Algorithms supplement

Algorithm 106

AN ALGORITHM FOR UPDATING AN ORDERED LIST ON
A VDU
A. Brown
formerly with British Rail Research Department,
currently with Pactel Computer Consultants

1. Introduction

Many visual display units (VDUs) have the capability to carry out
certain text editing procedures locally on receipt of a single character
command from the central computer, e.g. delete line, clear screen,
etc. This paper describes an algorithm which makes use of some of
these text editing facilities to reduce the amount of output required
from the central computer to update an ordered list.

2. VDU characteristics
The following capabilities of the VDU are used in the application of
the algorithm:

1. Delete line

Any line may be deleted by positioning the cursor at the start of the
line and issuing a delete line command. All lines below the line
deleted are moved up one line and a blank line is added at the
bottom of the screen.

2. Insert line)

A blank line may be inserted by positioning the cursor at the start of
the appropriate line, and issuing an insert line command. The line
addressed and all lower lines are moved down one line; the line at
which the cursor is positioned becomes blank and the old bottom
line of the screen is lost.

3. Other capabilities
Use is also made of cursor positioning functions.

4. Reversal

Clearly, using only the above local editing facilities, the order of two
lines on the screen cannot be reversed. This process is achieved by
deleting one of the lines and retransmitting it in full from the
computer.

3. Nature of the information displayed

The algorithm is of use in applications in which the information on
the screen changes only slowly, with most of the information on one
frame being the same on the next. However, the position of any given
line of information can move up or down between one frame and its
successor.

4. Algorithm
Given two VDU frames: an existing frame and a required frame,
each consisting of # lines of information, then we will construct two
sets

{Di:i=1ton} {Wi:i=1ton}
for use in transforming the existing frame to the required frame
Di = 0 if line ¢ of the existing frame is not to be retained locally

1 otherwise

if line ¢ of the required frame has not been retained locally
Wi = < from the existing frame

1 otherwise
5. Method

Each line, both of the existing frame and the required frame, is
epitomised by a value E such that
Ey = E4if, and only if, line » is identical to line 4

188

(The method of construction of these epitomes is not dealt with in
this paper, but in practice a simple approximation was obtained by
summing the characters in the line, with each set of three characters
being treated as an integer).
Let 6; be the epitome of line ; on the existing frame, i = 1ton
Let N; be the epitome of line ; on the required frame, i = 1 ton

Step 1

Set Di = Wiy =0fori=1ton

Step 2

SetLi= [j— i+ nif N;j=0;,and Nx # 0;forallk < j
for {0 otherwise

i=1ton

eBlumoq

i.e. set L; = n + displacement between line ; on the existing fram
and its first occurrence on the required frame.
e.g. Ly = nif line ; is the same on both frames.

Step 3

IfLi = 0 then { D} and { W;} are complete.

fori =1ton

Otherwise, find the most common occurring, non-zero value, X, i
{L:}. If two or more exist, then arbitrarily select the first.

Step 4
If every L; = K has been considered, then repeat Step 3.
Otherwise for each L; = K

(@)set D; = 1
set Wk +i-n=1
(b)setLi = 0 '

(c)Forallj <isuchthatL; > i —j+ K setL; =0

Forallj > isuchthatL; < i—j+ K setL; =0
Step 4 (¢) is required to exclude reversals as described under VDU
characteristics.

o!ue/|u[Luo:)/Luoo'dnoogLuepeE’E//:sdnu wou} pap

45

6. Use of Sets { D;} and { Wi}
Now { D;} and { W;} can be used in the following way:

Deletion of lines not required
(a) Position cursor at top of screen.
(b) Foreach D;; i =1ton — 1
If D; = 0 delete line otherwise skip line.
Insertion of new lines
(a) Position cursor at top of screen
(b) Foreach W;, i = 1ton
If Wi = 0 then insert line, write required line ; otherwise skip line.

dy 61 uo1senb Aq ¥8€6Z1/881/2/2

¥20c 4

In fact the deletions and insertions can be combined in any way,
providing that the cumulative total of insertions at any stage does
not exceed the corresponding cumulative total of deletions (as this
would result in losing lines at the bottom of the screen). Thus an
additional saving could be made by reducing the number of skip
line instructions.

7. Examples (n = 12)

@{0) =1{1,2,3,4,56,7,8,9,10,11,12 }
{N}y =1{2,3,4,56,7,8,9,10, 11, 12, 13}
{Dg =1{0,1,1,1,1,1,1,1,1,1,1,1 }
(W ={1,1,1,1,1;1,1,1,1,1,1,0 }

B {03 ={1,2,3,4,56,7,89,10,11,12 }
{Ni} =1{4,6,3,7,1,2,5,8,10,11,9,13 }
{D} ={1,1,0,0,1,0,0,1,1,0,0,0 }
{wy ={0,0,0,0,1,1,1,1,0,0,1,0 }

The Computer Journal Volume 22 Number 2

© {063 =1{4,6,3,7,1,2,5,8,10,11,9,13 }
{Ni} ={1,2,3,4,5,6,7,8,9,10, 11,12 }
{Dy} ={1,1,0,1,0,0,0,1,1,1,0,0 }
{Wy ={0,0,0,1,0,1,1,1,0,1,1,0 }

8. Computer implementation

This algorithm has been implemented in FORTRAN with n = 12.

This forms part of a British Rail train control system using a GEC

905 minicomputer connected to VDT 4000 visual display units.

The number of characters transmitted from the computer to the

VDU, using the algorithm, is given by the following formula:
Number of characters = 1 208 — 96r, where r is the number of
lines of the existing frame retained (= number of 1’s in { D;}).

r 0 1 2 3 4 5 6
Noof 1208 1112 1016 920 824 728 632
chars.

r 7 8 9 10 11 12

Noof 536 440 344 248 152 56

chars.

Fig. 1

The number of characters required to transmit a full screen is 868.
Hence if 0 < r < 3 a full screen is transmitted, otherwise lines are
deleted and inserted. (If r = 12 then the existing and required frames
are identical, and no output is required).

9. Limitations

The algorithm is inefficient in cases where there are repeated lines
since it always attempts to match a line with its first occurrence on
the new screen. Even when all the lines are distinct, the algorithm
may not produce the minimum number of changes (c¢f examples (b)
and (c) above: Ex (c) is the inverse of Ex (b)).

10. Conclusion

From Fig. 1 it can be seen that substantial savings can be achieved if
the number of changes, between the existing frame and the required
frame, is small. A more sophisticated algorithm could be devised to
cope with the limitations indicated above.

For VDUs with insert character and delete character facilities
analogous to the insert line and delete line above, a similar applica-
tion could be made to characters within each line. The saving
produced would be on a much smaller scale except in particularly
suitable cases.

Acknowledgement
The author wishes to thank the British Railways Board for per-
mission to publish this paper.

Appendix 1 Use of the computer program

The algorithm is programmed as a subroutine with 9 parameters:

1. IOND one-dimensional integer array of length N = {6s}

2. NIND one-dimensional integer array of length N = {N;}

3. LOINE one-dimensional integer array of length N = {Ds}

4. NLINE one-dimensional integer array of length N = {W;}

5. NOA integer variable

6. NDISP one-dimensional integer array of length N used as work-
space

7. NDIF one-dimensional integer array of length N2 used as work-
space

The Computer Journal Volume 22 Number 2

8. N integer variable

9. N2 integer variable

Before calling the subroutine, the user must set up arrays IOND and

NIND (see description of sets {f;} and {N¢} in Section 5) and

variables N (= number of lines per screen) and N2 (= twice N).
On return from the subroutine, the arrays LOINE and NLINE

contain the retention indicators—see description of sets {Ds} and

{ Wi} in Section 4. NOA is set equal to the number of lines retained

from the old screen to the new.

SUBROUTINE VDALGACI@ND,NIND,LOINE,NLINE,NBA,NDISP,NDIF,N,N2)
11/9/78
SUBRGUTINE T@ REDUCE VDU @UTPUT

@N ENTRY LOINE CONTAINS THE EPIT@MES OF THE OLD SCREEN
NLINE C@NTAINS THE EPITOMES 8F THE NEW SCREEN
N=THE NUMBER OF LINES PER SCREEN; N2=2%N
@N EXIT 18ND CONTAINS THE INDICATORS OF LINES @F THE @LD SCREEN
T@ BE RETAINED; 0=D@ NOT RETAIN, 1=RETAIN.
NIND C@NTAINS THE INDICAT@RS @F LINES @F THE NEW
SCREEN WHICH NEED N@T BE RETRANSMITTED; O=RETRANSMIT
1=D@ N@T RETRANSMIT.
N@A= THE T@TAL NUMBER @F LINES RETAINED.

NDISP AND NDIF ARE USED AS WBRKSPACE

caoaoaaaaoaoaaacaooaan

DIMENSION I1@ND(N),NIND(N),L@INE(N),NLINE(N),NDISP(N),NDIF(N2)
N2A=0

C SET RETENTI@N ARRAYS T@ ZER@
D@ 100 I=:,N
18ND(1)=0

100 NIND(I1)=0
D@ 400 I=1.,N

200 D@ 300 J=1,N

C C@MPUTE DISPLACEMENT @F LINES FROM @LD T@ NEW SCREEN
IF(LBINECI)+EQ.NLINE(J))G8 T@ 320

300 CONTINUE

C 0 MEANS LINE DBES NO@T APPEAR @N NEW SCREEN
NDISP(1)=0
G@ T8 400

Cc
C N@N-ZER@ MEANS LINE APPEARS ON NEW SCREEN
320 NDISP(I)=J-1+N
400 CONTINUE
4
C CLEAR DISPLACEMENT-C@UNT-ARRAY NDIF AND COUNT NPREH
450 D@ 500 I=1,N2
500 NDIF(1)=0
NPREH=0

c

C FIND MBST C@MMON DISPLACEMENT
D@ 600 I=1,N
IDISP=NDISP(1)
IFC(IDISP.EQ.0)G@ TG 600
ICH=NDIF(IDISP)+1

C UPDATE CORRESP COUNT
NDIFC(IDISP)=ICH
IF(ICH.LE.NPREH)G@ T@ 600

C CHECK IF NEW M@ST C@OMMGN
NPREH=1CH
IMDIF=IDISP

600 CONTINUE

Cc

C ST@P WHEN N@ M@RE LINES ARE RETAINED
IF(NPREH.EQ.O0)RETURN
NOA=NBA+NPREH

MARK LINES RETAINED AND DELETE LINESWHICH CANNOT
BE RETAINED BECAUSE @F @GRDER
D@ 900 I=1,N
IF(NDISP(1).NE.IMDIF)G& T@ 900
IDISP=1+IMDIF
MARK I-TH LINE @F @LD SCREEN FBR RETENTIGN
18ND(1)=1
C MARK CORRESPONDING LINE @F NEW SCREEN AS RETAINED
IDISPN=IDISP-N
NINDCIDISPN)=1
REM@VE REVERSALS AND ALL LINES MAPPED ONT@ THIS LINE
D@ 700 J=1,1
IF(NDISP(J)+GE+IDISP-J)NDISP(J)=0
700 CONTINUE
D@ 800 J=I,N
IF(NDISP(J)Y<LE.IDISP-JINDISP(J)=0
800 CBNTINUE
900 CONTINUE
G@ T@ 450
END

(2] aoa

(<]
20z udy 61 U 1s9n6 AQ ¥8EEZH/88 L/2/22/10Me/|ufoo/W0d"dno"oIWePED.//:SARY W) PAPEo|UMOQ

