Allocation algorithms for dynamically
microprogrammable multiprocessor systems

D. M. Nessett* and O. W. Rechardt

Due to advances in integrated circuit technology, multiprocessor systems with more than two Central
Processing Units are becoming economically feasible. For this reason, the study of such systems with
the aim of developing more efficient hardware and software structures is gaining interest. One type of
multiprocessor structure which has recently received some attention is the dynamically microprogram-
mable multiprocessor system. This paper investigates the problems of efficiently allocating the pro-
cessors of such a system among the system’s workload.

A collection of algorithms and scheduling procedures is developed which may be used for processor
allocation in dynamically microprogrammable multiprocessor systems with an arbitrary number
of processors. Proofs that these algorithms produce configurations which optimise certain measures
are given. The algorithms are practical in the sense that the computation required increases linearly
with respect to the number of processors to be allocated. Finally, a simulation study has shown that in
many circumstances the use of these algorithms can be expected to yield a significant improvement

in system performance over an allocation scheme previously proposed.

(Received August 1977)

1. Introduction
With the significant decrease in hardware costs due mainly
to improved techniques in integrated circuit technology, it is
becoming economically feasible to design and build large
multiprocessor systems (i.e. computer systems with four, six,
eight or more processors). While such systems are not widely
available today, it is apparent that they will be in the future.
If these systems are to be used efficiently, methods of allocating
the set of processors among the workload must be developed.
This paper. will present a set of algorithms and decision
procedures for multiprocessor scheduling. We are not proposing
another solution of the general allocation problem as studied
by several authors (Arthanari and Mukhopadhyay, 1971;
Bauer, 1972; Bauer and Stone, 1970; Coffman and Graham,
1972; Hu, 1961 ; Szwarc, 1968). Our purpose is rather to develop
a set of easily applied algorithms that will allow us to take
into account time delays involved in reconfiguring dynamically
microprogrammable processors as they are shifted from one
set of tasks to another. We assume no prior knowledge (except
in a statistical sense) of task execution times or task ordering.
We will consider a multiprocessor system consisting of a
large number of identical processors each of which is capable
of being dynamically microprogrammed (such a system has
been recently proposed by the Burroughs Corp. (Davis,
Zucker and Campbell, 1972)). Each job in the system will
consist of a set of tasks. Each task, when it is completed,
will pass control to the next task or tasks in the job’s schedule.
The job will terminate when all of its component tasks have
been completed. We will assume that microprograms have
been developed which are tailored for particular types of tasks.
For example, one microprogram might emulate a stack
machine and be used for all compiling tasks (e.g. ALGOL,
COBOL, FORTRAN, etc. compilations). Another micro-
program could be designed for I/O processing (channels
would be unnecessary in this type of system, since properly
microprogrammed processors could perform all channel
functions). Thus, we can classify each task in the system by the
microprogram under which it runs. All tasks which run under
the same microprogram will be said to belong to the same
task class. All tasks in a particular task class will be queued
for service in one queue and each task class will be assigned a
set of processors (all task classes with non-empty queues will

*Lawrence Livermore Laboratory, Livermore, California 94550, USA

)} papEOjUMOQ

receive at least one processor). -

We now describe the basic scheduling philosophy to be used.S
Assume that statistics for each task class have been gathered=
which allow us to guess the service time needed for a single_ﬁ_’
processor to process a particular task class. Call this estimateds
service time P; (for the i" task class). Use the set of Ps tog
configure the system (i.e. assign processors to task classes andS
microprogram the processors for their task classes). After ano
interval of time I has passed, re-examine the system (i.e. rc-§
compute the P;s based on the new system state) and reconfigureg
the system. This scheme can be thought of as taking a snapshots
at time ¢ and acting upon the information gained, then takin S
another snapshot at time ¢ + I and acting upon the new infor:>
mation. Since smaller values of I will normally be associateds
with higher system overhead, an interval should be found whicho
is as large as possible but does not degrade system performances
by allowing processors to become idle. By the selection of ans
appropriate value of I and configuring through the use of
good configuration algorithm, it should be possible to kee
all processors busy.

Aq 67162868/

2. The basic algorithms
Two basic allocation schemes will be presented. These schemes2
are named minimax and minisum allocation. In minimax3
allocation we try to ‘balance’ the allocation of the processorss

e P; .©

among the task classes by minimising max {I_VI} ; where N; 1%3

i =3

the number of processors assigned to task class i and P; is amy

estimate of the service time required for one processor tox
process all tasks currently in the queue. This minimisation is
performed over all possible assignments N = Ny ..., Npof

the K processors among the L tasks. It is evident that max {1—1:/-'}

i
is approximately the time it will take to finish servicing all
tasks presently queued in the system.

Minisum allocation has a somewhat different purpose than
minimax. It attempts to use probabilistic information to allow
the lengthening of I (while maintaining a good level of system
efficiency) and thus lowering the overhead involved in recon-
figuration. We first assume that the interval I is greater than
max {P;}. Let R; be the ratio of total service time required

+Mathematics Department, University of Denver, University Park, Denver, Colorado 80208, USA

The Computer Journal Volume 22 Number 2

155

by all of the new tasks entering task class queue i to the total
service time of new tasks entering the system over an arbitrary
interval of time. We will also assume that this ratio is constant
and stable. Defining the idle time of task class i as I — 1% >
13
we will attempt to increase the idle time of task classes with
high R; and decrease the idle time of task classes with low R;.
This will tend to increase the number of processors assigned
to those task classes which we expect will receive a high pro-
portion of the new service time requirements and decrease
the number of processors assigned to those task classes which
we expect will receive a low proportion of the new service
time requirements. We can accomplish this manipulation of
the idle time of the task classes by maximising the total weighted

idle time Z (I - %Vﬁ) =L1- Z -RTR' » over all pos-

i i
sible configurations N. Since we have assumed I > max {P;},
. e . * P; R;
we will maximise this sum by minimising N
i

In practice the interval of reconfiguration I may be shorter
than max {P;}. It should be understood that nothing is lost
by this being so except increased overhead. To assume [is
large and to allocate accordingly is to assume the system is
predictable (i.e. that R is a constant). If 7 is in fact smaller than
assumed, it is because this erroneous assumption is being
corrected. Defining P} to be P;- R;, we will develop algorithms
which minimise max {]%-' and Z {%—' over all possible

i i

configurations N = (N, ..., N.), Z N; = K, N, positive inte-
ger. (From this point we will use 7 to represent both P; and P;.
We do this for notational simplicity.) Two algorithms will be
presented for each of the two problems. The first algorithms
(algorithms A and D) are intended for use when the number of
processors is not much greater than the number of task classes.
The second algorithms (algorithms C and D23) become com-
putationally efficient when the number of processors is con-
siderably greater than the number of task classes.

We begin the solution of the minimax and minisum problems
by solving their real counterparts. That is, we allow N; to
assume any real value in the interval (0, K) requiring
S'N; = K. It is simply demonstrated that

T,
N;=RMM(@()= |= .K
= [
will yield the smallest max 11\;1 , for all possible real con-
figurations N. Moreover, for this éhoice of N; all components of

the vector (%:) will be equal to E% .

Through the use of Lagrange multipliers it can be shown that

JT; O T
. == R] = ——-l—' . t _i ’
N; MS(i) I:Z \/-7-,; K] will yield the smalles N,

for all possible real configurations N.

At this point it is expedient to introduce some notation:
Vectors will be written as a barred letter. Vector components
will be written as the unbarred letter with subscript. For
example, N = (N, N,, . . ., N;). We further introduce the
following definitions:

— T,,. T T
Ny= (T2, . I,
) (Nl IS NL)

If+(N)ll, = max {%} , for all i.

IMM (i) = [RMM ()], where [] is the greatest integer function
IMS(i) = [RMS()] .

156

1. The integer minimax problem

We will assume that our multiprocessor system and associated

jobstream have the following characteristics:
1. No task requires more than one processor.

2. The number of task classes is less than or equal to the
number of processors.

These assumptions are necessary for the optimality of the
algorithms presented in this section. Section 3 is concerned with
generalisations of the basic algorithms which can be used in
circumstances when these assumptions are not acceptable.
Algorithms A and C will now be presented.

Algorithm A
1. A; := 1, for all i.

2. ORD(i) := T;/A;, for all i.

3. If ZA; = K, stop; otherwise continue.

4. Find h such that ORD(#) = max{ORD(i)}, for all i.
5.4, := A, + 1; ORD(h) := T,/A4,; Go to 3. -
In the proofs that follow, A° will denote the value of the <
vector A immediately before the i iteration; 4} will denote 5

u

“the value of the j*™ component of A‘; and unless otherwise s

noted A4 will denote the value of (4,, . . ., A,) after algorithm A <
terminates. On the i® iteration, T}/4; = || fr(AY], is reduced S
to T,/(A} + 1). This means that | f7(4") |, = Ifr (A" Y], and =

consequently, Z
(Dl < 1A o < 1fr(A)wri < (2-1)§

[¢]

Theorem 2.1.1 %
A is a maximax solution. §
Proof: 3

Let § be a minimax solution and assume 4 is not. Then3
12 lo < Ifr(4)llo. On the last iteration of algorithm yE
there will be some subscript b for which S, < A,, since other-5
wise the requirement that XS; = Z4; = K would imply%
A; = S for all j.

Let i be the last iteration such that S; = 4] for all j. Such an

clceld

iteration exists since A} = 1 and S; > 1 for all j. Let é
Then <
A+l = AL j# ¢ &

J 7’ o

and >
3

Airt = Al + 1.

Since this is the last iteration where S; > 4] for all j and sinceg

only A} changes, 4} = S.. Since 4 Ywas chosen for incrementa-
tion, /S, = T./A; > T;/A} for all j. But by 2.1

Do < 1fH(A) o = Te/4l = TJS. < 11w

which is a contradiction.

20z ludy

Lemma 2.i.2
A; < IMM() + 1, for all i.
2T,

Proof: As stated previously | fr(0)l, = < for all possible

configurations § of K processors. Thus, [fr(4)l. = 2T,

X
By 2.1) 1f(AYe = 1f(Dl = ?_g.f . Therefore, on each

jteration i of algorithm A, there exists A such thatﬂ' > Z—Tf .

4 - K
T T IT
n > " _ 2 Jforall n. C tly,
U TG 71 RMM(m) K O & M conseduenty

if4} = IMM(j) + 1, A} cannot be selected for incrementation.

B

The Computer Journal Volume 22 Number 2

We now present algorithm C which, as has been previously
stated, requires fewer iterations than algorithm A when the
number of processors is considerably greater than the number
of task classes.

Algorithm C
1. C; := IMM(i) + 1, for all i.

2. ORD(i) := T,/IMM(i), for all i.

3. Find 4 such that ORD(4) = min{ORD(})}, for all i.
4.C, :=C, — 1; ORD(h) := T},/(C, — 1).

5.If 2C; = K, stop; otherwise Go to 3.

Theorem 2.1.3
Algorithm C generates a minimax configuration.

Proof:
Assume algorithm C does not generate a minimax configura-
tion. Let § be a minimax configuration. Then

) 17 ()l < 1f2(CO)le -
Since
Tl Ti
e +1 < ’aag = Sl
1/ 28w > 1f2(CHlle -
Let j be the last iteration such that

1) = 1f+(CHll -

Let C‘ be chosen for decrementation. Then Ci*! = Ci,i # a

and Ci*! = CJ — 1. Moreover, T min{ T
-1 Ci-1

for all i. By choice || /(S < If(C?*)|l,. But since Ci*1
is the only component that has changed,

T,
ci+t 0 .
I/+(C*HI =
This implies
T; T, T;
P> l
Tz g T e 2

for all i. But this means that C/ — 1 < S; or C} < S, for all i;
which in turn implies that XCj < X'S;. But there exists at least
aj + 1* iteration so that K < XCj < XS; = K, which is a
contradiction.

2. The integer minisum problem
We will now turn our attention to the minisum problem.

Algorithm D
1. D; := 1, for all i.

2. ORD(i) : = g" , for all i.

3. If ZD; = K, stop; otherwise continue.
4. Find A such that ORD(h) = max{ORD(i)}, for all i.
T,
DD, + 1)’
In what follows, we will use the fact that if 4 and B are greater
than zero and' 4 > B, then
1

- <

A+1

5.D,:= D,,+l;ORD(h):~ ; Go to 3.

1

B+l 22)

;li—l
! —

Theorem 2.2.1
Algorithm D generates a minisum configuration.

The Computer Journal Volume 22 Number 2

Proof:
Algorithm D obviously works for L processors. Therefore,
assume it works for L + j processors. Since there are j iterations
Dj*1 will be the final configuration generated by algorithm D.
Thus,

L NI
D_ii-l-l - L{ Si
for all configurations § of L + j processors. Let § be any

configuration of L + j + 1 processors. Then there exists an 4
such that @, > Dj*! or Q, — 1 = Dj**.Choose asuch that

T, T, T; T,
DiFi T Dt T M\ DT T Dy
By (2.2),

Th _ _Zh < Th _ Tll < Ta _ _ Ta .
Qh —_— 1 Qh - Di-i’l D_'l;+l + 1 - D{;+l D£+l + 1
LetQ* =(Q1,...,Q,,— 1,..., Q). Then:

— Th Th < Ta _ Ta _g

Q 0,"0,-170, D' D'+l 3

[V

T, T, &

2 CEED L ECL

1 1 3 3

By assumption: =z
T, T; ?

2.5 2.5

12 |12 g_

which means 9
T; T; &

' Q

Adding equations (2.2.1.1) and (2.2.1.2) we get: §
Q

o

T' < z "Ii‘i %

Ql D! &

=4

o

which is equivalent to Z > Z D] + = - Since Q was ar®

arbitrary conﬁguratlon of L + j + 1 processors, algorlthm]}\
generates a minisum configuration for L + j + 1 processors01
Consequently, by induction, the theorem is true for all number@
of processors.

We now present the two algorithms which will be used in ther

clee

145

construction of algorithm D23. %
D
Algorithm D2 S
1. D2(i) := IMS(@i) + 1, for all i. 2
T; >
.) 1= — ! » for all 7. =
2. ORD(i) D20 = 1) D20) or all i =
o
3. Find % such that ORD(h) = max{ORD(i)}, for all i. N
i _1- e T,
4. D2(h) := D2(h) — 1; ORD(h) := (D2 = 1) Do)
5. If ZD2(i) = K, stop; otherwise Go to 3.
Algorithm D3
1. D3(i) := IMS(i), for all i.
T,
! » for all 4.
2. ORD() : = (D3 + 1) D30) or all i
3. If XD3(i) = K, stop; otherwise continue.
4. Find A such that ORD(#) = max{ORD(i)}, for all i.
T, .
5. D3(h) := D3(h) + 1; ORD() : D3(h) 3H T
Go to 3.
157

KJT, T, T;
z T, RMSG)? ~ RMS()2
From this it can be seen that for all i and j.

T; T; T;

IMSG UMSG) —1) > RMSG): ~ RMSG)?
T.

UMS@(G) + 1) zIMS(j) +2) @3)

Since RMS(i) = for all i and j.

Lemma 2.2.2

Either D; < IMS(i) + 1 for all i or D; > IMS(i) for all i.
Proof:

If there exists a j such that D; > IMS(j) + 1, then by (2,3),
all D; must have been incremented to at least IMS(i) since
algorithm D picks out the largest ORD(i). In this case
D; > IMS(i) for all i.

Theorem 2.2.3
If D, < IMS(@) + 1, algorlthm D2 generates an integer
minisum configuration.

Proof: B

Assume D2 # D. Choose 4 such that D2, < D, and choose /
such that D2, > D, Now consider the configuration S™
where:

S =D, —1;80 =D, +1; S0 =D, i #h,l .

Since
Ti > T,‘
then
T, T T, T
SU) S(l) = D,
or
Th Th Tl Tl
—h_ < -t 2.2.3.
D, D,-1 D, +1 D, (b

But for some iteration j we know that D2} =
chosen for decrementation. Therefore,
-T, -7,
(D, — 1) D, = (D2 — 1) D2i

D, and D2} is

Now D2} = D2, > D, so we have
L _ T = —T > -1, =
D, D,—1 DyDy—1) D(D, +1)
Tl Tl
i (2.2.3.2)
From (2.2.3.1) and (2.2.3.2) it follows that
T, T, T, T,
D, D,—-1 D,+1 D,
or
z" + _];' = Ty T,
D, D, D,—1" D,+1

and consequently,

25,7 2.5

Thus SV is a minisum configuration. Moreover we note that
SM is closer to D2 than is D in the sense that

If now D2 # S, the above argument can be repeated.
That is, we can again choose /4 and / (possibly different) such

that D2, < S{" and D2, > S{! and define a new configuration
S$@ where S’(lz) = S'('l) - 1; St(z) = S;” + 1; S§2) = Slgl)’
i # h, I. S? will again be a minisum configuration with
Z|8S® - D2;| <2|SM — D2;| . Since the sums of abso-
lute values are integers, we will eventually arrive at a minisum
configuration §™ = D2.

An argument parallel to that given above, utilising the fact
that algorithm D3 always increments values D3; serves to
prove:

Theorem 2.2.4
If D; > IMS(i) for all i, algorithm D3 generates an integer
minisum configuration.

For a set S let S; be the ith largest element in S (e.g. S; =
max(S), S, = max(S — {S,}), . . .). We define

F(x,S) =S,

Algorithm D23
Let Z = K — ZIMS(i)

T;
IfF<Z’{1MS(i) (IMS (i)+l)}> =

T;
max {(IMS(:) T 1) IMSG) + 2)}
then perform algorlthm D2; otherwise perform algorithm D3.

Theorem 2.2.5
Algorithm D23 generates an integer minisum configuration.

Proof:
Let

S = T;
(IMS@GE)(IMS@G) + 1)
and

T;
- {(IMS(I') + 1) (IMSG) + 2)} '

We must show that D; < IMS(i) + 1 if and only if
F(Z,S) > m.ax(R).

Let F(Z, S)' > max(R). By (2.3), no D; will be incremented

to IMS(i) + 2 until all D; are incremented to IMS(i). By
assumption:

§$,>8,>...28, >R, >...>R, .

Thus, Z of the D; (those corresponding to Sy, . .., S ;) will be
imcremented to IMS(i) + 1 before any D; are incremented to
IMS(@) + 2. But K = Z + XIMS(i), which implies that
after Z of the D; are incremented to IMS(i) + 1, all of theS
processors will have been allocated and hence, no D; will be
incremented to IMS(i) + 2. Thus, F(Z, S) = max(R) implies

D; < IMS(i) + 1 foralli.

Now suppose that D; < IMS(i) + 1 for all i. Assume
F(Z, S) < max(R). This means that before the D, correspond-
ing to S ; is incremented to /M S(i) + 1, the D; corresponding
to R, will be incremented to /M S(i) + 2 which is a contra-
diction. Thus D; < IMS(@) + 1 for all i implies
F(Z,S) > max(R). By Lemma 2.4.2, either D; < IMS(i) + 1
or D; > IMS(i). Consequently F(Z, S) < max(R) implies
D; = IMS(i) for all i. We can now apply Theorems 2.2.3 and
2.2.4 to complete the proof of Theorem 2.2.5.

3. Generalisations

The preceding section was concerned with the solution of the
minimax and minisum problems when two assumptions were
made concerning the multiprocessor system and its associated

The Computer Journal Volume 22 Number 2

[woo/woo dno olwepeoe//:sdiy Woll papeojuMo(]

¢/ce/aPie/|u

—

L uo1senb Aq 6171L621/GG L/

35

[¢e]

©

I\)
I\)

job stream. In this section we will present a set of procedures
and algorithms which will operate on multlprocessor systems
in which these assumptions are not valid. It is necessary,
however, to first indicate the plausibility of multiprocessor
systems and job streams which do not conform to these assump-
tions. The first requirement is that all task classes are able to
operate with only one processor. In most cases this does not
seem to be an unreasonable assumption. There are possible
circumstances, however, when this requirement would not be
satisfied. Consider a multiprocessor system similar to the
Burroughs system in which it is possible to change the character
of a subset of the processors so that one processor in the subset
generates hardware control signals which are then sent to all
of the other processors in the subset. This capability would
allow part of the multiprocessor system to be configured into
an array processor. If this capability were present, it would be
desirable to allocate processors to an array processing task
class in multiples of some minimum number 0,. This desir-
ability stems from the nature of array processing problems
(e.g. matrix computations). Thus, an array processing task
class would demand more than one processor before it could
begin servicing. Another possible situation in which the first
requirement would not be satisfied would be the existence of a
task class dedicated to the emulation of a conventional multi-
processor system. The operating system of such an emulated
multiprocessor system might expect at least two processors
to be present for proper operation. Thus, there may exist
task classes in the host multiprocessor system which require
a minimum number of processors M; before they can begin
servicing.

The second requirement that the number of task classes be
less than or equal to the number of processors is probably
unrealistic. For example, this requirement is not satisfied
for a 4 processor system with the following task classes:

1. Stack machine processing (e.g. compilations)

2. Arithmetic processing (e.g. numerical computations)
3. An emulator

4. Supervisor and maintenance functions

5. I/O processing.

The next two subsections are concerned with procedures which
allow allocation algorithms to be used when the two previous
restrictions are violated. The next subsection deals with the
removal of restriction 2, while the last subsection deals with
the removal of restriction 1.

1. Removing restriction 2 '

Restriction 2 specifies that the number of tasll classes is assumed
to be less than or equal to the number of] processors. Upon
removal of the restriction, it may occur that there are more
task classes contending for service than there are processors
to be allocated. In such a case, some of the task classes must
be eliminated as candidates for processors. An obvious
procedure which would effect this goal would be to order the
task classes by their associated T; and select the highest K for
allocation. This assumes restriction 1 is still in force. If this is
not the case, select the highest task classes such that the mini-
mum number of processors required is less than or equal to K.
Unfortunately, this scheme introduces a new problem. It is
possible that by this type of allocation some task classes may
be ‘frozen out’ (i.e. a task class may have a small associated T;
and the other task classes may have a high arrival rate of
service time requirements. This situation could result in some
of the task classes being denied processors for an indefinite
period of time). This inequity can be corrected and priorities
among the task classes can be incorporated by the following
scheme. Let P; be the priority of task class i and let C; be the

The Computer Journal Volume 22 Number 2

time since task class i was allocated at least one processor.
Let F(P;, C;, T;) be some function such that:

F(P,, C, T) > F(P;, C;, T), for P, > P,.

F(P;, C', T) > F(P;,, C}, T}), for C} > C? .
and

F(P, C,, T') > F(P;, C;, T?), for T} > T? .

Also require:

lim F(P;, C;, T;) = oo, for all C; and T;
lim F(P;, C,, T;) = oo, for all P; and T;
¢y~ @

and
lim F(P;, C;, T;) = oo, for all P; and C;
;= ®©

An example of such a functionis w, P; + w, C; + w5 T;, where
the w; are constants. In the algorithms of Section 2 replace T; by
F(P;, C;, T)). If the number of task classes exceeds the number
of processors, order the task classes by their associated value
of F and select the highest K task classes for allocation. ThisS
procedure will insure that no task class will ever becomes
‘frozen out’.

2. Removing restriction 1

(]

0.} POPEOJUM!

The removal of restriction 1 will require the modification of 3

the previous allocation algorithms. The algorithms presented =
in this section are generalisations of the algorithms presented &
_in Section 2. The following discussion will employ the nota-

tional conventions introduced in Section 2. Five algorithms
will be presented. Two are concerned with computing minimax 2

configurations for systems in which the number of processors o

-
(2]

[V
Q

Q.

3

e

O

allocated to task class 7 is a multiple of some number 0;. We?

have been unable to generalise the minisum algorithms of
Section 2 for the multiple processors case. Unfortunately, the &
generalisations of C and D23 do not generate optimum con-
figurations in all possible circumstances. The crux of the prob- =

lem lies in the fact that it may not be possible to allocate all =
of the available processors. While this characteristic does no ;

damage to the minimax generalisations, it means for minisum
that it is no longer sufficient to allocate processors by examining =
the consequences of allocating one processor at a time to each &
task class. The last three algorlthms compute minimax and

(@]

O

3

=

=
]
l\)
_\
O‘I
I\)

minisum configurations for systems in which the number of =

processors allocated to task class i must be greater than some
minimum number M;. We have been unable to develop ang
algorithm for the minimum number of processors problem &
which would correspond to D23. The difficulty stems from the S

(Q
('D

O

fact that it is possible that some of the M; can be less than —
IMM(i) + 1, while some can be greater than IMM (i). Under g

these circumstances, the number of processors to be allocated S,
may be less than necessary to allocate every task class at

©

N

least IM M (i) processors. This, of course, destroys the dichoto- ¥

mous case structure necessary in algorithm D23. For the pur-
poses of the following algorithms we will adopt restrictions
analogous to restriction 2 above, namely X0; < K and
IM; < K. The discussion in the preceding section can be
adapted to situations in which these restrictions are not
satisfied.

Algorithm E
1. Mark all i unfinished.

2. E; := 0, for all i.

3. ORD(i) := T}/E;, for all i.

4. Find A such that ORD(h) =
unfinished.

5. If ZE; + 0, > K, mark A finished; otherwise Go to 7.

max{T,/E;}, for all marked

159

6. If all i are marked finished, stop; otherwise Go to 4.

1. E, := E, + 0,; ORD(h) := T,/E,; Go to 4.

By an argument similar to that given for algorithm A
Ifr(EMlw < IfrE)w < IfHENw;i <j

Lemma 3.2.1

Let Q be a minimax configuration under the special constraint
Q; = m;:0,, m; a positive integer and assume algorithm E does
not generate a minimax configuration under this special
constraint. Then on the last iteration p of algorithm E, there
exists a subscript k such that 0, < EP.

Proof:
Assume Q; > E? for all j. Since E” is not a minimax configura-
tion under the special constraint, there is a subscript 4 such
that Q, > E%. This implies a positive integer n exists such that
Qn = E} + n-0, But algorithm E does not stop unless
2EP + 0, > K. Since Q; > E? for all j,

2 0;= % Er.

j#h j*h
This means 2Q, > XE? + 0, > K which is a contradiction.

Theorem 3.2.2
Algorithm E generates a minimax configuration under the
constraints E; = m - 0;, m; a positive integer and IS; < K.

Proof:
Let S be a minimax configuration under the special constraint
and assume E is not. On the last iteration of algorithm E
there will be some subscript b for which S, < E,, by Lemma
3.2.1.
Let i be the last iteration such that S; > E! for all j. Such an
iteration exists since E} = 0; and S > 0 for all j. Let
T./E! = || f{(E%){,. Then El+l = E} forj ;é cand Ei*! =
E! + 0. Since this is the last 1teratxon where S; > E' for all j
and since only E! changes, E! = S.. Since E! was chosen for
incrementation, T/S = c/E‘ T;/Ejfor allj. But by (3.1)

IfHE)lo < IfHEN o = T/E: = T.fS, < | fr(S)lw
which is a contradiction.
Algorithm F
L. F;:= IMM(i) — [IMM(i) mod 0,] + O, for all i.

2. ORD() := »foralli.

i i

3. Find 4 such that ORD(A) = min{ORD(i)}, for all i.

4.F,:= F, = 0,; ORD(A) := - T;.o .
h — Yn

5. If 2F; < K, stop; otherwise Go to 3.

Theorem 3.2.3
Algorithm F generates a minimax configuration under the
constraints F; = m - 0;, m a positive integer and ZF; < K.

Proof:
Assume algorithm F does not generate a minimax configura-
tion. Let S be a minimax configuration. Then

1728 < If2(F)|l . Now

T; ET,-
1/1Ne > grmres =
for all #; since if this were not true,
el
S. Sy

@1 .

would imply that for all i
L_T.__ T |
S; ~ S. RMM(®)
This would mean S; > RMM (i) for all i and
ZS; > ZRMM() =K
which would be a contradiction. Thus,
I (o = If1F e »
since F; > RMM (i) for all i. Let j be the last iteration such that

1/ 78w = I fr(F’)|l,. Let Fi be chosen for decrementation.
Then Fi*! = Fi, i # a and Fi*! = FJ — 0, Moreover,

L _ min Ti
Fi—0, Fi—0,

for all i. By the choice of j, | f7(S) o < IIfr(F/*")| . But since
FJj*1is the only component that has changed,

Dl = e

a

)

This implies: %
Ti T o

5, > e, ” V)l 2 S :

for all i. But this means that Ffi — 0, < S;or Fj < S, for allg,

which in turn implies that ZFJ < ZS,. But there exists at lea§
aj + 1% iteration so that K < XF) < XS; < K, which i 151(;.
contradiction. &
We will now turn our attention to the case in which a mm%
mum number of processors is required. Three algorithms wi
be presented. No generalisation of D23 will be given for reasons
discussed previously.

Algorithm U
1. U; := M, for all i.

2. ORD() : = Ail for all i.

3. If XU; = K, stop; otherwise, continue.
4. Find 4 such that ORD(h) = max{ORD(i)} for all i.

5.U, := U,+ 1; ORD(h) : —(7,G0t03
h

By an argument parallel to the proof of Theorem 2.1.2 we havg

L62¥/SS L/z/ze/aPIe/|ulwod/wod dno

nb Aq

Theorem 3.2.4.
Algorithm U generates a minimax configuration under th@
constraint U; > M, for all i.

Algorithm V
LLIfM; > IMM(i), V; := M, and mark i finished.

M < IMMG) 2 V; o= IMM(G) + 1.

. ORD(i) := T,/IMM(i), for all i marked unfinished.
. If 2V, = K, stop; otherwise continue.

. If all i are marked finished, stop; otherwise continue.

. Find A such that ORD(k) = min{ORD(i)}, for all i marked
unfinished.

. Vh = Vh - 1.
8. If V,, = M, mark h finished, Go to 4.
9. If Vh > M'., ORD(h) = Th/Vh - l; GO to 4.

SN b WN
20z Iudy 6 U0}

=

Lemma 3.2.5
If V,' = Mb then Vi = Ui’

Proof:
If M; > IMM(i) + 1, then since U! = M,,

The Computer Journal Volume 22 Number 2

T/U! < TJUIMM() + 1)

But T/(IMM(i) + 1) < T/RMM() < | f(O)ll,, < If+(T)]l,
for all iterations j. Thus, U} will never be incremented and
U; = M,. Also since M; > IMM(z) V=M,

If M, < IMM (h) and V,, =M, there must exist an iteration

j such that % < for all indices k where Vj # M,. By

h - l
the operation of algonthm V, Vi > M, and ZV} > K. Since
2U, = K, there exists an 1ndex p such that U, < V. Now
M, < U, so Vl # M, Since U, and V’ are mtegers

TP

U, < V] — 1 which means g” = Znh By the hypothesis of
P P
L T, T,
terat i —a
iteration j, U M . But
T T
IO = 1 /(O] = (7" ﬁh

for all iterations g. This means that for every iteration of
algorithm U, U} = M, will imply ORD(/) is never maximum
and thus U, = M,.

Theorem 3.2.6
Algorithm V generates a minimax configuration under the
constraint V; > M, for all i.

Proof:

Assume algorithm V does not generate a minimax configuration
under the stated constraint. Then || fT(U)II,, < |. SN w.
Since V| = IMM (i) + 1foralli, | f7(V")|o < Il /(U)o Letj
be the last iteration such that |f{(U)l, = /(7). Let VI

be chosen for decrementation. Then Vi*! = Vi i # a and
Vi*1 = yi — 1. Moreover,

To _ mind T
vi—1 vi—1

for all i such that V4 # M. By choice
I (@)llo < 1£2F* D

But since V/+! is the only component that has changed,

(P71 = 37 - This implies

Table 1 Simulation parameters
Parameter Possible values

Number of processors 4, 8, 16, 32, 64
Number of task classes 36,9

Microstore load time 500 microseconds

Service time quantum 1 millisecond

Saturation limit = 3. number of processors
Tasks processed 2,500

Delay time 100 milliseconds

Task classes 9 possible

But this means ¥ — 1 < U; or V4 < U, for all i such that
Vi # M, But applying Lemma 3.2.5 we must have V} < U;
for all i; which in turn implies ZVJ < XU,. But there exists at
least a (j + 1)* iteration so that K < XV} < ZU; = K which is
a contradiction.

Algorithm W
1. W; := M, for all i.
T,

2. ORD(i) := ——+t—— ,forall i

(i) oL) orall i
3. If ZW,; = K, stop; otherwise, continue.
4. Find A such that ORD(#) = max{ORD(i)}, for all i.
T,

5. W, := W, 1; ORD(h _
h T (h) := W, + 1)

; Goto 3.

0-oIwepeoe//:sd)y Woly papeojumod

Theorem 3.2.7
Algorithm W generates a minisum configuration under the:
constraint W; > M, for all i.

The proof of thls theorem parallels exactly the proof oé
Theorem 2.2.1.

D1ue/|ulwod

4. A simulation study
A simulation study was undertaken to compare mmlmax_
allocation, minisum allocation, and an allocation scheme:\)
proposed by Burroughs (Davis, Zucker and Campbell 1972)N
Burroughs’ allocation method queues all tasks in a smgleo1
queue. Whenever a processor becomes idle, it accepts they
next ready to run task from this task queue, loads the task’s§
associated microprogram and begins processing. It was ours

: .T i > .T S D = T; . opinion that this scheme would tend to cause higher microstorez
Vi—1 Vi—1 7 loading rates than either minimax or minisum allocation. The2
D
Table 2 Simulation statistics for the systems which used Burroughs’ allocation §
Task classes Processors Loads per task = ML* Total loads i~
4 41 1036 N
N
3 8 -47 1189
16 -46 1185
8 76 1938
6 16 -76 1936
32 78 " 1980
16 -82 2100
9 32 -83 2107
64 17 2047
The Computer Journal Volume 22 Number 2 161

3

Table 3 Simulation statistics for the systems which used minimax allocation

Reconf. Number Loads
Task per of per Total ML* — ML
classes Processors Task = R reconf. task = ML loads R
4 01 11 01 26 40
3 8 01 16 02 56 45
16 01 21 07 172 39
8 09 223 ‘14 352 69
6 16 -08 194 ‘18 455 72
32 04 109 12 297 165
16 13 318 27 679 42
0
9 32 07 175 21 523 8:9 g
o
64 04 89 22 537 13-8 &
—
Table 4 Simulation statistics for the systems which used minisum allocation =
©
Reconf. Number Loads :%
Task per of per Total ML* — ML g
classes Processors task = R reconf. task = ML loads R §
4 01 15 02 38 39-0 2
3 8 01 27 06 140 410 3
38
16 01 26 11 275 35-0 2
o)
8 09 223 ‘14 350 6-9 5
—
6 16 08 210 21 513 69 S
32 04 107 19 463 148 &
N
16 11 271 25 624 52 S
o
9 32 07 165 34 853 7-0 P
D
64 04 100 28 700 122 g
©

simulation was designed to test this hypothesis as well as to
provide an opportunity to investigate various reconfiguration
scheduling techniques.

The main goal of the simulation was to investigate the relative
merits of the algorithms as measured by their respective
microstore loading rates. Overhead due to reconfiguration was
included in the effectiveness measure. The simulation was
driven by a set of parameters summarised in Table 1 (for a
more detailed discussion of these parameters and of the
simulation programs see Nessett, 1974).

Some explanations are necessary so that the nature of the
parameters are well understood. The number of task classes
was kept less than the number of processors for each simulation
run (see the discussion on ‘removing restriction 2’ in Section 3).
The microstore load time was held constant since the measure
of interest—microstore loads per task serviced—was indepen-
dent of this value. During a task’s processing the processor
periodically checks to see if a reconfiguration has begun.
The time between these checks is the service time quantum.

The saturation limit is the maximum number of tasks active>
in the system at any one time. Each simulation run terminates=
after 2,500 tasks have been serviced. It was found that the§
servicing of 2,500 tasks was sufficient to ensure that the stat-*
istical measures had settled down to their appropriate values.
So that the initialisation of the system would not bias the
statistical measures, a delay time of 100 simulated milliseconds
was allowed to elapse before any statistical information was
gathered. Ad hoc, but, we believe, reasonable assumptions
were made about the various probability distributions (e.g.
service time distributions for the various task classes) that were
used in the simulation. These distributions, which are described
in detail in Nessett (1974), were the same for comparable
simulation runs across the three allocation schemes.

Before discussing the simulation results, some comments
should be made on how reconfigurations were scheduled for
the basic allocation algorithms. At first, reconfigurations were
scheduled to occur at fixed intervals of time. It was soon
discovered, however, that this method of reconfiguration

The Computer Journal Volume 22 Number 2

scheduling would not be acceptable because of high processor
idle rates. Instead a scheduling technique was used in which
reconfiguration occurs whenever a task class queue becomes
empty and as a result a processor assigned to that task class
becomes idle. This scheme allows the system to respond to its
own needs as they arise.

The results of the simulation are tabulated in Tables 2, 3,
and 4. The measure of effectiveness used to evaluate the three
allocation methods is derived from an inequality. If ML is the
microstore loads per task for either the minimax or minisum
allocation methods, ML* is the microstore loads per task
for the Burroughs allocation method, R is the reconfigurations
per task for either the minimax or minisum allocation methods,
RT is the time it takes to calculate a new reconfiguration,
and MSLT is the time it takes to load a processor’s nticrostore,
the basic allocation methods are more efficient than the
Burroughs method whenever

RT _ ML* — ML
MSLT R

The figures in the last column of Tables 3 and 4 indicate that
the basic allocation methods are quite attractive for systems
with a small number of task classes. For systems with more than
three task classes, the basic allocation method’s attractiveness
increases as the number of processors in the system increases.

References
ARTHANARI, T. S. and MUKHOPADHYAY, A. C. (1971).
pp. 135-138.
BAuEr, H. R. (1972).
Stanford University.
BAUER, H. and StonNE, H. (1970).
Computer Sc1ence Department, Stanford University.
CorrMAN, E. G., Jr. and GraHAM, R. L. (1972).
Davis, R. L., ZUCKER, S. and CampBELL, C. M. (1972).
pp. 685-703.
Hu, T. C. (1961).
NEsseTT, D. M. (1974).
Washington State University.
SzwaArc, W. (1968).

A Note on a Paper by W. Szwarc, Naval Research Logistics Quarterly, Vol. 1&3

Parallel Sequencing and Assembly Line Problems, Operations Research, Vol. 9, pp. 841-848.
Some Design and Allocation Problems for Dynamically Microprogrammable Multiprocessor Systems, Ph.D. Thesi

On Some Sequencing Problems, Naval Research Logistics Quarterly, Vol. 15, pp. 127-155.

This is probably due to the increase in the number of active
tasks with an increase in the number of processors. This
increase results in a lower number of reconfigurations per
task.

It remains to assess the relative merits of minimax and
minisum allocation. A comparison of Tables 3 and 4 shows that
minimax allocation is slightly superior to minisum allocation
for most of the system configurations. Furthermore, the
reconfigurations per task for both allocation methods are
equal for all but one of the configurations. This indicates that
minisum allocation using the future task entry prediction
method mentioned above does not increase the reconfiguration
interval as was hoped.

5. Conclusions
A technique has been presented to allocate processors in a
dynamically microprogrammable multiprocessor system. This
technique attempts to minimise the overhead due to microstore
loading in such a system. The technique incorporates a number
of algorithms which were shown to optimise certain measure§/
Finally, the results of a simulation study were presented which
indicate that the allocation technique proposed is more efficierit
than an allocation scheme suggested by Burroughs for realist@
values of microstore load time and time to calculate a new
system configuration.

/:sdny wo

=

Subproblem of the MxN Sequencing Problem, Report No. STAN-CS-72-324, Computer Science Departmeng
The Scheduling of N Tasks with M Operations on Two Processors, Report No. STAN-CS- 70—16%

Optimal Scheduling for Two-Processor Systems, Acta Informatica, Vol. 1, pp. 200- 21§
A Building Block Approach to Multiprocessing, Proc. of AFIPS (SJCC), Vol. 403

Book reviews

Fourier Transformation and Linear Differential Equations, by Zofia
Szmydt, 1977; 502 pages. (D. Reidel Publishing Co., $34.00)

This volume derives from the author’s lecture courses in Cracow
and Warsaw during the years 1966-74, and is a revised and extended
version of the original Polish edition of 1972. Its aim is to serve as a
textbook for graduate students who attend a course on partial
differential equations in a ‘modern’ setting. By this we mean that the
classical concept of a solution is enlarged to include any distribution
satisfying the given differential equation; if the data occurring in the
fundamental limit problems (i.e. initial- or boundary-value problems)
considered are sufficiently regular then every distributional solution
is also a classical one. The substantial mathematical foundation
needed to achieve the extra generality is provided in the first two
chapters, which contain an elegant exposition of the theory of
distributions and their Fourier transformation. This takes up nearly
half the book and could be used independently as the basis for an
introductory course on distributions. In the following chapter basic
definitions, concepts and methods for differential equations are
presented, while the three final chapters are concerned with the
application of the method of Fourier transformation to (i) the wave
equation, (ii) the equation of heat conduction and Schrédinger’s
equation, and (iii) the Laplace, Poisson and Helmholtz equations.
The aim here is, broadly speaking, to obtain the distributional
counterparts of known classical results.

As the author emphasises in her preface, the book is intended as a
monograph and not a course on differential equations, and the

The Computer Journal Volume 22 Number 2

a 17L6317/99L/Z/ZZ/GIO\@E/IU.&U

reader is referred elsewhere for the many important topics omitted®
However, for what it achieves in its own particular domain this book
can be warmly recommended. Material drawn from many sources
(notably the work of L. Schwartz, L. Hormander and the author’&
own research papers) is here beautifully integrated and re-presented3
No labour has been spared to ensure accuracy, rigour, completeness;
and intelligibility. There are numerous exercises with hints fo%>
solution, a wealth of explanatory footnotes, a list of symbols and are:
extensive bibliography. The translation is of the highest quality™
Except for the unfortunate omission of the publisher’s name froni®
many of the references, it is difficult to find a blemish.

G. F. MiLLER (Teddington)

FORTRAN Programming—A Supplement for Calculus Courses, by
William R. Fullar, 1977; 145 pages. (Springer-Verlag, $6.80)

This careful book is an introduction to FORTRAN programming
intended for use by students who are concurrently taking a beginning
calculus course. The aim is to provide a companion to calculus
courses so that students can gain added insight into the ideas of the
calculus through programming, but most FORTRAN features are
fully covered. Calculus topics include sequences and series, numeri-
cal integration and elementary differential equations. The author is
to be commended on an imaginative approach to the use of com-
puters in mathematics teaching that others might do well to imitate.

PETER WALLIS (Bath)

163

