A network display program

Susan Jones*
LSE, Houghton Street, London WC2A 2AE

This paper gives an account of the development and use of software to manipulate and display
networks. The work was done as part of the LSE LEGOL Project in Information Systems Analysis
and Design, but the programs were written to be generally applicable; so that they might be equally
suitable for displaying the results of statistical processes like single-linkage cluster analysis and
path analysis, or producing structure diagrams for program or system components.

(Received April 1977)

The idea of treating a large system with many interrelated
parts as a directed graph is common to many applications (See
Busacker and Saaty, 1965). In particular, another LSE research
project has produced software to perform well defined
algorithms (e.g. partitioning into subgraphs, forming lists of
successors and predecessors) on large precedence networks
representing complex information systems (Waters, 1976). The
original aim in the case of the present work was to find a
method for displaying a network automatically, and for tracing
particular paths through it in a selective way. This proved
possible, using an interactive graphics terminal and a program
which allowed a network of nodes and connections to be built
up progressively on a screen, under user control. In the last
year, facilities for partitioning, merging and reducing networks
have also been included.

The first section of this paper discusses networks in the context
of the LEGOL project with the help of examples; the second
section outlines the capabilities of the programs developed so
far.

1. The use of networks within the LEGOL project

LEGOL is intended as a formalism for describing the rules
which define an information system. It has been developed
mainly as the result of the study of those complex but well
defined systems specified by Acts of Parliament or other
legislation. The aims of the LEGOL project as a whole are
described fully in Stamper (1977) and elsewhere. For the
present, it is sufficient to make the point that the formalism
consists of two kinds of ‘rules’. What are called first-order
rules are those which make some particular prescription, for
example: '

Section 1. ‘Subject to the provisions of this Act, there shall be
paid by the Minister for every family which includes two or
more children, and for the benefit of the family as a whole, an
allowance in respect of each child in the family other than the
elder or eldest at the rate of eight shillings a week in respect of
the first child other than the elder or eldest and ten shillings a
week in respect of each other such child.’}

Second-order rules act upon first-order rules by specifying
their dependence upon and influence over one another; they
are the counterpart of such phrases as:

‘Subject to the provisions of Section 7 of this Act ...
‘Without prejudice to the provisions of paragraph 1 of Schedule
7 to the Insurance Act. ..’

Within any piece of legislation there is a complex web of inter-

relationships, both explicit and implicit, for which the idea of a
precedence network appears to be appropriate. The Family
Allowances Act of 1965 has been examined from this point of
view. It is a short, comparatively self-contained Act, but one
which implies the necessity for an administrative system to
carry out its provisions. Below are some general observations
about the problems involved in setting up a precedence network
based upon this Act.

1. Precedence

The first question to be discussed is what exactly is meant by the
word ‘precedence’ in this context. One of the purposes of the
LEGOL formalism is to translate, with the least possible
distortion, the ‘static’, descriptive form of an Act, stating which
rules apply in which circumstances, into a more procedural
language, which expresses itself in terms of operations to be
performed in a certain order. But this ordering must be based
upon the underlying relationships of dependence to be found in
the original prose version. At the textual level, the relationships
may be expressed in many different ways, as the.following
examples show:

Section 24. ‘Notwithstanding anything in the Government of
Ireland Act, 1920, the Parliament of Northern Ireland shall
have power ...

The Family Allowances Act overrides the Government of
Ireland Act in this instance.

Section 11(6). “Where a person is entitled in respect of a child
to a guardian’s allowance under Section 29 of the Insurance
Act..’

The Insurance Act provides some of the information required
to administer the Family Allowances Act correctly.

Section 10(3). ‘In the application of this Section to Scotland—
for the reference in Subsection (1) to the bankruptcy of a
person there shall be substituted a reference to the sequestration
of the estate . . .

Section 10(3) conditionally modifies Section 10(1).
Section 4(1). ‘Allowances for any family shall belong . . .
Section 4(1)(b). in the case of the family of such a man as is

mentioned in Section 3(1)(b) of this Act, to him;’

Paragraph 4(1)(b) comes into force only if the conditions set
out in paragraph 3(1)(b) apply.

+This extract, and all subsequent statutory quotations, are taken from the Family Allowances Act, 1965.
*Now in the Department of Computer Science, The City University, Northampton Square, London EC1V OHB

The Computer Journal Volume 22 Number 2

20z udy 61 U0 1s8nb Aq 016821/86/2/22/2101E/UlWOD/W0d dNo"dlWspeoe)/:SAY WoIj PAPEOUMOQ

Many other variants could be illustrated, in which one section
of text affects the interpretation of another, by widening or
narrowing its scope of application, and placing it precisely in
relation to the rest of the Act, and to other relevant Acts. What
the above examples have in common is that the contents of the
logical ‘predecessor’ must be taken into account before its
‘successor’ can be applied correctly. At the level of the LEGOL
formalism, precedence relationships will determine the
sequence in which the operations specified by first-order rules
must be performed. In general this will not be a simple linear
sequence but a partial ordering; some parallel processing may
be implied. On the other hand, some sequencing rules will be
conditional or based upon criteria not always applicable. So,
in order to simulate the effect of the Act in any particular
circumstances, it will be necessary to trace a path selectively
through first-order rules according to those precedence
relationships which are actually relevant. The software
described in Section 2 is intended to allow the selective ‘ex-
ploration’ of a network by a user, as an aid to the analysis of
problems of this kind.

2. Network components: nodes

An Act of Parliament in prose form is split into parts and
schedules, further divided into sections and subsections, which
in turn may be subdivided into smaller units when separate
cases or conditions are itemised. Textual units at any of these
levels may be treated as nodes in a network. There are some
difficulties about this, as the discussion below indicates; never-

theless, textual units appear to be the only objective framework .

within which to examine precedence relationships initially.
Each node can be identified uniquely by a key which may
specify:

1. Act

2. Year

. Part or Schedule number

. Section number

. Subsection number

. Item letter (a, b, c, etc.)

. Item number (i, ii, iii, etc.)

However, the textual units making up an Act of Parliament
differ greatly in function. A first attempt to categorise them led
to the following six types:

N wnmbhWw

2.1 Defining
These items put a precise meaning on some of the words and
phrases used in the Act.

Section 2(1). ‘A person shall be treated for the purposes of this
Act as a child—

Section 2(1)(a). during any period whilst he is under the upper
limit of the compulsory school age . . .’

2.2 Prescriptive
These items state what is to be done, who is to do it, when,
where, etc.:

Section 4(2). ‘Sums to be paid on account of an allowance for
the family of a man and his wife living together shall be
receivable either by the man or by the wife.’

Examples of the above types may contain references to other
parts of the text, but they have some substantive content of their
own. The remainder are more bound to the internal structure
of the text.

2.3 Modifiers
These items specify changes (usually conditional) to be made
in another part of the Act:

The Computer Journal Volume 22 Number 2

Section 14(5). ‘In its application to Scotland this Section shall
have effect as if—

Section 14(5)(a). in Subsection (2) the word “summary” were
omitted.’

2.4 Links
These items point to some other part of the Act and state in
what circumstances it is applicable:

Section 3(3). ‘The provisions of the Schedule to this Act shall
have effect as to the circumstances in which a man and his wife
living together . . . is (sic) to be treated as maintaining a
child. ..

2.5 External References

Most Acts will make numerous references to other Acts, in
whole or in part (see first two examples in paragraph 1) and
these references should also be treated as separate nodes in the
network, although sharply distinguished from the pieces of tgxt
to which they refer, which could be of any of the other éj/e

types.

1} pape

2.6 Empty 3
These items have no text associated with them but are merely
‘place markers’ within a hierarchy. Section 3 of the Farrgly
Allowances Act has no content which is not part of Subsectiéns
3(1), 3(2), etc. but it may be referred to as a whole from otBer
parts of the Act, and so requires to be separately identifie
Clearly, there are difficulties in attempting to set up a netw@rk
in which such disparate elements are treated on equal terms.cAt
the level of the LEGOL formalism some nodes will eventuiﬂy
produce first-order rules, some second-order rules, some bgth
or neither. Compared with orthodox programming languages,
for instance, legal prose mixes together the functions of data
definition, text editing, specifying procedures, transmittﬁng
arguments, etc. in a very free way. Moreover, as we have
already seen, an Act is hierarchical in its structure of sections,
subsections and so on, but precedence relationships may
operate between nodes at any level. It does not seem to.be
feasible to represent both hierarchical and precedence relatiGn-
ships simultaneously in visual form, but it is necessary to%e
aware, when examining a singel-level network, that a con-
nection to, say, Section 3, implies a connection to all gts
constituent parts.

uo)senb

3. Network components: connections
A connection between two nodes implies some sort of pre-
cedence relationship between them. How can we derive these
relationships from an examination of an Act? This sectién
discusses some possible criteria. 8

¥20

3.1 Sequential

In a trivial sense one paragraph is the ‘predecessor’ of another
if it comes before it in the text. However, legal prose probably
relies less on the cumulative effect of a sequential scan than
prose of any other kind, and textual ordering is a poor indicator
of the order in which operations must be performed to carry
out the provisions of an Act correctly. The Act under dis-
cussion begins by enunciating a general principle (see the
quotation above) and then proceeds to further levels of detail.
To apply it to any particular cases, the detailed provisions
would need to be considered before deciding whether the
general principle was applicable. In this particular example,
various definitions of the meanings of words and phrases used
throughout the Act are placed near the end, in Sections 17-19.
In a ‘procedural’ interpretation, such definitions would have to
be taken into account first. In saying that textual precedence

99

h (R RN

Fig. 1 Family Allowances Act, 1965 cross reference network :
Sections 3, 4, 20 and the Schedule

%ﬂl)

(rP/1933

FATLLAY
v

/194 \
\
\

FAILLA2 \

QBLSON.

AN1/1956

h1965
1958. 36

Fig. 2 Family Allowances Act, 1965 cross reference network:
Section 11, Children’s and Young Persons Acts, Criminal
Justice Acts, etc.

does not imply logical precedence, no criticism is intended of
the draftsman, who sets out the Bill in the way which will best
expedite its progress through Parliament, rather than to act as
a specification for an administrative system. But for our present
purpose, a consideration of the sequential relationships
between different parts of the text is not particularly useful
when attempting to discover logical relationships.

3.2 Explicit

A great many of the important logical connections are signalled
by explicit cross reference from one piece of text to another. All
the examples given in paragraph 1 are of this kind. However,
the interpretation of cross references for the purpose of
identifying precedence relationships is not entirely straight-
forward. Sometimes a reference is made to another Act for the
purpose of denying any such relationship:

Section 10(2). ‘Sums receivable by any person on account of an
allowance shall not be included in calculating his means for the
purpose of Section 5 of the Debtor’s Act, 1869.” (sic).

Some references are very general in scope, making it difficult to
link the node to the network at any precise point:

Section 12. ‘Section 91 of the Insurance Act (which makes
provision for the furnishing by registrars of births, marriages
and deaths information for the purposes of that Act and for the
obtaining of birth, marriage or death certificates for those

100

purposes) shall apply for the purposes of this Act as it applies
for the purposes of that Act.’

Some references specify a connection without a definite pre-
cedence relationship, like the one between the two Acts
mentioned in the following extract:

Section 8(3). ‘Where, in the case of any person, any sum

may . . . be recovered by deduction from any payment under
this Act, it may instead be recovered from him . . . by deduction
from benefit under the National Insurance Act. .. .’

In short, it is not enough to record simply the fact that a cross
reference has been made; a detailed examination of context is
essential to determine its effect. Examples of the phraseology
used to indicate precedence have already been given in para-
graph 1. Some parts of a network for the Family Allowances
Act, the connections of which represent explicit textual cross
references, are given in Figs. 1 and 2.*

The first diagram shows the links between various parts of
Section 3, (dealing with the definition of a family) Section 4,
(stating to which member of the family the allowance belongs),
Section 20, (giving the residence qualifications for the allow-
ance to be payable to the family), and Schedule 1, (in which
more detailed information is given concerning whether a
child can be considered part of a family). This example
illustrates the usefulness of a cross reference network but also
its limitations. In the text, Subsection 3(1) gives three defini-
tions of a family:

(a) a man and his wife living together plus children
(b) a man plus children
(c) a woman plus children

Subsection 4(1) states to whom the allowances for the family
belong in these three cases. Paragraphs 4(1)(b) and 4(1)(c) make
explicit reference to the corresponding paragraphs 3(1)(b) and
3(1)(c) but paragraph 4(1)(a) makes an implicit reference by the
repetition of the phrase: ‘a man and his wife living together’
and so this particular connection, though just as necessary as
the other two, does not appear in the network.

The other example centres on Section 11 of the Act, which
details those circumstances in which a child shall not be
treated as a member of its family for the purposes of assessing
the allowance, because he is in the care of the local authority,
at an approved school, etc. This section refers to the Children’s
and Young Person’s Act, 1933, and the Children’s and Young
Person’s (Scotland) Act, 1937, the Criminal Justice Act, 1961
and the Criminal Justice (Scotland) Act, 1963. It also refers to
two sections of the Children’s Act, 1948, the Family Allowances
and National Insurance Act, 1956, and the Adoption Act, 1958.
Note that all these external references are regarded as pre-
decessors of the relevant subsections, since their provisions
must be taken into account before Section 11 can be applied
correctly.

3.3 Implicit

It is not possible to build up a complete picture of an Act’s
structure from cross reference alone. Equally important are
those implicit relationships based upon the definition and use
of words or phrases referring to entities and their ‘properties’.
The idea of semantic analysis is central to the whole LEGOL
project. That is, any attempt to translate an Act into the
LEGOL formalism must be preceded by a detailed identifica-
tion of those entities (objects, persons, events, relationships)
dealt with by the legislation. In the present case, we are
*In these, and in all subsequent diagrams, the ‘predecessor/succes-

sor’ relationship is normally shown as a left-to-right connection
(but see Section 2).

The Computer Journal Volume 22 Number 2

20z udy 61 U0 1s8nb Aq 01682 1/86/2/22/2101E/UlWOD/W0d dNo"dIWspeoe)/:SAY Wolj PAPEOUMOQ

talking about entities such as ‘children’, ‘families’, etc. which
are explicitly defined in the Act, making use of such concepts as
‘school-leaving age’, ‘issue’, ‘apprentice’, which in their turn
are also defined. Clearly the dependencies implied by such
definitions form another precedence network.

However, they are only the most conspicuous examples of
those intrinsic logical relationships which must operate to
make a piece of legislation ‘work’ correctly. For instance, we
have already seen from previous examples that Section 3 of the
Act under examination defines when a family is deemed to
exist, and Section 11 details those circumstances when a child
is not to be treated as part of his family. There is no explicit
link of any kind between these two sections and yet, because a
knowledge of Section 11 may be required to interpret Section
3 correctly, there is a precedence relationship between them.

The example in Fig. 3 illustrates a network for the Family
Allowances Act based upon logical connections such as those
described above. It is expressed at a high level of generality,
showing only connections between complete sections of the
Act. Nodes in this network are labelled with the section
number and a single mnemonic summarising that section’s
contents. The following detailed commentary describes the
network in terms of the series of steps which would be re-
quired to build up the complete diagram using the network
display program described in Section 2 of this paper.

Commentary

We begin with Section 1, which states, in general terms, that an
allowance is payable to families in respect of all children
except the first. Logically, however, this is not the beginning of
the story, since a great deal of the Act is involved with speci-
fying precisely what conditions must be fulfilled for the entitle-
ment to be valid. So initially the search for connections will go
backwards.

Step 1

Section 1 has two immediate predecessors: Section 3, which
defines what combinations of parents and children constitute a
‘family’ within the meaning of the Act, and Section 20, which
makes the qualification that an allowance is payable only to
families resident in Great Britain.

Step 2

Section 20 has no predecessors but Section 3 has three:
Section 2, which gives the conditions, in terms of age limits and
occupations, for qualifying as a ‘child’, Section 11, which deals
with the exclusion from consideration as part of the family of
children in the care of the local authority, etc. and Section 17,
which contains ‘provisions as to special circumstances affecting
the operation of Section 3’.

1. NN \
Maceoa pr

Fig. 3 Family Allowances Act, 1965 logical network

The Computer Journal Volume 22 Number 2

Step 3

Section 2 has two predecessors: the Education Acts, which
legislate for the upper limit of the school-leaving age (one
relevant criterion for ‘childhood’) and Section 13, which states
among other things that the Minister (of Pensions and National
Insurance) may make regulations for specifying the circum-
stance in which a person is to be treated as a child. Section 2
also connects with Section 17.

Step 4

The definition of a family includes the condition that a child is
‘maintained’ by its parents and the notion of maintenance is
expanded in Section 17, using the term ‘providing for’ a child.
Section 18 gives the meaning of ‘providing for’ and the Schedule
to the Act defines what level of maintenance, in terms of
monetary contributions, satisfies the required conditions.

Step 5
Section 11 appeals to Adoption Acts and various Children’s
Acts when declaring when a child is to be excluded from @
family for the purposes of the Family Allowances Act.

SPEOJUMO

Step 6
Section 18 is also a logical predecessor of the Schedule. Sectiofi
13 gives the Minister the right to require persons to furnish hirg
with information of facts affecting rights, and its predecessor;
Section 12, states, in general terms how documentary evndencE
of births, marriages and deaths can be obtained.

Step 7
The predecessors of Section 1 are now exhausted and we wish
to examine the sections of the Act which follow when the right
to an allowance has been granted. There are three immediatg
successors: Section 4, which declares to whom the allowancg
belongs and by whom it may be received, Section 5, whic
states to whom the claim for an allowance is formally ma
(the Minister) and Section 7 which deals with the method
payment.

oELBpeoe)/:

2/zz/oronS S

Step 8
The new predecessors of Section 7 are: Section 13 which states
that the Minister may extend ‘the period limited by Section g
for obtaining payment’ and Section 15, which says that stamg
duty is not chargeable on the payment of allowances. It hag
one successor: Section 6, which goes into more detail about tl@
period for which allowances are to accrue.

6

| Uo1sen

Step 9 -
Section 5 has two new predecessors: Section 13 which gives thg
Minister the power to prescribe the manner in which claimg,
may be made, and the National Insurance Act. We have seep
how Section 13, which deals in general with the powers of th
Minister, is connected at several different points in the network.
If the network had been specified at a level of detail correspond-
ing to subsections or paragraphs, each of these different
functions of Section 13 would have been represented by a
separate node. The National Insurance Act impinges on the
Family Allowances Act at many points, but not all its con-
nections have been recorded to keep the picture simple. Section
16 is the only successor of Section 5; it states that the expenses
incurred in carrying out the provisions of the Act shall be paid
out of moneys provided by Parliament.

Step 10

The successors to Section 4 are Section 10, stating that rights to
a Family Allowance cannot be transferred to creditors in the
event of bankruptcy; and Section 8 which relates to the
recovery of allowances wrongly paid.

101

Step 11
Section 8 has two predecessors; the Insurance Act, and Section
14, which covers provisions as to legal proceedings for re-
covering wrongly paid allowances. Its successor is Section 9,
which is about penalties for receiving payment wrongfully.
This concludes the example. The remaining sections of the
Act, which are somewhat less procedural, have not been
included, and some connections which could have been made
were omitted in the interests of simplicity.

We have seen that the simple notion of precedence covers a
number of different relationships, some derived directly from
the text, others more indirectly by consideration of the inten-
tion and effect of a piece of legislation. A LEGOL version of an
Act of Parliament will need to take account of and reconcile
these relationships in an orderly way. The software described
in the following section is a tool intended to help the investiga-
tions necessary to achieve this end.

2. Software to handle networks

The programs described below are written in FORTRAN for
the CDC 6400 machine at the University of London Computer
Centre, running under interactive Intercom. For graphical
output,a Tektronix 4014 terminal is used, linked to the 6400 via
a PDP 11/10 and controlled by routines from the Tektronix
PLOTI10 subroutine library. The London permanent file
manager is used to store and accsss data on disc.

There are two main routines, a preprocessor and a display
program, although some subroutines are common to both
programs. The preprocessor is used to arrange and store details
of networks on a disc file, either by reading new data or by
manipulating existing networks. It can be run interactively or
in batch mode. The display program accesses details of net-
works set up by the preprocessor and outputs them on the
screen of a Tektronix graphics terminal, according to options
specified by the user. Modified versions of some display
routines can also be used to plot network diagrams onto
microfilm.

The FORTRAN used is non-standard in that it includes
special routines for bit and character manipulation and for
reading and writing an indexed file. The programs have been
written so that storage areas can be re-allocated for each new
network processed. This means, for example, that a large but
sparsely connected network may occupy the same amount of
space as one which is smaller but denser. For this reason, it is
not possible to give a figure for the maximum network size
with which the programs will deal; it depends upon key length,
number of connections, etc. The display program, which must
be run interactively, must execute within the store allocated to
an Intercom job, about 35K. This will accommodate infor-
mation about networks containing 500-600 nodes. Bigger net-
works can be set up using the preprocessor in a batch job with
a larger store allocation and partitioned or reduced so as to be
suitable for interactive display.

1. The preprocessor
This program has four main functions:

1.1 Set up new networks
A new network is presented to the program in two related
sequential files. The first contains a list of nodes. Associated
with each node are three pieces of information, a label
(essential), a type and a key (optional). The label is the character
string printed out when the network is displayed. Possible
meanings for types and keys in the context of LEGOL are
mentioned in Section 1.

The second file contains details of connections, consisting of a
list of predecessor/successor pairs with optional specific con-

102

NODFE. LABFIL w
(positive row entries denote predecessors,
positive column entries denote successors)
ADOP ACTS empty
CH TYP ACTS empty
EDUC ACTS empty
1 ALLOWANCE e e o o o I e e e o o s s o 0 e o o o e o | . e
2 CHILD S R
3 FAMILY o o o o | e e 0 0 s o l o e o o ')
4 RECIPIENT) ' e o o o o o s o o e o o o o o s o 0 o o
5 CLAIM .« o e ‘ e o o e s o s o o o o ' I
6 PERIOD o o o o o o o o o l e e o o o o o
7 METHOD « o I © e e o o o s s o @ I . | e e e o s s e
8 RECOVERY ¢ o o o o o ' ' LR '
9 PENALTY e o o o s s o o o o I o o o o o l
10 INALNBL IR ' e o ¢ s e s s s 0 s e o o « o e o
11 EXCLUSN l ’ . Y o o o s o o o o s e . o« o
12 PROOF empty lw)
13 MINISTER e o ¢ o o o s o s 0 0 o s ot 4000 e e e e g
14 LEGAL PR empty Qg_)
15 STAMP DUTY empty &
16 EXPENSES & o s o o o s . e et <
17 INTERP e o o e s s o e e s e 0 s e o o e o o ‘ o« o e g
18 PROVIDE empty =
20 LIMITATN empty §
S1 MNTN et e e ettt I
INS ACT emptv g
Fig. 4 3
3

‘dno-

nection labels. The program reports when any two nodes arec
mutually dependent but does not detect longer cycles. Beforeg
details of any network are recorded on disc, the user is gwenB
the opportunity of having the details printed out, and e1thero
accepting or rejecting it.

The network of connections is represented in store as a bmarym
matrix, with empty rows suppressed. This format is economlcalo
on the CDC machine, which has a 60-bit word, and efficient for\
the required Boolean operations. A number of matrices can be,\,
held on file for the same set of nodes, each matrix representmgg
a different type of connection. These matrices may be super-3
imposed on one another, using a logical ‘OR’ operation, so?S
that connections of different types can be displayed on the sameO
diagram. Fig. 4 shows the node label list and assomated<
matrix for the network in Fig. 3.

| uo 1senb

1.2 Partition networks
The node set for any network can be partitioned, either byo
node type or by division into connected subgraphs. Each ne
network so formed may be examined, accepted, or rejected by,\)
the user. There is an option to reject automatically any networkm
with fewer than a specified number of nodes. Specific con-
nection labels are retained in the newly created network.

1.3 Combine nodes
Nodes within a particular network may be combined by two
different methods. The first is based upon key identity down to
a specified level. For instance, where a network was originally
set up as described in Section 1.2; with nodes identified down
to the subparagraph level, the program can reduce it by com-
bining nodes relating to the same section or Act. The program
assigns to the composite node the label for the first constituent
node it encounters. As the program stores nodes in key order,
this should be the one representing the appropriate point in the
hierarchy.

The second method of combination is based on lists of nodes
(disjoint sets) input by the user. In this case new labels must be

The Computer Journal Volume 22 Number 2

assigned to the composite nodes and all key information is
discarded.

With both methods, the user is asked for a composite type
code to be assigned to the newly created nodes. Specific con-
nection labels are not retained in the newly created network.
The program performs a logical ‘or’ between the rows and
columns of the connection matrix corresponding to the nodes
combined, and thus several differently labelled connections
may be reduced to one. Fig. 5 shows a network based on cross
references as in Fig. 1, but now simplified by combining to-
gether all nodes within the same section of the Act.

1.4 Merge networks

Two networks based upon the same node set but with different
connections may be merged together. If the node sets are not
identical, the user is asked whether they should be combined by
intersection or union. Intersection or union is performed in
relation to node keys, not labels; if the two node sets happen
to be labelled differently, the labels retained in the merged net-
work are those for the second network specified to the program
by the user.

Once again, specific connection labels are discarded in the
resultant network, since the merge is performed by alogical ‘or’
of corresponding rows of the two connection matrices. How-
ever, there is a way of retaining this information, if required.
As a by-product of union or intersection, the program produces
two compatible networks based on the new node set but the
old connection matrices and labels. The user has the option of
keeping these intermediate products as well as the merged
result, and since they are compatible, they can be used together
by the network display program.

Fig. 6 shows a partial diagram produced in this way. It is the
result of merging two networks already illustrated, (Figs. 3 and
5). In this example, connections are labelled according to their
origin. Arcs labelled ‘SS’ represent logical connections and
those labelled ‘R4’ represent cross references. A label ‘xx’
indicates that the connection was common to both original
networks.

EALS 7% / oS
“7{;"/
A3 EAS)

Fig. 5 Family Allowances Act, 1965 network of cross references at
section level

FA16

s \ﬁ >KM.
% ey

[

Fig. 6 Family Allowances Act, 1965 partial display of merged
networks

The Computer Journal Volume 22 Number 2

2. The network display program

This program outputs network diagrams on to a Tektronix
screen, under interactive user control. The kind of options
available are indicated briefly below.

2.1 Choice of network(s)

The network to be displayed is selected by name. Two or more
networks may be combined into a single display, provided their
node sets are compatible (see paragraph 2.1.4). The user may
terminate the display of one network and start another, during
the same program execution.

2.2 Choice of starting node and its position
Any node in the network can be selected as a starting point. By
convention, a node’s successors are displayed to the right of
that node, and its predecessors to the left. Depending upon
whether the search is to go forward or backward through the
network, or in both directions, the starting node may be
placed on the left, the right, or the centre of the screen. Choice
of successors, predecessors or all connections can be made for
each subsequent node. (Occasionally the relative positions %f
nodes in the screen will not correctly reflect their precedence
relatlonshlp When this happens, the connection between tl&
nodes is drawn as a broken line.) There are examples in Flg&
2 and 3.

/:sdpy wo

2.3 Mode of operation
If ‘automatic’ mode is selected, the program will attempt '@
draw the connected graph containing the first node, halting
only when all nodes and connections have been displayed or th¢
diagram reaches the edge of the screen. This method is adequa&:
where a subgraph contains only a few nodes. For more compl@
networks, the user may build up the diagram selectively, step
by step, indicating the next part to be extended by pomtmg
with a cross-hair cursor.

2.4 Shape and size of display

There are two algorithms to select screen positions for t
successors or predecessors of a given node. One method calc%
lates a fixed distance between connected nodes, the other @ a
fixed increment on the x axis only. Each method has its dise
advantages, and which is more suitable for any diagram caﬁ
only be decided by trial and error. By default, the fixed dlstancg
used is two inches, on a screen 10 inches by 15. The user has thg
opportunity of altering this default and so drawing the dlagra@
on a larger or smaller scale.

/aIe/|ulWo

2.5 Connection labels

The nodes of a network are always labelled when a diagram
displayed. The arcs connecting nodes may also be labelled
necessary. Specific connection labels will be used if they we
recorded when the network was set up, otherwise the network’
name will be output as a label when this option is requested.

0@ 1G] Uo jsen

2.6 Relocating the diagram
If a new node or connection to be added to a diagram will not
fit on to the screen, the program will print an informative
message. The user may either clear the screen and begin again
with a new starting point, or redraw the existing diagram in a
different position. The cross-hair cursor is used to indicate the
extent and direction of the movement. Relocation may cause
some nodes in the network to be ‘pushed off” the screen. How-
ever, the program will remember them and their relative posi-
tions so that they will reappear if the diagram is moved back to
its original place. Thus it is possible to examine, in parts, a net-
work which is too large to go on the screen as a whole.

The layout of a diagram appearing on the screen can be stored
on a stack (a sequential disc file) and retrieved later. So a user

103

building up a network by a series of steps can record his current
state, or return to a previous state. The information saved in
this way can also be filed, and used to produce microfilm
copies of the screen image.

3. Applications

The work described in this paper can be considered in two ways.
A piece of self-contained software has been produced, intended
for use by researchers in any discipline who have networks
which they wish to display and explore. It has been used, for
instance, to represent patterns of co-occurrence between words
in natural language texts (Jones, 1976) and, by contrast, to
illustrate social interactions within a small group of people.
Whatever the application, the user has the task of identifying
the individual elements to be associated and what the con-
nections between them represent. The programs can provide
useful manipulations of this data.

However, from the point of view of the LEGOL project, the
software is just an aid to the process of examining legal rules
in terms of networks. Section 1 discussed the problems of
analysing an Act of Parliament into textual elements and con-
nections but such an analysis is only a first step. The textual
units must be translated into automatically interpretable rules

References
Busacker and SaATY (1965).

and the precedence relationships between them converted into
instructions about the order in which such rules ought to be
applied. The application of rules by the LEGOL ‘interpreter’
should cause operations to be performed on stored data
representing typical cases, e.g. persons and their relationships
in order to generate results, e.g. details of families satisfying
the conditions specified in the Act and the amount of allowance
to which they would be entitled. The relationships of depen-
dency between the different data elements used and created by
LEGOL rules may also usefully be represented as a precedence
network.

In the context of the LEGOL project then; software to handle
networks is intended to assist the difficult process of moving
from the textual to the operational level of specification, of
producing an automatically interpretable set of rules which
retain the essential structure of the legislation from which they
were derived. As such it is a very small part of a system which
may eventually prove useful to lawyers or parliamentary
draftsmen.

Acknowledgements
I should like to thank Alex King of the LSE Computer Services
Unit for assistance with the graphics routines.

Finite Graphs and Networks, McGraw-Hill.

Jongs, S. (1976). Word Collocation as a Principle of Classification, LSE Papers in Informatics (T21). Paper given at meeting of Classification

Society at the Cambridge Language Research Unit, April 1976.

STAMPER, R. K. (1976). The LEGOL Project: A Survey, IBM UK Scientific Centre Report No. UKSC 0081, Peterlee, 1976.
STAMPER, R. K. (1977). The LEGOL 1 Prototype System and Language, The Computer Journal, Vol. 20 No. 2, pp. 102-108.

THORNTON (1970). Legislative Drafting, Butterworths.
WATERS, S. J. (1976).

CAMO1: A Precedence Analyser, The Computer Journal, Vol. 19 No. 2, pp. 122-126.

Book reviews

An Introduction to Mathematical Modelling, by Edward A. Bender,
April 1978; 256 pages. (John Wiley, £11-95)

This is an interesting book, one can learn from it how to formulate
and tackle a variety of problems in environmental, biological and
social sciences using elementary mathematics and statistics. These
fields are different from the traditional physical sciences, where
mathematics has been most successfully applied in the past; a
different outlook is needed, the problems are not well structured, the
solutions are often qualitative rather than quantitative, the problems
are practical and do not fit the conventional standard methods. The
book deals with these problems by identifying the more important
features while ensuring that the ignored details do not invalidate the
broad results obtained. Computer methods do not feature promi-
nently but they are used where appropriate.

The first chapter illustrates the main features of model building by
considering the problems of population growth and the number of
salesmen a firm should employ. Chapter 2 uses arguments based on
proportionality, scale and dimensional analysis to solve problems on
cost of packaging, shape of racing boats, size of animals and
pendulum period. Chapter 3 applies graphical methods to problems
on the missile arms race, the number of species on an island, the
theory of the firm, stability in economics and group dynamics.
Chapter 4 uses optimisation methods in problems concerned with
inventory control, geometry of blood vessels, fighting forest fires,
bartering economics and caste formation in ants. Chapter 5 applies
probability to problems in population studies, sex distribution, the
psychology of choice and learning, simulation of a doctor’s waiting
room, sediments and river networks. Chapter 6, titled Potpourri,
studies temperature control in the body of the desert lizard, election
procedures, respiration and carbon dioxide elimination. Chapters 7,
8 and 9 introduce differential equations and apply them to problems
in the pollution of lakes, driving hazards on road curbs, polymer

104

chains, towing a water skier, stability problems, species interaction
and population size, Keynsian economics and the dynamics of car
foliowing in heavy traffic. The last chapter studies stochastic
models in radioactive decay, facility location and particle size in
sediments.

The mathematics used is first year college level, each chapter is
supplemented by further exercises, problems and references. There
is an appendix on probability and a classification by subjects of the
90-odd problems considered in the book. It would be a pity if, as I
suspect, this book does not fit easily the teaching program of mathe-
matical specialists, but it should prove a useful source of material for
teaching mathematics to non specialists.

1. M. KHABAZA (London)

Discrete Mathematics in Computer Science, by D. F. Stanat and
D. F. McAllister, 1977; 401 pages. (Prentice-Hall, £12-80)

This book is an attempt to gather together the parts of mathematics
that are used in the various branches of computer science. It contains
chapters on mathematical models, mathematical reasoning, sets,
binary relations, functions, counting and algorithm analysis, infinite
sets and algebras. Each chapter introduces the definitions and
theorems necessary for discussing the particular topic and where
possible attempts have been made to provide solutions to related
computing problems using an ALGOL-like programming language.
There are a large number of mathematical problems set throughout
the text as well as some problems that require the reader to produce
solutions to programming problems.

Many students of computer science who are required to do courses
on pure mathematics may well find this book will give them some
indication of which parts of mathematics are useful tools in their
computing studies.

M. FLoWER (Bristol)

The Computer Journal Volume 22 Number 2

20z udy 61 U0 1s8nb Aq 01682 1/86/2/22/2101E/UlWOD/W0d Ao dlWspeoe)/:SAY WoJj PAPEOUMOQ

