changing all subsequent occurrences of p to a new variable r,
thereby saving the value of p; and (ii) saving the value of g in a
suitable manner. The second task is accomplished very neatly
by having one extra node link to hold the value of g in its left
field. By initialising r to link and setting 1 left to ¢ we not only
manage to completely duplicate the body of the while loop, thus
reducing it to a repeat loop, but also preserve the initial value
of g in link?1 - left. The final program is therefore as follows:

procedure buildright(n: integer, t: tree);
var p, q, r, link: tree;
x, m, nl, nr: integer;
S': stack;
begin new(link); | S| := 0; S <= (n, t);
repeat (m, p) < S;
if m = O then p1-right := nil else
begin r := link;
repeat read(x); new(q); qt-key := x;

nl := mdiv2; nr := m — nl — 1;
S < (nr, q);
m:=nl;ri-left :==q;r:=gq
until m = 0;
ri-left := nil; pt-right := link?t-left
end
until | S| =0
end

This procedure is essentially the one given by Wirth in (1976).

4. Results and conclusions

One may justifiably ask whether or not the energy spent on
recursion elimination leads to significant gains in efficiency.
To answer this question, the three versions of the balanced
tree procedure were coded in ALGOL 68-R and run on the
University of Reading’s 1904S computer together with a
timing program. The following table shows the time in seconds
required to build a balanced tree of 250 nodes. In the table,

References
BmrD, R. S. (1977).

Notes on recursion elimination, CACM, Vol. 20 No. 6, pp. 434-439.

Knuts, D. E. (1974). Structured programming with goto statements, ACM Computing Surveys, Vol. 6, pp. 261-302.

ParTscH, H. and PEPPER, P. (1976). A family of rules for recursion removal, Information Processing Letters, Vol. 5 No. 6, pp. 174-1717.
WIRTH, N. (1976). Algorithms + Data Structures = Programs, Prentice-Hall.

build refers to the recursive version, buildl to the iterative
version which uses the ref device and build2 to the iterative
version given in Section 3. Both build1 and build2 were coded
in two ways; in the first the stack S was represented by a
structured linked list, while in the second two linear arrays
were used. The results were:

build buildl build2
0-072 0-081 0-088
0-066 0-072

Clearly, the table tells a somewhat disappointing story; only
the array version of buildl managed to beat the recursive
procedure and then by only about 10%. The reason is that,
although the balanced tree algorithm possesses a running
time which is linear in the number of recursive calls, this
is completely dominated by the time spent on manipulating
the ALGOL 68 heap. Certainly it does not seem a good idea
to involve the heap again by representing the stack as a linked
list.

Nevertheless, the problem of recursion elimination is a useful

O
<]
=
o
0]
Q

(0]
[}

-
=
o

vehicle in which to study and broaden our knowledge of 3
program transformations and a practically useful one for the=

machine code and FORTRAN programmer who remains

(2]
gy
=

obliged to manufacture his or her own implementation of S

recursion.

Acknowledgements

The author would like to thank Dr J. Ogden for many stimu-°

lating discussions on the pros and cons of ALGOL 68 as well
as making available his timing program. Thanks are also due
to Dr J. Roberts for similar discussions on PASCAL.

Book review

Computer-Aided Design of Digital Systems, by D. Lewin, 1977; 313
pages. (Edward Arnold, £15-00)

This book will be of interest mainly to students of computer science
at a postgraduate level, and to those practising engineers who are
already familiar with ‘formal’ logic design methods. The book
surveys the current status of computer aids in the fields of logic
network synthesis, logic simulation and logic testing. The subject of
system specification, both by means of register transfer languages
and by graph theoretic models is also discussed.

The main barrier to the more widespread acceptance of computer
aided logic design is the lack of sufficiently powerful algorithms,
especially methods applicable to circuits using MSI and LSI com-
ponents. Most of the algorithms described in this book are orientated
toward design using flipflops and discrete NAND and NOR gates;
this limits its usefulness to designers of CAD systems in industry,
who have to work with the current technology.

The longest chapter in this book (117 pages) covers the topic of
logic network synthesis. A large number of algorithms (over 20) are
described, for state reduction, state assignment and for implementa-

154

tion of the resulting switching functions in a particular ‘logic family’.5

o°dno-olwsp

o
3

=
Q
o

61 uo1senb Aq 01 L62Y/¥S L/Z/Ze/eone ulw

>

The algorithms described first appeared in a variety of journals, Ph.D.7
theses, etc; this book serves the useful purpose of collecting and Q3
comparing such a diversity of methods. The algorithms are described ©

in Professor Lewin’s usual lucid style and a large number of helpful
worked examples are provided. Many of these algorithms suffer
severe limitations on the size of problem which they can handle.
Unfortunately, little numeric information is provided in this book
to indicate to the reader the limitations of each technique.

The chapter on system specification contains an up-to-date survey
of hardware description languages and also describes more recent
developments, e.g. the use of Petrinets. The subjects of logic simula-
tion for design verification and for test-program validation are
treated in rather less detail ; for example, the techniques of deductive
fault simulation and the use of worst case timing are mentioned but
not described in detail. The book concludes with a review of the
subjects of logic circuit testing and testable logic design. The book
provides a large number of references (nearly 300), and a useful

subject and authors index.
D. BumsTEAD (Poole)

The Computer Journal Volume 22 Number 2

