Correspondence

To the Editor
The Computer Journal

Sir,

In a recent paper Williams and Ossher (1978) state that
unstructuredness in flow diagrams is due to the presence of one or
more of five constructs. We have suggested an alternative approach
in characterising unstructuredness based on the premise that poor
structure results from irreducibility (Cowell, Gillies and Kaposi,
1978; Gillies, Cowell and Kaposi, 1978; Kosaraju, 1974). (Briefly,
a flowchart is irreducible if its flowgraph has no proper subgraphs
with only one exit). By this definition, only 1(b) and 1(e) of the
authors’ constructs are irreducible. For example it will be noted
that Figure 1(d) of (Williams and Ossher, 1978) is reducible, and
by the technique of unfolding may be transformed into a pair of
nested while loops:

A

Y

L>
<D
Figure 1(d)

Similarly, Figure 1(a) unfolds into two nested if-then-else struc-
tures and 1(c) into an if-then-else followed by a while loop.

The authors’ algorithm when presented with a reducible construct,
produces a structured equivalent containing two extra state variables,
(see Figure 7(a) and (b).) This increases the cyclomatic complexity
and hence may make the program harder to understand.

The authors’ Figure 1(b) and (e) are both examples of irreducible
forms. 1(b) is an instance of the only irreducible form with two
tests but there are altogether six with three tests, including the one
identified in Figure 1(e). There are 54 irreducible forms with 4 tests
and 734 with 5 tests. It is possible to identify irreducible components
of a flowchart using relatively straightforward algorithms (Gillies,
Cowell and Kaposi, 1978), and if desired, to remove each irreducible
component using techniques such as those described in this article,
and elsewhere (Knuth and Floyd 1971 and 1972).

Yours faithfully,
A. A.Karost D. F. GiLLies and D. F. CoweLL*

Department of FElectrical and Electronic Engineering
Polytechnic of the South Bank

Borough Road

London SE1 OAA

*Thames Polytechnic
12 September 1978

190

References

CoweLL GiLLIES and KAPosI. (1978). Introduction to Flowgraph
Schemas Proc. CISS, March 1978, Johns Hopkins University,
Baltimore, USA.

GiLLies, CoweLL and Karpost. (1978). Theory of Flowgraph
Schemas Proc. CISS, Ibid.

KnNuTH and Froyp. (1971). Notes on Avoiding ‘Go To’ state-
ments, Info. Proc. Letters, Vol. 1, Errata (1972), p. 177.

KosAraJUu. Analysis of Structured Programs, JCSS, Vol. 9,
pp. 232-255.

WiLLiaMs and OssHER. (1978). Conversion of unstructured flowS
diagrams to structured form. The Computer Journal, Vol. 21, No. 2.

od

To the Editor
The Computer Journal

Sir,

We, the authors of the book, Syntactic Pattern Recognition Appltca—
tions (Springer-Verlag, 1977) have found a very dubious book rev1ew8
published in the February 1978 issue of The Computer Journal.&
We have found the review to be biased and misleading, apparently 3.
written by a reviewer who is not aware of the recent progress in this$
field. The fact is that in addition to the recent successful applicationss
of syntactic pattern recognition to waveform analysis and spoken8
word recognition, there are actually machines (not just computer3.
programs) designed and built for automatic inspection (e.g. at GES8
and Philips) using the syntactic pattern recognition approach.=
These all happened during the last three or four years. In addition, s
the syntactic approach is quite compatible with artificial intelligence =
methods for ‘understanding’ patterns; rule based systems are ing
common use for this purpose, with the possibility of dynamically™
loading rules to handle specific contexts and situations. The syntactic™
approach is certainly more than eight years old, but syntacticS
pattern recognition, particularly its applications described in theB
book, has advanced significantly in recent years. ‘9

A brief check of the references in the book would have revealed\‘
to the reviewers that Chapter 2 is based on work published in 1975,2
Chapter 3 is based on work published in 1975, Chapter 4 is based2
on work published in 1975 and 1976, (,hapter 5 is based on work‘I>
published in 1972 and 1976, Chapter 6 is based on work publlshedg
in 1975, Chapter 7 reports recent work never well documented.\)
elsewhere, Chapter 8 is based on work pubhshed in 1975 and 1976
Chapter 9 is based on work published in 1976, and Chapter 10 1sU
based on work pubhshed in 1975. The work reported in this bookm
has been published in such accepted publications as: Proceedmgsg
of the International Joint Conference on Artificial Intelligence,
Proceedings of the International Joint Conference on Pattern
Recognition, IEEE Transactions on Computers, IEEE Transactions
on System, Man and Cybernetics, IEEE Transactions on Acoustics,
Speech and Signal Processing, Communications of ACM, and
Computer Graphics and Image Processing.

There is no doubt that syntactic pattern recognition has its limita-
tions and weaknesses, as do the subjects of many other books that
survey the state-of-the art, such as in artificial intelligence, statistical
pattern recognition, etc. The reviewer certainly has his right to
state his difference of opinion about a particular approach. However,
it is irresponsible to the scientific, particularly to the pattern
recognition community, for a reviewer to simply ignore all the
facts and produce a review based on his biased opinion. We challenge
the reviewer to produce evidence and facts from the past publica-
tions to support his statements

The first three paragraphs of Chapter 3 were an abstract which was

©//:Sd)Y WoJj papeojumod

The Computer Journal Volume 22 Number 2

mistakenly included in the text The author indicated that these were
to be deleted on the galley proofs but to our embarrassment they
made it into print. The transformation from Clowes to Cloves is
probably due to translation from English to Hungarian and the
retranslation unfortunately did not produce the unique inverse.
We appreciate very much the careful detection of these from the
reviewer.

In summary, we feel that it is truly unfortunate to have such an
inaccurate and biased review published in your prestigious journal
and hope that this note will be used to correct such an error.

Sincerely,
J. ALBUS S. L. Horowirtz
R. H. ANDERSON B. MOAYER
J. M. BRAYER T. PAVLIDIS
R. DEMOoORI W. STALLINGS
K. S. Fu T. Vamos

School of Electrical Engineering
Purdue University

West Lafayette

Indiana 47907

USA

26 September 1978

To the Editor
The Computer Journal

My paper ‘Generating permutations by choosing’ appeared in the
last issue of this journal (vol. 21 no. 4). In it I presented, as an appli-
cation of one of the particular permutation generators discussed, a
solution to the n-queens problem which is faster than the standard
solution derived in Wirth’s Algorithms + Data Structures = Pro-
grams. The program is correct; but unfortunately is less efficient
than it should be.

In the text I stated (correctly) that ‘since there can be only one
queen per column, a solution (if one exists) consists of a permutation
of the numbers 1 to #’. The whole point is that the use of permuta-
tions ensures that no two queens are placed on the same row or same
column. Thus the Boolean array col as used in Wirth’s algorithm is
redundant, and should have been deleted from the subsequent text
and from the procedure of Fig. 6. A revised version is attached. It is
more elegant, less asymmetric and faster than the original.

The Computer Journal Volume 22 Number 2

I offer my apologies to your readers for my incompetence.
Yours sincerely,

The University of Western Australia
Department of Computer Science
Nedlands, WA 6009

20 December 1978

procedure solve queens problem (n);
value 7; integer n;
begin
integer array p[1:n];
Boolean array upl[1-n:n-1], upr[2:2*n];
procedure choose (k);
value k; integer k;

begin
integer temp, i, pk;
temp := p[k];
for i := k step 1 until n do
begin
pk = pli];
if upllk — pk] A uprlk + pk] then
begin
upllk — pk] := uprlk + pk] := false;
plk] := pk;
pli] := temp;

if kK # n then choose (k + 1)
else solution available in p;

pli]l := plkl;
upllk — pk] := uprlk + pk] := true
end
end;
plk] := temp
end of procedure ‘“choose” ;
integer i;
for i := 1 step 1 until # do p[i] := i;

fori:= 1 — nstep 1 until n — 1 do wpl[i] := true;
for i := 2 step 1 until 2*n do upr[i] := true;

choose (1)

end of procedure ““solve queens problem”

Fig. 6 A procedure for solving the n-queens problem

J. S. RoHL

202 udy 0 U0 1s9n6 Aq L6E62H/06 |/2/22/91014e/|ufoo/Woo"dno-oiwepeoe//: SRy Wo.y papeojumoq

191

