An engineering consideration of spectral transforms for
ternary logic synthesis

S. L. Hurst
School of Electrical Engineering, University of Bath, Claverton Down, Bath BA2 7AY

This mainly tutorial paper attempts to look into the problems and possibilities of spectral trans-
formations which may be useful for ternary network synthesis, corresponding to the Walsh and
Rademacher-Walsh transforms which are being exploited in the binary area. In order to provide a
common basis for many readers, existing binary transforms and their meanings are briefly covered in
a largely non-mathematical form, from which starting point the desirable features of corresponding
ternary transforms are considered.
It will be seen that the higher valued radix of ternary logic raises complexities of interpretation
which are absent in the binary area, and hence the extension of certain existing design techniques
using spectral data from binary to ternary may prove difficult. Further extension to radices greater
than three, while raising no further fundamental mathematical problems, will compound the
difficulties of application.
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independent binary input variables
of a network or system, x;e {0, 1}.
function of the x; binary input
variables, f(x) € {0, 1}.

the Boolean Exclusive-OR opera-
tor, = modulo-2 addition in the
{0, 1} domain.

Hadamard matrix, with row and
column entriese {+1, —1}.
complete orthogonal 2" x 2"
square transform matrix, row and
column entriese {+1, —1}.

2" column vector representing f(x),
column entriese {+1, —1}.

2" column vector, representing the
spectrum of f(x), column entries
even integerse {—2",...,0,...,
+ 2"},

the individual spectral coefficients
of the spectrum S].

independent ternary input vari-
ables of a network or system;
X;e{0,1,2}.

function of the X; ternary input
variables, f(X) € {0, 1, 2}.

3" x 3" ternary transform matrix,
row and column entriese {1, @, a*}
unless otherwise stated.

3" column vector representing the
ternary function f(X), column en-
tries € {1, a, a} unless otherwise
stated.

3" column vector representing the
spectrum of f(X).

the individual spectral coefficients
of the ternary spectrum S,].
+120° rotational operator,

=(—% +j0-866) = 3,/1.

+90° rotational operator,

=0 +j1) =/-1

Mod, addition in {0, 1, 2} domain.
Mod; addition of 1 to f(X), see
Section 2.1.

Mod; addition of 2 to f(X), see
Section 2.1.
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1. Existing binary transforms
Considerable literature now exists and applications have beef
pursued in the field of binary transforms (Lechner, 19715
Coleman, 1971; Dertouzos, 1965; Karpovsky, 1976; Hursg;
1978; Edwards 1975a; 1977; Hurst, 1977; University of
Bath, 1977). These generally involve Walsh or Rademachets
Walsh or related matrix transformations to convert conver
tional binary data from the Boolean domain into an alternativég
domain, the spectral’ domain. The information content m
the two domains is identical, no information being lost 1g
transforming from one to the other -and vice versa. Thg
general situation is illustrated in Fig. 1.

Within the alternative spectral domain a wider set of numbe
is involved, ranging in even-integer values from —2" to + 2
for any n-variable situation Due to this set of numbers being
{-2", - (2" -2),. » + (2" — 2), + 2"} rather thag
{0 1}, the 1nformatlon content of each number (‘coefficient])
is considerably higher than that of the conventional {0, 1P
Boolean numbers. The logical meaning of the mathematic
transform and the values of the resulting coefficients in thg
spectral domain will first be reviewed.

1.1 Orthogonal transforms

The transform which may be employed to transform bina
data into the alternative spectral domain, or vice versa, is oné
of many possible complete orthogonal square matrix transs
forms (Lechner, 1971; Coleman, 1971; Dertouzos, 19653
Karpovsky, 1976; Hurst, 1978; University of Bath, 1977
Harr, 1910; Radamacher, 1922; Walsh, 1923; Paley, 1932);
These many possibilities are in general variations of each otheﬁ
with different row or column orderings, as will be noted later.
The mathematical terminology ‘complete, orthogonal’ effec-
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Boolean domain. The transform. Spectral domain.

Binary data, Some mathematical
conventionally transform, such as
{0,1} a matrix multiplication

Original binary data,
re-enumerated in some
wider set of numbers
not confined to {0,1}

———————————>» FORWARD TRANSFORMATION
(Boolean to spectral)
REVERSE TRANSFORMATION ==
( spectral to Boolean)

Fig. 1 The spectral transformation of binary data, the same informa-
tion content being maintained in the two domains
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tively means that it is always possible to reconstruct the given
data from the transformed data, see Fig. 1, i.e. there is no
information loss in applying the transformation from one
domain to the other.

The build-up of complete orthogonal binary transform
matrices is most readily illustrated by considering the 2-valued
Hadamard matrix ordering, namely

Hoa I0HLt [l 1] o)

Expressing this for the three lowest-order useful cases we
have the matrices detailed in Table 1. Note, each matrix H,, is a
2" x 2" square matrix. Also if we examine, say, the H; matrix,

Table 1 Three low-order Hadamard matrices
1 1 1 1

11 1 -1 1 -1

H‘_[l —1]H2_1 1 -1 -1

1 -1 -1 1

11 1 1 1 1 1 1]
1 -1 1 -1 1 -1 1 -1
1 1 -1 -1 1 1 -1 -1
H.o=|! -1 -1 1 1 -1 -1 1
371t 111 -1 -1 -1 -1
1 -1 1 -1 -1 1 -1 1
1 1 -1 -1 -1 -1 1 1
1 -1 -1 1 -1 1 1 -1]

we will see that the number of changes from +1 to —1 and
vice versa along each row, and down each column, of the
matrix is dissimilar. The term ‘sequency’ has been applied to
this property.

Looking further at the 23 x 23 Hadamard matrix, for example,
we may identify the row sequency as in Table 2(a). If we
rearrange the row ordering the resulting matrices remain
complete and orthogonal (Hurst, 1978; Paley, 1932; Hatfield
Polytechnic, 1973), but now with dissimilar sequency ordering,
as shown by the two further examples given in Table 2.

It is apparent that these matrices, whilst being binary in
nature, do not employ the more conventional binary numbers
of {0, 1}. However, if we recode + 1 - 0and — 1 — 1 the
matrices detailed in Table 2 translate into the {0, 1} format
shown in Table 3. However we should not undertake mathe-
matical matrix multiplication with these {0, 1} matrices,
as the zeros in the matrices are ‘destructive’—multiplication
of any number by zero always gives zero, and hence loss of
information is inherently present. However what this recoding
from {+1, —1} to {0, 1} shows is that the rows of the ortho-
gonal transforms in fact correspond to binary inputs x, to x,
and all possible Exclusive-OR’s of these inputs, together
with a constant input which is normally termed x,. This func-
tion interpretation is tabulated alongside the renumbered
transforms in Table 3. We will refer to this interpretation in
Section 1.2.

Whilst we need not consider here the full mathematical
subtleties of these matrices, it may be observed that:

(a) except for the first row there is always an equal number of

Table 2 Three possible sequency orderings of the rows of
n = 3 complete orthogonal matrices. (a9) Hadamard, (b) Walsh,
(c) Rademacher-Walsh

Table 3 Recoding of the { + 1, — 1} orthogonal matrices of
Table 2 into {0, 1} matrices, by the direct substitution of + 1—-0,
-1->1

Sequency Function
(1 1 1 1 1 1 1 17 0 [0 0 0 0 0 0 0 O Xo
1 -1 1 -1 1 -1 1 -1 7 01 010101 X3
1 1 -1 -1 1 1 -1 -1 3 001100171 X,
1 -1 -1 1 1 -1 -1 1 4 01100110 X, @ X,
1 1 1 1 -1 -1 -1 -1 1 000O0T1TI1TH1/1 X,
1 -1 1 -1 -1 1 -1 1 6 01 011010 x; D x,
1 1 -1 -1 -1 -1 1 1 2 00111100 x; @ x,
|1 -1 -1 1 -1 1 1 —1] 5 (01 10100 1] X, D x, D x,
@ (@)
Sequency Function
1 1 1 1 1 1 1 1] 0 [0 0 0 0 0 0 0 07 Xo
1 1 1 1 -1 -1 -1 -1 1 000O0T1T1T1]1 X,
1 1 -1 -1 -1 -1 1 1 2 00111100 x, @ x,
1 1 -1 -1 1 1 -1 -1 3 00110011 X,
1 -1 -1 1 1 -1 -1 1 4 01100110 X, D x3
1 -1 -1 1 -1 1 1 -1 5 01101001 X, D x, P x;
1 -1 1 -1 -1 1 -1 1 6 01011010 X, D x4
1 -1 1 -1 1 -1 1 -1] 7 0101010 1] x
® ®
Sequency Function
B! 1 1 1 1 1 1 17 0 [0 0 0 0 0 0 0 07 X
1 1 1 1 -1 -1 -1 -1 1 000O0T1T1T171 X,
1 1 -1 -1 1 1 -1 -1 3 00110011 X,
1 -1 1 -1 1 -1 1 -1 7 01010101 X3
1 1 -1 -1 -1 -1 1 1 2 00111100 x; @ x,
1 -1 1 -1 -1 1 -1 1 6 01011010 X, @ x;3
1 -1 -1 1 1 -1 -1 1 4 01100110 X, D x5
|1 -1 -1 1 -1 1 1 —1] 5 |01 1 010 0 1] X D x, D x;
© ©
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+1’s and —1’s in each row of the {+1, —1} matrices—
each row except the first therefore sums to zero

(b) the product of the corresponding entries in any two rows
of a {+1, —1} matrix always yields the entries of a valid
row in the matrix—indeed all rows of complete orthogonal
{+1, —1} matrices may be generated by the product
of two other appropriate rows

() if the corresponding entries in any two dissimilar rows of a
{+1, —1} matrix are multiplied together, the products
always sum to zero—this is a fundamental property of all
orthogonal matrices

(d) similarly, in the recoded {0, 1} matrices modulo-2 addition,
which is equivalent to the Exclusive-OR operation, on the
row entries always yields a valid row—all rows may there-
fore be generated by Mod , addition of two other appropri-
ate rows. The correspondence of mathematical multiplica-
tionina {+1, —1} domain and Mod, addition (Exclusive-
OR) in a {0, 1} domain is thus demonstrated.

With these brief comments let us continue to review the results

of using these matrices as domain transforms.

1.2 Boolean-domain to spectral-domain transformation
Application of the above transforms is as follows:
[TIF] =S] ()]
where [T] = the appropriate 2" x 2" Walsh or Rademacher-
Walsh or other chosen transform,

F] = 2" column vector defining the given function f(x),

S] = resultant 2" column vector, giving the spectral
coefficients for f(x).
The column vector F] is the normal minterm output truth-table
for f(x), but recoded into {+1, —1} from the more usual
{0, 1} coding.
The inverse transformation is equally available, namely

F1 =[T]7'S] 3)
where [T] ™! is the inverse of [T] *

Applying the forward transformation procedure to a simple
3-variable function, say f(x) = [X;x, + x,X; + X,x3], we
have the following. The output vector of f(x) in {0, 1} form
and recoded in {+1, —1} form is as follows:—

1
1
-1
-1
-1
-1

X1X,X3
X1X3X3
X1%,X3
X1X3X3
X1X3X3
X1X)X3
X1X,X3 1
X1X3X3 -1
Hence using, say, the Rademacher-Walsh form of the trans-
form we have the matrix multiplication:

—_—0 - — O O

11 1 1 1 1 1 17 1T —27
1 1 1 1 -1 -1 -1 -1 1 +2
1 1 -1 -1 1 1 -1 —=1| =1 +2
1 -1 1 =1 1 =1 1 =1| =1|_ +2
1 1 -1 -1 =1 =1 1 1| =1|T +6
1 -1 1 -1 -1 1 -1 1| -1 -2
1 -1 -1 1 1 -1 =1 1 1 -2
1 -1 -1 1 -1 1 1 -1 -1] +2]

[T] F1 = S]

*Note, the inverse transform [T ]! of any orthogonal binary matrix
1
[T]is equal to ;[T]‘, where [T]¢ is the transpose of [T]and kisa

scaling factor, equal to 2” in our case. Should the forward transform
[T ] be symmetric then [T ]¢* = [T ], and hence the forward and inverse
transforms are identical apart from the scaling factor k.
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The resultant spectrum S] would conventionally be identified
and recorded as:

ro ry r; rs ry2 rys ras; ry23
-2 2 2 2 6 -2 -2 2

Note if we had used the Hadamard or any other transform with
alternative row orderings then we should have produced
exactly the same spectral coefficients for S], but in a different
order corresponding to the different row ordering of [T].

The logical significance of each of these coefficient values is
briefly as follows.

(a) The r, term is numerically equal to the number of 0’s
(+1’s) in the function output f(x) minus the number of
I’s (—1’s); should f(x) be stuck-at-0, say, then r, would
be +2" and all other coefficients would be zero.

(b) The r, term is numerically equal to {(the number of agree-
ments between input x, and output f(x)) — (the number of
disagreements between x, and f(x))}, i.e. it is a correlation
coefficient between input x, and the function output;
should f(x) be merely x, then r, would be +2" with all5
other coefficients zero; should f(x) be merely X; then r1§
would be —2" all other coefficients zero.

} PapEO|

(c) Similarly the following spectral coefficients rj, r3, . . . , ry
each represent a numerical correlation between an inputs
X,, X3, - - . , X, and the function output f(x).

(d) The remaining coefficient values each represent {(the3
number of agreements between an Exclusive-OR combina-s
tion of the inputs and output f(x))—(the number of d1s-m
agreements between the Exclusive-OR combination and‘D
f(x))}, that is correlation coefficients between all possxble:O
Exclusive-OR’s of the x;’s and the function output; forg
example r,, represents the correlation between [x; @ x,]3
and f(x), r,3 the correlation between [x; @ x3;] and f(x),%
and so on up to the correlation between [x; @ x, @D . g
@ x,] and f(x). Should f(x) be, say, [x, @ x3], then co=
efficient r,; will be maximum-valued, with all otherm
coefficients zero.

dny w
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This meaning of the spectral coefficients can be emphasised ifS
we rewrite the above {+1, —1} transform in {0, 1} form, and®
then instead of performing a normal matrix multxphcatlong>
and summation procedure do an {(agreement)— (dxsagree-,\,
ment)} count along the matrix row and vector column entrles&o
to determine the resultant coefficient values of S]. The>
reader may readily confirm the following; the final coefﬁcnent<
ry,3, for example, represents five agreements and threeg

disagreements. g
x[0 0 0 00 0 0 0] 0] —-27r 2
x/0 000111 1] 0 +2|r, 3
x,]0 01 1 00 1 1] 1 +2|r, S
x3J0 1. 01 01 0 1) 1| _+2|r; N
X, ®x,{0 01 1 11 0 0f 1|~ +6]|ry, B
X, @x,J0 1 01 101 0| 1] —=2]r;
x,®x3]0 1 1 0 01 1 0] O —2|r,;
X, ®x, ®x3{0 1 1 01 0 0 1 1] 2]ry2s

Hence the supreme significance of the {+1 - 1} mathematics
is that it gives a readily-executed arithmetic correlation pro-
cedure between inputs and output of a binary function, giving
us a final numerical measure of what is ‘important’ in deter-
mining the function output.

1.3 Uses of spectral information

The principal uses which have been considered for binary
spectral data are as follows. The possible availability of such
techniques in the ternary area is clearly an incentive to pursue
a parallel line of mathematical development for the analysis
and synthesis of ternary functions.
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Table 4 Tabulation of the principal characteristics of established binary transforms, and suggested corresponding characteristics

for the ternary area

a given function of n independent variables

Established binary Suggested corresponding ternary
characteristics characteristics
1. Size of transform matrix for » independent 2" x 2" 3" x 3"
variables
2. No. of spectral coefficients to define 2" 3"

3. Orthogonality construction of a transform
matrix

The summation of the products
of corresponding entries of any
two rows sums to zero

The summation of the products
of corresponding entries of any
two rows sums to zero

4. Transform matrix row and column entries

Two values, viz {+1, —1}

Three values, {?, ?, 7}

5. Meaning of the rows of the transform matrix

A constant x,, the independent
binary inputs x, to x,, and all
different Exclusive-OR (Mod,
additions) of the inputs

A constant X, the independent
ternary inputs X, to X,, and all
different Mod, additions of the
inputs

6. Meaning of the spectral coefficient values

Correlation coefficients of all
inputs and Exclusive-OR’s of all
inputs with the output f(x)

Correlation coefficients of all
inputs and Mod, additions of all
inputs with the output f(X)

7. Maximum magnitude of any spectral coefficient || 2"

(@) The classification of Boolean functions into compact
canonical classifications; use of the canonic classes for the
specification of universal logic gates—‘ULG’s’ (Lechner,
1971; Dertouzos, 1965; Hurst, 1978; Edwards, 1975a;
Tzafestas et al., 1976; Edwards, 1975b)

(b) Direct use of the spectral coefficient values in logic synthesis
procedures (Lechner, 1971; Coleman, 1971; Dertouzos,
1965; Karpovsky, 1976; Hurst, 1978; Edwards, 1975a;
1977; University of Bath, 1977)

(c) Determination of simple and complex symmetries in
Boolean functions by equal-magnitude coefficient pairing;
use of such symmetries in logic synthesis (Hurst, 1977;
1978; Edwards and Hurst, 1976)

(d) Optimisation of state assignments for arbitrary sequential
machines (Edwards and Hurst, 1976; 1978)

(e) Use of spectral data for fault diagnosis and the synthesis
of easily tested logic networks (Edwards, 1977; Hurst,
1974)

Details of these areas as far as they have been currently re-
ported may be found in the cited references.

Having surveyed this binary area, let us now consider the
problems of pursuing some parallel line of development in the
ternary field.

2. A provisional consideration of ternary transforms

The fundamental requirement from a ternary transform is that
it shall transform the three-valued ternary data into some
alternative and useful spectral data, as in Fig. 1, where each
coefficient value in the resulting spectral domain has some
global information content.

It is tempting to compile the tabulation of Table 4, to mirror
in the ternary area the characteristics which we have seen to be
present in the established binary area. Whether we can achieve
the ternary listing remains to be considered later.

It is evident that for the ternary spectral coefficients, however
derived, to be fully explicit the coefficient values should be
unique for any given function f(X). This implies that a reverse
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transform from the ternary spectral domain back to the three- S
valued domain must exist, although whether the inverse
transform can have such a simple rclationship to the forward >
transform as exists in the binary case remains to be considered. =
However, the generation of the inverse transform must take O
second place to the initial formulation of a useful forward R
transform, which gives some or all of the characteristics
suggested in Table 4.

2.1 ‘Correlation’ for the ternary case

Still looking at the desirata listed in Table 4, let us first consider
how we might numerically indicate the correlation of a par-
ticular ternary input condition with a ternary output f(X),
that is details 6 and 7 of Table 4. The meaning in the binary

case was simple and explicit, a high positive value spectral

coefficient, say r,, indicating a high agreement of f(x) with x,,
with a high negative value coefficient indicating a high agree-
ment with X, (disagreement with x,) (Hurst, 1978; University
of Bath, 1977; Hurst, 1974). Real positive and real negative
values therefore were adequate to define the binary correlations

What is mathematically achieved by simple multiplication

The Computer Journal Volume 22 Number 2



in the binary transform is the positive value of +1-:0 when
either of the two binary values of +1 or —1 are multiplied
together, i.e. multiplication of matrix row and function
column vector entries of the same value (agreement) yields
+1-0. Unfortunately as there are only two and not three
square roots of any constant, it is impossible to use any three
real or complex numbers in our proposed ternary transforms
to give a fixed (maximum) value when any one of three values
is multiplied by itself. Thus fundamentally we cannot
have identically encoded matrix row and column vector entries
for the ternary case.

However, consider Fig. 2. In Fig. 2(b) a symmetrical com-
plex-number recoding for the three ternary logic values is
suggested. The ‘@’ operator is a +120° rotational operator,
= (—% +j0:866).*

Now in order to achieve a maximum positive value coefficient
in a domain transform, the matrix row entries may be recoded
{0, 1, 2} - {1, a, a*}, but the function column vector must be
récoded {0, 1, 2} — {1, @?, a}. Continuing, if we now consider
say a matrix row corresponding to input X, ina 9 x 9 trans-
form matrix, and a function f(X) which is merely f(X) = X,,
we have the part-transform matrix operation:
'.........'1-.'1

111 aaa ad @& & R,

]

QR[N KQI[] =
SRS

L - - -
[Tt] Fr] = St]
whence
Ro=14+1+1+@+ +a +a +a +a°
=9,
= a maximum correlation of f(X) with the matrix row
entries.

Should we have f(X) some other function of X, say X, or X,
where X, and X, are defined by

Xi | "‘7i i
0 1 2
1 2 0
2 0 1

then this part-transform may be readily seen to yield the
following spectral coefficient values:

@fX)=X,:R, =+ +a +da*+a +d +d°

+ad* +a*

= 9a?
Bfx)=X,:R,=a+a+a+a+a+a+a+a+a

= 9a

Hence useful and distinguishable spectral coefficient values
seem to result; by suitable completion of the remaining rows
of the transform matrix remaining spectral coefficients giving
other correlation measurements should be possible.

If instead of the 120° ‘a’ operator of Fig. 2(b) we choose the

90° 4j” operator of Fig. 2(c), where j & \/— 1, we may proceed as

*This ‘a’ operator may be recognised as the same complex operator
employed by power engineers in the analysis of three-phase ac
systems. A more detailed study of all uses of this operator in power
engineering may possibly be of significance for our ternary logic
research.
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previously. If we now recode the matrix row entries {0, 1, 2}
by {1, j, —1}, and the function column vector entries {0, 1, 2}

by {1, —j, —1}, the spectral coefficient value for R, in the
-above cases becomes:
@fX) =X, : Ry =1+1+1—-j"=j*=j+1+1
+ 1,
=9
OX)=X,:Ry=—j—j—j—j—j—j—1-1-1,
=—=3-6j
@QfX)=X,:Ry=—1—1—-1+j+j+j+j+j+J
=—-3+6j

Whilst these three results are unique and distinctive for the
three cases, the previous correlation coefficient values which
all involve a ‘9’ for f(X) superficially appear preferable. We
will, therefore, continue our discussions here with the ‘a@’
operator as an integral part of our transform procedure.

2.2 The {1, a, a*} transform matrices
Let us build up our ternary transform matrices in a 51m11§r
manner to that illustrated in Section 1.1 for the binagy

Hadamard matrix. Therefore: §
An An An g

4001154041 0 |4, ad, o4, @)

4, a*4, ad, E

ary

c.f. equation (1), where 4 temporarily represents the terna
matrix [T,]. Hence for the first two useful-dimensioned matn@s

we have: )
3

1 1 1 o

4, =1 a |, ) 5
1 & a S

1 1 1 1 1 1 1 1 17 é)

1l a &1 a &1 a a + El

1 ¢ a 1 & a 1 & a 2

11 1 a a a & & & o
4,=|1 a a a a1 & 1 a J N
1 a2 a a 1 & & a 1 N

11 1 & & a* a a a o

l a & &1 a a a1 §

|1 @> a @ a 1| a 1 a*] &

The Hadamard matrices of Section 1 are particular cases 'of
these ternary matrices, with one of the three entries delet
and recoded {+1, —1}.

Considering these ternary matrices, we may observe:

(a) the product of the entries of any row multiplied by ttge
complex conjugates of the entries always sums to a constant
k = 3", and also the entries of any row multiplied by tlg
complex conjugates of any other row always sums to zero™
The matrix therefore is an orthogonal matrix (Birkhoff
and MacLane, 1965; Hohn, 1964 ; Bell, 1975)

(b) except for the first row, each row contains an equal number
of I’s, @’s and a®’s, and therefore sums to zero**

(c) the product of the corresponding entries in any two rows
of the matrix or the entries of any single row multiplied
by themselves, always yields a valid row in the matrix—
indeed all rows may be generated by the products of other
appropriate rows.

6l Uo 15@Mq

*Recall the complex conjugate of (x + jy) is (x F jy), where x and y

are real numbers and j = 4/ —1.

**Recall the complex additions and multiplications: ¢ + a = 2a;
a2 + a2 = 2a%;a + a2 = —1;1 + a + a2 = 0; aa = a?;
aa® = a3 = 1; a%? = a* = a.

1m
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Fig.3 Then = 2 (9 x 9) ternary matrix functions, plotted with the
matrix {1, a, a2} row entries recoded as {0, 1, 2}

X1° X1@X2°X2

XN 1] 2 X0 |1 ]2 XN_o|1]2
+10[0(0 0|0|1]2 0|10|2(1
1{0]0]0 1101112 1[0]2]1
21 0[0]0 2(0[1[2 (0] 2|1
( XO (d) X1 (9)X1°X1
X, X, X,
XN_0]1]2 XN_©0]1]2 XNo}1]2
*{0]0]0 0| 0[1]|2 °10]2[1
JRERIR 11112]0 1111012
:[2]2]2 211]0|2 2[2]1]0
() Xz (¢)X1@X2 (h)X]OX1OX2
X4 X, X4
xzo|2 xzoiz xz.|2
+1 0|00 0|0]1(2 0|0 21
1(212{2 1{2]0(1 1(2]1]0
(1]1]1 2(112]0 2(110]2

(¢) X2°X2 (1) X1 oXo0Xo (i) XjoX °X2°X2

Fig. 4 Karnaugh-map plots of the nine » = 2 matrix functions of Fig.
3, recoded {0, 1,2}

The last two properties are evident from the definition of 4, in
Equation (4).

Paralleling the development with the binary transforms, we
may ascribe an appropriate logical property to each row of these
ternary matrices. Taking for example the 9 x 9 matrix and
recalling that the matrix entries {1, a, @*} are a recoding of the
more conventional logic values {0, 1, 2} respectively, we may
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identify the matrix rows as follows:

Logical significance
11111111 17 Xo
la ¢*1 a a1 a & X,
la?a 1 a>a 1l & a X,®X,
111 a a a a?a®ad X,
la a>a a1 a1 a X, ® X,
l1a*a a 1 a*a*>a 1 X, ®X,® X,
11 1 a*a*a*a a a X, ®X,
la a?a®1 a a &1 X, ®X,®X,
(1a?a a?a 1 a1 & X, ®X, ®X,®X,

where ® is the logical operation of modulo-3 addition (c.f.
Mod, addition, = Exclusive-OR in the binary case). Notice
that whilst in the binary transforms the entries of any row
multiplied by themselves reconstruct the first (null) row of the
matrix, in the ternary case each row (other than the first)
has to be multiplied by itself three times to reconstruct the
first row of the matrix. This is consistent, since

[A(X) ® f(X) ®f(X)] = constant for any f(X) .

Equally, the entries of any row multiplied by their respective
complex conjugates reconstruct the first row.

What is not obvious, however, is how to allocate anym
‘sequency’ meaning to the rows of these ternary transforms,_,
corresponding to the binary situation illustrated in Section 1. ]
The n = 2 ternary matrix entries may be graphically illustrated =
as in Fig. 3, where clearly there is a dissimilar ‘waveform’g
associated with each transform row, but precisely how to%
quantify this, or indeed if there is any practical significance i an
attempting such a quantification, is not apparent at thlsB
stage of development.

An alternative representation of these n = 2 entries is shownu
in Fig. 4, using a Karnaugh-map format similar to that3
employed in the binary area. We will refer to these mappmgs\
again in Section 3.3.

peojumog

[woo

2.3 The inverse transform
The inverse transform [T]™! of any given transform [T] is

defined by:
(mmr 2l
where [|] = the unit matrix, that is a matrix with all I’s on
the main diagonal and zeros elsewhere.

Now for any square orthogonal matrix [T] we have that&
[T]7!is given by the hermitian conjugate matrix [T]*, times an=
appropriate scaling factor, where [T]* is obtained by takingg
the complex conjugate of all the individual entries of [T] and&
transposing corresponding rows and columns, that is:

[T17 = 71", = 0T

SGZV/QLL/Z/ZZ/GIOHJQ/IU

judy g1 uo

where [T*] represents the complex conjugate entries of [T]'\’
and [ ]* represents the row and column transpose (Birkhoff®
and MacLane, 1965; Hohn, 1964; Bell, 1975).*

This is illustrated by the following development. Using for the
moment the same notation as in Equations (4) and (5), we

have:
[An+ 1] [An+ l]-l = [|] ’
4, 4, 4, -1 1 00
4, ad, a*4,|| 4.4, =0 1 0},
4, a*4, ad, 0 01
whence the following result readily follows:

*Note, in the binary case, with only real positive and real negative
and not complex values in [T], then [T*] = [T] and hence [T]!is

1
ly —-[T1t.
mereyk[T]
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Table 5 The spectral coefficients for all twentyseven functions of a single ternary variable

Note that the complex conjugate of (0 + ad,) is (0 — ad,),
= a*4,, and that of (0 + a24,)is (0 — a*4,), = ad,. Hence the
inverse of the forward ternary transform [T,] is obtained by
interchanging a and a@? in the forward transform, with a con-

stant scaling factor% » k in this case being 3". For n = 1 and
n = 2 we therefore have:
11 1
IR U
(417" =5|1a%a
3 ) ]
|1 a a
(11 1 1 1 1 11 17
la*a l a*a 1 da } @)
la @*1 a @1 a &
2 2
41" t=1|11 1 a”a”a"a a a
[4.] 3—21a2aalala1a2 )
la a>a*1 a a a*1
11 1 aaa dada
la*a a1l a>ad*a l
|1la i*a a1 &*1 a

From these developments it appears that we have a possible
transformation procedure to convert ternary data into a spec-
tral domain, and vice versa should we so require. Let us there-
fore examine some simple results of applying these domain
transforms.

3. Execution of the proposed ternary transforms
The execution of the matrix transformations considered in the
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X; St]
0 1 2 R, R, Ry,
So 0 0 0 3 0 0
f1 0 0 1 2+a 1 +2a 2 +a?
/> 0 0 2 2+a 2+a 1 + 247
f3 0 1 0 2 +a? 2+a 1+ 2a
fa 0 1 1 1 +2a* 2+a 2+a
fs 0 1 2 0 3
fes 0 2 0 24a 1 + 24a° 2+a
fa 0 2 1 0 0 3
S5 0 2 2 1+ 2a 2 +a* 2 +d?
fo 1 0 0 2 +a* a+2a* a + 24a*
fio 1 0 1 1 + 24? 2a + a* 1 4 2a*
S11 1 0 2 0 0 342
f12 1 1 0 1 + 24* 1 + 24° 2a +a
S13 1 1 1 3a? 0 0 ©
Sia 1 1 2 a + 2a* 2+a a + 2a*
Jis 1 2 0 0 3a? 0 &
fie 1 2 1 a +2a* a + 2a* 2+a ¢
f1q 1 2 2 2a + a* 1 4 24° 1+ 2a i
fis 2 0 0 2+a 2a +a 2a +a E
Sio 2 0 1 0 3a 0 ¥
f20 2 0 2 1 +2a 1 +2a a+2a* 9
S 2 1 0 0 0 3a
Sz 2 1 1 a + 24 1 +2a 1+2a
fas 2 1 2 2a + a? 2+a 2a +a
faa 2 2 0 1+ 2a a+2a 1+ 2a
fas 2 2 1 2a + a* 2a +a 2+a
f26 2 2 2 3a 0 0
_A,, A,, A,, -A,, An A” [1 0 O Ternary domain. The transform. Spectral domain.
4, ad, azA,,] 4, azA,, aA,,:| =k|0 1 0] ©) Temary data, Ternary Original ternary data,
|4, 4’4, ad,|l4, a4, a4, 0 01 C{°a\"'¢zn}ﬁmally transform reenumerated in 2

numbers

~————o—> FORWARD TRANSFORMATION
(ternary to spectral)

REVERSE TRANSFORMATION
( spectral %o ternary)

Fig. 5 The spectral transformation of ternary data, corresponding
the binary situation of Fig. 1

19006 B €562/ L/2/2z/P1PIe/|UlWoo Auss-chs-sius

(o]

previous section will hopefully enable ternary functions to be
transformed into the spectral domain with useful resultse
We are therefore in a position to mirror Fig. 1 for the ternarﬁ
area, as shown in Fig. 5.

As the amount of data and size of the ternary transfom%
matrix rapidly increases with n, we will confine our discussions
here to n < 2 cases. The transform matrices for n > 2 can
readily be compiled from the development of Equations (5)
and (7).

3.1 Functions of one variable X ,
Using the n = 1 transform

1 1 1
T]= [1 a az} ,
1 & a

the spectral coefficients for all twentyseven possible functions
of one ternary variable may be computed. The results are
listed in Table 5. Note, the designations Ry, R, R, for the
spectral coefficients correspond to the matrix rows X,, X;,
X, ® X,, respectively.
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To demonstrate the inverse transform, take say function f, ,,

fX)=2,1,1:
a + 2a*
1+ 2a

1 1 1 1
51 @ a
1 a &

1+ 2a
[-I“t]_1 Sl]
(@+2d*) + (1 +2a) + (1 +2a)
=(a+2a2)+(a2+2)+(a+2a2)]x_l’
(@ +2a% + (a+2d% + @ +2)
=Fr]
=2 + 5a + 24* 1
2+2a+5a2]><§
2 + 2a + 54* ’
X, X, X4
x2 0] 2 x2 ol 2 xz [] 1 2
o111 o|0[Of1 ¢12|0]1
112]2|2 111 110]1]2
2{0]0] 0 21 22|12 2(112]0
(a) (b) (c)
. X| x1
XN ]']?2 XNo]t]2
*|0[{0]0 012|101
1020 1 120
2 2]12]2 2{ 0] 2|1
(@ (@)
Xy X X,
xz 0ol 2 xz ol 2 x2 0 1 2
+|2]0]1 0|0]12|1 (+2[-2{ 0
|012—'210='-20+2(2=0
2({112]0 :{ 110] 2 2| Q+2|-2
) fe(X) X@X1@X29X7
X, X, X4
XpNooft]e X\ |*]2 X\.o|1]2
*12|0]1 *10{0[0 0|+2|0[+1
1120--1222=1-10--2§2=0
[ 0] 2{1 (1]1[1 2(-1]+1|0
@ f(X) Xp0X)

Fig. 6 Example two-variable ternary functions and their correlation,
all encoded {0, 1, 2}
(a) to (e) the five example functions
(f) correlation of function (c) with transform matrix row
function [X; ® X1 ® X2 (® Xe]
(2) correlation of function (¢) with transform matrix row
function [X2 3 Xz]

=2+2a+2d + 3a
2 + 2a + 2a* + 3a®| x
2 + 2a + 24* + 3a®
= 3a
1
3a2]

x—
3a? 3,

=a
a|,
al

=2
1] recoded in normal {0, 1, 2} values
1

Study of these spectral coefficients shows certain clear
correlations, namely:

(a) function f,, f(X) = 0,0, 0:

’

W -

max real correlation with
R,, as expected; zero
correlation with R, and
R,,.

max real correlation with
R,, as expected; zero other
correlations.

max real correlation with
R, =X, ®X,,as
expected; zero other
correlations.

max shifted correlation
with R, ,, zero other
correlations; function f; ,
is [X; ® X,], and hence
this correlation is explicit.
max shifted correlation
with R,, zero other
correlations; function is
R, and hence correlation
is explicit.

max shifted correlation
with R,, zero other
correlations—function is
X,, and hence correlation
is explicit.

max shifted correlation
with R,, zero other
correlations—function is
X, and hence correlation
is explicit.

max shifted correlation
with R, ,, zero other
correlations ; function is
[X; ® X,], and hence
correlation is explicit.

(b) function fs, f(X) =0, 1, 2:

(¢) function f5, f(X) =0, 2, 1:

(d) function f, ., f(X) = 1,0, 2:

(e) function f, 3, f(X) = 1, 1, 1:

(f) func':ioanS’f(X) = 1, 2: 0:

(g) function f, 4, f(X) = 2,0, 1:

(h) function f5,, f(X) =2, 1,0:

202 1udy 61 U0 }sanb Aq £G€62/€/ L/2/2z/a191KE/|uliod/woo dno-olwapede//:sdiy woly p

Table 6 Five example ternary functions of two variables and their spectral coefficient values

Function f(X) Spectral coefficient values

R, R, R,, R, R, Ryj, R, Ryi2 Ryi7>
@f(X)=1201,20120 0 9a® 0 0 0 0 0 0 0
®) f(X)=0,1,20,1,2,1,1,2 a+2a* 8+a*> a+2a* 1+2 1+2a 1+2a 2+a* 2+a* 2+d°
() f(X) =2,0,1,0,1,2,1,2,0 0 0 0 0 9a 0 0 0 0
) f(X) =0,0,2,0,2,20,0,2 54a 5+4a 4+2*1+2%2+a 2a+a*2+a 2a+a* 1+22
e f(X)=21002210,1 0 0 0 3a+3a*3 +3a 6a 3 3a* 3a
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(#) function f, ¢, f(X ) = 2,2,2: max shifted correlation
with R,, zero correlation
elsewhere; function is K,
and hence correlation is

explicit.

3.2 Functions of two variables X,, X 2
Consider the five example functions illustrated in Fig. 6(a)—(e).
Evaluating the spectrum for each gives the values listed in
Table 6; the coefficient designations Ry, Ry, R,5, Ry, R, etc.
are the coefficients given by the descending rows of the
‘Hadamard-ordered’ transform of Equation (5), and therefore
represent correlations with X, X,, X, ® X,, X,, X, ® X,
etc. respectively.

Although we have not here attempted any formal mathe-
matical proof of the completeness of the ternary transform
matrices, relying rather upon extension of the known proper-
ties of the complete orthogonal binary transforms, neverthe-
less from using these matrices it appears that the spectral
coefficients for any given function J(X) are indeed unique,
and hence explicitly define S(X). Also, although again not
formally proven, it is evident that if the spectrum for any
given function f(X, ..., X, ..., X,) is evaluated, and al/
coefficients containing i in their subscript identification are
zero-valued, then input X; is redundant. This mirrors the
situation in the binary area.

However, if we examine the particular spectral details in
Table 6 we may comment:

(a) function (a) is merely X, as revealed by the single non-zero

coefficient of R, = 9a?; similarly function (c) is merely
[X:® X,]

(b) a zero value for the R, coefficient always indicates the
same number of minterms of value 0, 1 and 2 in the given
function—confirm this also in Table 5

(c) similarly, a zero value elsewhere confirms that the minterm
values of the given function f(X) are ‘equally spaced’ in
value either side of the minterm values of the matrix

row function X, to which they are compared, that is
3n

2. {minterm value of f(X)— corresponding minterm value
in X,,} = 0, where the minterm values are coded {0, 1, 2}.
For example, consider the zero-valued coefficient R,,,,in
function (c); if we compare this function with the matrix
row function [X; ® X; ® X, ® X,] given in Fig. 3, then
the greater-than and less-than value of each minterm in
comparison with the matrix function values are as shown in
Fig. 6(f). Similarly Fig. 6(g) shows the comparison of
function (¢) with matrix function [X, ® X »], again
summing to zero. However it must be emphasised that
whilst this plus/minus numerical summation to zero always
holds for all zero-valued spectral coefficients, the converse is
not always true.
What is not immediately obvious is the full significance of the
spectral coefficients which are not zero or maximum-valued.
The higher the number in a spectral coefficient then ‘more like’
the given function certainly is to a particular matrix row or
Mod; additions to the row; for example R, = 8 + @ for
function (b) represents a function which is only one minterm
out of agreement with X, but the complex nature of the 120°
rotational operators @ and a? tends to prevent a full insight
as is available with the real-positive, real-negative coefficients
of the binary case. It can be reasoned that the coefficient
8 + a?is one term removed from the maximum real value of 9,
and similarly 1 + 24, 2 + &2, etc. are each one term removed
from zero; this is sketched in Fig. 7, but this leaves coefficient
values such as 4 + 242 as not readily meaningful.
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' 8 ,-- * 9 (= max.)
v\\aw
8.a2

(a)

(b)

Fig. 7 The geometric meaning of coefficients which are near-
maximum or near-zero valued

)
(a) coefficient 8 + a2, modified to maximum with one 1202

operation g
(b) coefficient 1 + 24, similarly modified to zero 2
(c) coefficient 2 + a2, similarly modified to zero @
E
xzx‘ 0 1 2 -é’-\:
*|1210(1 )
[1]2]0 =
:[0]2[1 =
[}
(@ f(X) 5
2
X2X1 [ ) 1 2 sz1 [] 1 ] x:x‘ [ 1 2 g
ola|1|a? +lalala olalad1 S
1[a?lal1 ' [a2]a2ja? 1[a2[1]a )
2(1]ala? (1 [fa (1 {11 o
(1 Ro @ Ry m Ry N
x2x| 0 1 2 xzx1 0 1 2 X2X1 ] 1 2 g
°|al1la? slalala olafa?1 8
JRAELE JRALAR [ 1ala? §
a1 ]a 2(a?[a|1 2 @2 |2[a? P
@ Rg ) Ry2 (" Rz %
xzxio 1] 2 xzx'o 1] 2 xzx'o 1] 2 %
'lal1]a? ‘lalala *falaf1 Z
la]1]a? lalala a1 N
2|alaf1 2| a|1|a? :lalala R
(@ Rpo @ Ry22 W Ry22

Fig. 8 Mapping determination of spectral coefficient values
(a) given function f(X)
(b) — (k) comparison of (a) with the nine ternary matrix
function maps shown in Figs. 3(a) to (j) respectively.

3.3 Geometric determination of the spectral coefficients

We can obtain the same spectral coefficients by a mapping-
and-comparison procedure (Hurst, 1978), rather than execut-
ing the mathematical transform. Take for example the function
(e) of Fig. 6. Let us replot it again in Fig. 8(a), and then com-
pare each minterm entry with the matrix transform maps
previously given in Fig. 4. The results of each minterm com-
parison will be recorded as:
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(a) identical 0, 1, or 2 minterm values:

(b) function minterm 0, matrix minterm 1:

ditto , matrix minterm 2:
(c) function minterm 1, matrix minterm 0:
ditto , matrix minterm 2:
(d) function minterm 2, matrix minterm 0:
ditto , matrix minterm 1:

record as 1 (zero phase shift)
record as a (+120° phase shift)
record as a? (4240° phase shift)
record as a® (+240° phase shift)
record as a (+120° phase shift)

record as a (+120° phase shift)
record as a? (4240° phase shift)

This procedure gives the set of comparison mappings of
Fig. 8(b)—(k). Reading off these results we have:

Ry =3 + 3a + 3a% =

R, =3+3a+3% =0
R22=3+3a+3a2,=0

R, =1 + 4a + 4a%, = 3a + 3a®
R,=4+4a+a*,=3+ 3a
Ri,,=1+7a+a*, = 6a

R, =5+4+2a+2? =3

Ry, =2 + 2a + 54%, = 3a*
Ry, =2+ 5a + 2a% = 3a

which is as previously determined.

With this comparison procedure we are performing the
identical steps as involved in the detailed matrix row and
column vector multiplications. However, it must be concluded
that performing the spectral coefficient evaluation by this hand
method does not greatly enhance appreciation of the meaning
of the values as correlation coefficients.

4. Further considerations

The previous section has considered the possible ternary
transforms as a direct extension of the existing binary area.
Possibly this may not be the best approach and a completely
separate attack should be made. However, the few mathematical
papers on multi-real-valued transforms which have appeared
to date do generalise to the same form of transform as con-
sidered here when applied to the ternary case (Wallis, 1972;
Kitahasi and Tanaka, 1972; Chrestenson, 1955). A more
rigorous mathematical basis for the transforms discussed here
may be found in certain of those publications, including tests
of completeness for the matrices.

4.1 Interpretation of resulting spectra

However the problem of interpretation of the spectral co-
efficient values must be solved if useful engineering applica-
tions are to be proposed. The 120° geometric operator, whilst
obviously relevant for ternary transforms, has been seen to
produce results which appear at this stage of research to be
difficult to visualise and interpret.

Possibly we should recode or expand the resultant spectral
coefficients in some further manner, so as to give us, say,
real-number values as in the binary case. For example, it may
be useful to produce three separate real-positive-number
coefficients to indicate directly ‘how like’ the output is to, say,
X;, X;, X, rather than rely upon the complex relationship
to X; given by the one complex spectral coefficient R; con-
sidered here; further, two and not three separate coefficients
may be adequate, similar in principle to that used in colour TV
transmissions to convey three-colour information on two
colour-data highways. The three separated coefficients would
involve a considerable expansion of data, with a high redun-
dancy, but this ultimately may be useful. In its turn this may
lead to alternative and preferable transform matrices.

However, yet another aspect may be considered. In the binary
area, the Hadamard, Walsh and Rademacher-Walsh trans-
forms each relate to the binary inputs and Exclusive-OR’s
of the inputs. It is, however, possible to construct yet another

{+1, —1} transform matrices which do not have these
Exclusive-OR relationships in their structure, and hence the
spectra which result from such alternative transforms no
longer directly include Exclusive correlation meanings (Bell,
1975; Liebler and Roesser, 1971). Therefore, in the ternary
case it may equally be possible to depart from the Mod,
addition relationships in the ternary transforms, as developed
here through Equations (4) and (5), and produce further trans-
forms which include possibly Maximum (ternary OR) or
Minimum (ternary AND) rather than Mod; relationships.
Further, one can raise the question how important is complete-
ness and the existence of the inverse transform for partlcular
logic de51gn purposes, if one only requires some correlatlon
meaning from the execution of a forward matrix transformation.

4.2 Fast ternary (‘Walsh’) transform procedures
As far as execution of the present ternary transform matrices is

concerned, computation of the simple examples consideredS
above shows that there are many identical row-and—column3

multiplications present in the full transformation. This may5
also be discerned in the structures of Fig. 8. Hence, it is possible2
to formulate a fast transform procedure, comparable with the:
butterfly diagrams which define the fast Walsh transform
procedures of the binary matrices (Karpovsky, 1976; Andrews

e//:sdpy wi
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and Caspari, 1969) although perforce the number of computa-=:

tions necessary rises sharply with the increase in radix from
the binary case.

4.3 Quasi-binary ternary recoding
A further possible alternative approach may be made to2

recode the ternary logic values in a quasi-binary mode for®

Lig/ez/erie)

~

=

transformation purposes, recoding {0, 1, 2} as, say, {1, 1;©

1, —1;

—1, 1}. This is clearly wasteful of information content,?]

as the 3" x 3" ternary matrix would now (presumably) becomeZ

a2 x
investigate the resulting spectral coefficient values, and see

what economies or rationalisation could be made in theS
transform and/or the resulting spectral coefficients. It would3

22" binary matrix. However it would be interesting to

[0]
(2]
—

35

N

eliminate the problems with the 120° geometric operator, but%>

may in its turn introduce other complications in interpretation =
of the resulting spectral coefficient values.

5. Conclusions
The basic simplicity and beauty of the binary spectral domain
cannot, it seems, be maintained in the ternary area. The
higher-valued radix fundamentally introduces more complex
definitions and relationships to quantify ‘how like’ a function
is to its various inputs and combinations of these inputs,
and yet the practical significance of spectral data hinges upon
the recognition of such relationships.

If research into ternary transforms continues, then hopefully
we may reach the same goals as recently have been reached
in the binary area, including

(a) classification of ternary functions by their spectral co-
efficients into canonical classifications, and the use of such
canonic classes for the specification of ternary universal
logic gates

The Computer Journal Volume 22 Number 2

¥20c



(b) detection of simple and complex symmetry patterns in
ternary functions, and their exploitation for synthesis
purposes and ’

(¢) spectral translation techniques for synthesis purposes.

These and other fields of application should be kept firmly
in mind in this continuing area of research.

However, it could well be that further research confirms that
odd-valued radices prove inconvenient, and in many respects
even-valued radices provide more amenable and explicit
results. This may suggest that quaternary (4-valued) rather
than ternary may be the most convenient radix higher than
binary to investigate and develop.

It is hoped that publication of this largely tutorial paper may
encourage research in this whole area.
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