extended to the next level. Consider again

proc P = (ref int x) void:
if x # 0 then P(L[x])
elsex := 11

In ALGOL 68 we can translate P directly into an iterative
procedure as follows:

proc P = (ref int x) void:
begin ref int y := x;
while y # Odo y := L[y] od;
refint (y) := 1
end

N
o
N
=

Here, y is an object of mode ref ref int. During the execution
of the loop y is repeatedly assigned the address of L[y].
On termination, the instruction ref int (») :=1 forces a
dereferencing of y to an object of mode ref int and assigns
to it the value 1. In other words, the contents of the final
address stored in y is set to 1, and this is just what is wanted.
The same method can be used with further levels of refs
and to illustrate this we shall consider an example in which
both recursive procedures and variable parameters arise
naturally. The problem deals with the creation of a perfectly
balanced binary tree. We can define a binary tree in ALGOL 68
as follows:

mode node = struct (int key, ref node left, right);

mode tree = ref node;

tree null = nil.
The problem is to read n integers from the input and build
them into a balanced tree. One procedure does the job (see

Wirth, 1976, from which the problem was taken) can be given
as follows:

proc build = (int n, ref tree t) void:
begin int x, nl, nr;
if n = O then 7 := null else
read(x); t := heap node := (x, null, null);
nl := ndiv2;nr :=n — nl — 1;
build(nl, left of t);
build(nr, right of t)
fi
end

The first problem to tackle in eliminating the recursion from
build is that the recursive form of build is not one which can
be solved by exclusive use of the rule mentioned in the introduc-
tion. In addition, we have to make use of a stack. To see how
this works, consider first the schematic procedure
proc B(x);
if #(x) then A(x); B(fx); B(gx)
else C(x)
fi

of the same form as build, except that for the moment we
suppose that x is a value parameter. In the direct method of
recursion elimination (Bird, 1977), items x on the stack S
record obligations to carry out procedure calls B(x). In its first
form the solution is as follows:
proc B(x);
begin stack S; | S| := 0; S < x;
repeat x < S;
if #(x) then A(x);
S < gx;
S <fx
else C(x) fi
until | S| =0
end

The notations S < x, x < S are used as abstract representa-
tions of the operations of inserting x on top of the stack
and removing the top item and assigning it to x, respectively;
further | S| denotes the length of the stack. An improvement
can immediately be made to this solution by noticing that the
record fx is placed on the stack only to be removed at the very
next step. Thus we can change S < fx to x := fx and return
control to the point just after the operation x < S (this
device is the counterpart to our original rule in more compli-
cated recursions). So the second version of the solution is
proc B(x);
begin stack S; | S| := 0; S <= x;
repeat x < S;
while #(x)
do A(x); S <= gx; x := fx od;

C(x)
until | S| =0
end

Returning to the procedure build, we can now give the iterative
solution

proc build = (int n, ref tree t) void:
begin int m, nl, nr; ref tree p; stack S := empty;
S < (n,1);
repeat (m, p) < S;
while m # 0 do
begin read (x);
ref tree (p) :=
heap node := (x, null, null);
nl:= mdiv2; nr :=m — nl — 1;
S <= (nr, right of p);
m:=nl;p := leftof p
end;
ref tree (p) := null
until S is empty
end

We can create a stack in ALGOL 68 with the structu
definitions

mode cell = struct(int num, ref tree ash, ref cell next);
mode stack = ref cell;
stack empty = nil;

and expand the operation S < (n, ¢) into
S := heapcell := (n, ¢, S)

and the operation (m, p) < S into

m:= numof S;p := ashof S; S := next of S. T

When these substitutions are carried out we are left with ag
iterative ALGOL 68 version of build (apart from the fact that
the repeat . . . until construct is not legal ALGOL 68). Notic@.
in particular, that the mode of p is ref ref ref node. 5
It is arguable whether or not the above solution is at af}
comprehensible taken by itself; it certainly has been derived
in a hopefully comprehensible manner from an intuitive(l§
simple procedure. The introduction of refs for purposes
recursion elimination closely parallels the introduction S
gotos for the same purpose, and gotos in Dijkstra’s famouy
phrase ‘are too much of an invitation to make a mess of one’s;
program’. Nevertheless, the fact that the ref device can bé’
used at all is a remarkable testament to the flexibility of
ALGOL 68.
It is instructive to compare this method of elimination with;
the one which eliminates variable parameters first. In the next.
section we take up the problem of building a balanced tree.
again, but this time using the language PASCAL to expres$.
both the recursive and iterative versions. N

dnoojwepeoe;/:sdiy WoJj pageojumog

o}

san

¥20

3. Recursion elimination in PASCAL

The language PASCAL does not easily permit arbitrary levels
of reference variables, so it is a reasonable vehicle in which to
study the second method of recursion elimination. We could
have chosen to stay with ALGOL 68, but the build example
occurs in Wirth’s (1976) excellent book on programming,
together with the exhortation to the reader to use his ingenuity
in writing a non-recursive equivalent. Wirth appends such a
program without further comments to serve as a challenge
for the reader to discover how and why it works. Since the
primary object of this section is to systematically derive Wirth’s
iterative version, it is only natural that we should do so in
PASCAL.

One way of defining a binary tree in PASCAL is given by

type tree = {node;
node = record key: integer;

The Computer Journal Volume 22 Number 2

left, right: tree
end

The procedure for building a balanced tree is

procedure build(n: integer; var t: tree);
var x, nl, nr: integer;
begin if » = O then ¢ := nil else
begin read(x); new(t);
tt-key := x;
nl :=ndiv2;nr :=n — nl — 1;
build(nl, t1- left);
build(nr, t1-right)
end
end

Although one can define variables of type pointer-to-tree in
PASCAL, and so carry out recursion removal in the manner
of the last seetion, we choose instead to eliminate the variable
parameter ¢ from build and do the recursion removal according
to the first method. This is achieved by splitting build into two
mutually recursive procedures buildright and buildleft, designed
with the intention that
buildright(n, t) = build(n, t1-right)
and buildleft(n, t) = build(n, t1-left)

The definitions are very similar so we shall just give the
definition of buildright:

procedure buildright(n: integer; t: tree);
var q: tree;
x, nl, nr: integer,
begin if n = O then ¢1-right := nil else
begin read(x); new(q);
t1-right := q;
ql-key := x;
nl :=ndiv2;nr :=n — nl — 1;
buildleft(nl, q);
buildright(nr, q)
end
end

These two procedures can be used in place of build provided
we change every procedure call build(n, rootl) into a call
buildright(n, root2) where root2 is a new node with roor2t-
right = rootl. (Of course, we could equally well have chosen
buildleft as the ‘dominant’ procedure).

Having eliminated the variable parameter we can now go
on to the recursion elimination stage. This has a number of
interesting features as we are dealing with two mutually
recursive procedures. To see what is involved, consider first
the following schematic procedures of the same form as
buildleft and buildright:

proc R(x);

if p(x) then A(x) else B(x); L(fx); R(gx) fi

proc L(x);

if p(x) then C(x) else D(x); L(fx); R(gx) fi
Once again, to solve these procedures we have to invoke the use
of a stack. In the present case, items on the stack take the form
(1, x) and (2, x) and signify obligations to carry out the pro-
cedure calls R(x) and L(x) respectively. If we are interested in
evaluating R(x,), the direct method of elimination yields the
solution

S <= (1, xo); .
repeat (b, x) < S;
if b = 1 then if p(x) then 4(x)
else B(x); S <= (1,gx); S <= 2, fx) fi
else if p(x) then C(x)
else D(x); S <= (1,gx); S <=2, fx)fi
fi
until | S| = 0.

The Computer Journal Volume 22 Number 2

We can improve this solution to read
S < (1, xo);
repeat (b, x) < S;
if b = 1 then if p(x) then 4(x)
else B(x); S < (1, gx); x := fx; goto L fi
else L: if p(x) then C(x)
else D(x); S < (1, gx); x := fx; goto L fi
fi
until | S| = 0,
since the record (2, fx) is placed on the stack only to be
removed at the next step. Observe now that all records have
the form (1, x), so there is no longer any need for the tag 1
to signify that it is R(x) we wish to evaluate. The final version
of the solution is
S <= Xo;
repeat x <= S;
if p(x) then A(x)
else B(x); S < gx; x := fx;
while p(x) do
begin D(x); S < gx; x := fx end;
C(x)
fi
until | S| = 0.
This solution can now be used to solve the original buil
procedure with the substitutions
(n, t) for x,, pt-right := nil for A(x)
(m, p) for x, pt-left := nil for C(x)
m = 0 for p(x),
and read(x); new(q); qt-key := x;
pt-right := q;
nl := mdiv2;nr := m — nl — 1;
for B(x). The code for D(x) is just the same as for B(x) exce
that p1-left := q replaces p1-right := q. Finally,
S < gx translates to S < (nr, q)
and x := fx translatestom := nl; p :=¢q

Once these substitutions are incorporated, we obtain the
procedure

dno-olwepese//:sdypy WY papeojumoq

procedure buildright (n: integer, t: tree);
var p, q: tree;
x, m, nl, nr: integer;
S : stack;
begin S <= (n, t);
repeat (m, p) < S;
if m = O then p{-right := nil
else begin read(x); new(q); q1-key := x;
pl-right := gq;
nl := mdiv2; nr .= m — nl — 1;
S < (nr, q);
p:=gq;m:= nl;
while m # 0 do
begin read(x); new(q); q1-key := x;
pl-left :=gq;
nl := mdiv2;nr :=m — nl — 1;
S < (nr, q);
p:=gq;m:=nl
end;
p1-left := nil
end
until | S| =0
end
Though correct, the above program contains too much duplica-
tion of code for us to be happy with it as a final version. If the
inner loop can be changed to a repeat loop, the resulting
program will be shorter and more satisfying. We can move
the assignment pt-right := q to the end of the loop by (i)

20z Iudy 61 uo ysenb Aq 8€LGZV/LQL/Z/ZZ/BWUE/IU[LUOO/LU?O

changing all subsequent occurrences of p to a new variable r,
thereby saving the value of p; and (ii) saving the value of g in a
suitable manner. The second task is accomplished very neatly
by having one extra node link to hold the value of g in its left
field. By initialising r to link and setting 1 left to ¢ we not only
manage to completely duplicate the body of the while loop, thus
reducing it to a repeat loop, but also preserve the initial value
of g in link?1 - left. The final program is therefore as follows:

procedure buildright(n: integer, t: tree);
var p, q, r, link: tree;
x, m, nl, nr: integer;
S': stack;
begin new(link); | S| := 0; S <= (n, t);
repeat (m, p) < S;
if m = O then p1-right := nil else
begin r := link;
repeat read(x); new(q); qt-key := x;

nl := mdiv2; nr := m — nl — 1;
S < (nr, q);
m:=nl;ri-left :==q;r:=gq
until m = 0;
ri-left := nil; pt-right := link?t-left
end
until | S| =0
end

This procedure is essentially the one given by Wirth in (1976).

4. Results and conclusions

One may justifiably ask whether or not the energy spent on
recursion elimination leads to significant gains in efficiency.
To answer this question, the three versions of the balanced
tree procedure were coded in ALGOL 68-R and run on the
University of Reading’s 1904S computer together with a
timing program. The following table shows the time in seconds
required to build a balanced tree of 250 nodes. In the table,

References
BmrD, R. S. (1977).

Notes on recursion elimination, CACM, Vol. 20 No. 6, pp. 434-439.

Knuts, D. E. (1974). Structured programming with goto statements, ACM Computing Surveys, Vol. 6, pp. 261-302.

ParTscH, H. and PEPPER, P. (1976). A family of rules for recursion removal, Information Processing Letters, Vol. 5 No. 6, pp. 174-1717.
WIRTH, N. (1976). Algorithms + Data Structures = Programs, Prentice-Hall.

build refers to the recursive version, buildl to the iterative
version which uses the ref device and build2 to the iterative
version given in Section 3. Both build1 and build2 were coded
in two ways; in the first the stack S was represented by a
structured linked list, while in the second two linear arrays
were used. The results were:

build buildl build2
0-072 0-081 0-088
0-066 0-072

Clearly, the table tells a somewhat disappointing story; only
the array version of buildl managed to beat the recursive
procedure and then by only about 10%. The reason is that,
although the balanced tree algorithm possesses a running
time which is linear in the number of recursive calls, this
is completely dominated by the time spent on manipulating
the ALGOL 68 heap. Certainly it does not seem a good idea
to involve the heap again by representing the stack as a linked
list.

Nevertheless, the problem of recursion elimination is a useful

O
<]
=
o
0]
Q

(0]
[}

-
=
o

vehicle in which to study and broaden our knowledge of 3
program transformations and a practically useful one for the=

machine code and FORTRAN programmer who remains

(2]
gy
=

obliged to manufacture his or her own implementation of S

recursion.

Acknowledgements

The author would like to thank Dr J. Ogden for many stimu-°

lating discussions on the pros and cons of ALGOL 68 as well
as making available his timing program. Thanks are also due
to Dr J. Roberts for similar discussions on PASCAL.

Book review

Computer-Aided Design of Digital Systems, by D. Lewin, 1977; 313
pages. (Edward Arnold, £15-00)

This book will be of interest mainly to students of computer science
at a postgraduate level, and to those practising engineers who are
already familiar with ‘formal’ logic design methods. The book
surveys the current status of computer aids in the fields of logic
network synthesis, logic simulation and logic testing. The subject of
system specification, both by means of register transfer languages
and by graph theoretic models is also discussed.

The main barrier to the more widespread acceptance of computer
aided logic design is the lack of sufficiently powerful algorithms,
especially methods applicable to circuits using MSI and LSI com-
ponents. Most of the algorithms described in this book are orientated
toward design using flipflops and discrete NAND and NOR gates;
this limits its usefulness to designers of CAD systems in industry,
who have to work with the current technology.

The longest chapter in this book (117 pages) covers the topic of
logic network synthesis. A large number of algorithms (over 20) are
described, for state reduction, state assignment and for implementa-

154

tion of the resulting switching functions in a particular ‘logic family’.5

o°dno-olwsp

o
3

=
Q
o

61 uo1senb Aq £¢ 162/ G L/Z/ze/eone ulw

>

The algorithms described first appeared in a variety of journals, Ph.D.7
theses, etc; this book serves the useful purpose of collecting and Q3
comparing such a diversity of methods. The algorithms are described ©

in Professor Lewin’s usual lucid style and a large number of helpful
worked examples are provided. Many of these algorithms suffer
severe limitations on the size of problem which they can handle.
Unfortunately, little numeric information is provided in this book
to indicate to the reader the limitations of each technique.

The chapter on system specification contains an up-to-date survey
of hardware description languages and also describes more recent
developments, e.g. the use of Petrinets. The subjects of logic simula-
tion for design verification and for test-program validation are
treated in rather less detail ; for example, the techniques of deductive
fault simulation and the use of worst case timing are mentioned but
not described in detail. The book concludes with a review of the
subjects of logic circuit testing and testable logic design. The book
provides a large number of references (nearly 300), and a useful

subject and authors index.
D. BumsTEAD (Poole)

The Computer Journal Volume 22 Number 2

