Towards comprehensive specifications

S. J. Waters

London School of Economics, Houghton Street, London WC2A 2AE

This paper suggests that specifications should be more factually complete so that systems queries
can be reduced; this would save much cost and time of analysts, designers, programmers, operators
and the computer itself. Technical facts are defined for a specification’s data dictionary, messages,
data base and procedures and are checklisted so that documentation standards and higher level
systems languages can be analysed for completeness—typical examples (e.g. ADS, NCC, PSL)
seem to be more incomplete than they are complete.

(Received February 1978)

1. Introduction

This paper is further fallout from the CAM research project,
at the London School of Economics, which is investigating
computer aided methods of defining, designing, implementing
and maintaining computer based information processing
systems.

A specification (sometimes termed ‘systems spec’, ‘functional
spec’ or ‘proposal’) is probably the most important document
of a systems project. It records the user requirements for a
system so that they can subsequently be designed and imple-
mented—thus, the specification defines ‘whar is required’
logically rather than ‘how it will be achieved’ physically.
Usually, systems analysts produce a specification in close
consultation with users and, after agreement, pass it on to
computer systems designers and programmers; these techni-
cians subsequently raise many systems queries when construc-
ting the physical data base and its attendant programs—thus,
analysis and design are iterative processes in practice.

A comprehensive specification attempts to minimise the
number of systems queries due to facts being omitted from the
specification. This is important because incomplete speci-
fications often cause midnight panics in the computer room,
missed deadlines, soaring costs and even dismal failures in
many systems projects; for example, Grindley (1975) notes
one survey that suggested half of programming time was wasted
waiting for systems queries to be answered and another
IBM survey estimated the cost of resolving a systems query
when the system is operational as one hundred times the cost of
resolving it during systems analysis. Thus, if analysts make
more effort in specifying systems comprehensively then not
only should they save much of their own time later but also
.that of designers, programmers, operators and the computer
itself.

Documentation standards are often used in an attempt to
achieve comprehensive specifications. Systems analysts enter
technical facts on to preprinted forms which eventually can be
manually crosschecked for completeness and consistency;
ADS (NCR, 1969) and NCC (1969) are two typical examples
of this approach. Currently, higher level systems languages
are also being developed to input specifications into support-
ing computer software; PSL (1975) and BDL (Leavenworth,
1977) are advancing on this front. However, such standards
and languages can only achieve comprehensive specifications
if they are themselves comprehensive and do not omit signifi-
cant technical facts,

This paper attempts to define the technical facts that may be
recorded in a specification. It recognises the main purpose of a
specification as enabling the system to be constructed and
therefore analyses technical decisions, their alternatives and
techniques, to deduce the information a designer or program-

The Computer Journal Volume 22 Number 3

mer might need in his work. The resulting facts are briefly
classified and developed into a feature analysis which suggests
some standards and languages are more incomplete than
they are complete.

2. Technical facts
Much of the systems analysis literature superficially discusses

fact-finding techniques without ever defining the facts that may

need to be found. Waters (1979) attempts to remedy this by
analysing the problems faced by technicians to establish the
information they may need to solve these problems. The aim

of this work is to make specifications, documentation standards ¢

and higher level systems languages more complete and thereby
reduce the high timescales and costs of systems projects.

First, it is important to define what a system is so that analysts
can include all parts in the specification. Fig. 1 extends the
work of Martin (1967) into an anatomy of a system which
recognises the following logical parts:

Application sub-system containing the user’s procedures to
transform transactions of real-world events into results and
update the data base history of files of records of elements.

Information retrieval subsystem to interrogate the data base by
generating responses to enquiries, subject to any privacy
constraints.

Data base maintenance subsystem to modify the¢ data base by
insertions, amendments and deletions and produce proof lists
of the changes that have been made, subject to any ownership
constraints.

Control subsystem to help detect, locate and correct fraudulent
and accidental errors by generating error lists and reconcilia-
tions.

Recovery subsystem to prepare for, degrade during and recover
from technical failures.

Monitoring subsystem to produce a log of operational events.

These last three subsystems are triggered by various para-
meters. Thus, a general system can logically be viewed as six
subsystems which collectively transform six types of input
messages (which include any time triggers) into six types of
output messages. This analysis is not offered as a definitive
classification but as a useful checklist of the parts that should
comprise a typical system; Waters (1979) explains the analysis
in detail.

Now assume that this system is to be designed and imple-

195

202 udy 61 U0 188n6 AQ GZHB0Y/S6 L/€/2Z/10M4e/|ufLo0/W0d"dNo"oIWePEDE//:SARY W) PAPEOUMOQ

INPUT MESSAGES SUB-SYSTEMS OUTPUT MESSAGES

Transactions Results
Application
Enquiries X Responses
Information retrieval
Insertions
Amendments
i .
Deletions Database maintenance Proof lists
Error lists
Control Reconciliations
Parameters
Recovery
nitori
Monitoring Log
Database

Fig. 1 An anatomy of a system

mented with a free choice of current technology (including
batch and real time processing, teleprocessing, centralised
and distributed processing, tape file processing and disc data
base processing etc.). Then, a specification technique in
general, may include the nearly eighty different facts listed
in the Appendix; the encircled ones appear to be vital logic
which must be defined even if some supercomputer were
available which has infinite memory, is infinitely fast and costs
nothing. Notice that over forty facts are encircled which means
that automatic programming, or self-programming computers,
would not eliminate the vast amount of work involved in
programming the system (as opposed to programming the
computer).

No claim is made here that the list is complete. Teichroew
and Hershey (1977) are probably correct in suggesting ‘com-
pleteness can never be fully guaranteed’—this realisation has
no doubt contributed to the ISDOS about-turn of ‘design
is essentially a creative process and cannot be automated.’
Hundreds of computing techniques and applications have
contributed to the list but others are bound to have been
overlooked.

Even if a comprehensive analysis could be guaranteed, it
would not be feasible to specify a system completely anyway
because some of the facts yield vast documentation that is
only occasionally relevant. For example, fact 14 would require
all values of all elements (at least keys) to be specified but this
information might only be useful on the rare occasions that
algorithmic files are being considered. Thus, some facts would
only be documented if designers and programmers request
them—Waters (1978) provides an analysis, albeit extremely
subjective. Notice therefore that systems queries cannot be
totally eliminated but they can probably be significantly
reduced.

3. Specification techniques
Probably most organisations use specification techniques, such

196

as documentation standards or occasionally higher level
systems languages, to guide analysts. Disappointingly, these
are often introduced and then left undeveloped in the light of
feedback from their use; for example, a systems query arises
on one application (e.g. fact 30 above has been ignored) and
that system is revised appropriately but the specification
technique is not improved—thus, precisely the same systems
query arises on every application that is subsequently specified
by that technique. A German proverb suggests ‘the devil is in
the detail’ and those heavily involved in systems maintenance
will know the problems caused by important but overlooked
details during analysis and design—at least they should be
formally given the opportunity to improve weak specification
techniques so that future systems do not repeat the mistakes of
the old.

A common weakness is that the technique is not comprehen-
sive. Many do not aim to be, but instead concentrate on
particular aspects of specifications; for example, Bosak’s
Information Algebra (1962), Grindley’s Systematics (1975) and
Pengilly’s PROPLAN (1976) mainly confine themselves to t%
logic of a system so they cannot be criticised for covering less
than 209, of the above facts. However, some techniques @o
aim to be comprehenswe for example,
ADS (1969) ‘can assure that there are no loose’ ends, 80
omissions and no ambiguities; and that there are no isolated,
incoherent, or irrelevant facts. ADS provides all the audits and
guidelines needed to assure the definer that definition Exs
complete’.

NCC (1969) helps to ‘ensure there are no loose ends, elthergn
fact finding or in system specnﬁcatlon and

PSL (1975) increases the ‘preciseness, consnstency and cogl-
pleteness’ of documentation and its objective is ‘to be able 3o
express in syntactically analyzable form as much of the
information which commonly appears in System Deﬁmt@n
Reports as possible’.

Fig. 2 analyses these three specification techniques as:,a
feature analysis of the facts they cover—none reaches 40%
completeness and all omit more than half of the vital, logi@l
facts. Of course, it can be argued that their generous notes
and memo facilities allow free-format comments which ma&e
them complete, but such informal facilities give no guidange
to analysts. Further, it may be the case that they can forma
document most of the mass of a specification because a few of
their included facts (e.g. contents of messages, data base ard
procedures) account for the bulk of its pages—however, t‘ﬁe
three specification techniques examined are more incompléte
than they are complete when judged by their coverage of fac

i p

4. Conclusion
This paper has summarised some recent research (Watel;s,
1979) which examines the technical facts that may be recordgd
in logical specifications. The aim is to improve the complete-
ness of this documentation and to help reduce, but not elimi-
nate, the high times and costs of systems queries.

The facts, which are not claimed to be comprehensive, can be
checklisted and used to judge the factual completeness of
specification techniques, such as documentation standards
and higher level systems languages. A feature analysis of ADS
(1969), NCC (1969) and PSL (1975) suggests they are more
incomplete than they are complete, particularly with respect to
the ‘devilish details’. Hopefully, user organisations will apply
this technique to their own documentation standards—the
author would be pleased to hear of extra technical facts that
have been overlooked herein.

Finally, the author acknowledges the assistance of his col-
leagues in the LSE Systems Research Group and at Birkbeck
College.

Audy 61 gjo

The Computer Journal Volume 22 Number 3

Data Dictionary Messages Data base Procedures
Fact ADS NCC PSL Fact ADS NCC PSL ADS NCC PSL Fact ADS NCC PSL
OV v v @ v v v v v v @3 v v v
D v v v ® x v v x x x & v v v
®d x v v O x v v x v x @ v x @ x
4) X x v/ 20 x X v X v x @ x x x
(5) X V4 x) X X v X x x 62 V4 x X
(6) v v v 22 x x x X x V4 63 x x V4
ORY v i 23 x x v X x x 64 x x v
(8) x x V4 (29 x X x X x X 65 X Vv X
9 x X Vi 23 x X X v v X 66 X v X
10 v/ v X 26 v/ v v/ x v X 67 X x x
(1)) X X X @ X X X vV Vv V4 68 X X X
12 X v/ Vi 28 v/ Vi X X X X 69 X X X
13 X X X 29 X X X X X X 70 X X X
14 X V4 V4 X X X X X X 71 vV X v
15 X X X 31 X X X X X X 72 X X X
16 X X X X X X X X X 73 X X x
% Vv X x X V4 x 74 X x x
34 X X X X X X 75 X X X
X X X 76 X X X
% X X X @ X X X
37 X X X
VAR VAR
¥ v v ox
Fig. 2 Feature analysis of three specification techniques.
Appendix ®) Alternate keys
Data Dictionary An element or set may be uniquely identified by more than one
@ Element names key(e.g. FACTORY-NUMBER/DEPARTMENT-NUMBER/

Each element must be uniquely named so that procedures can
specify the variables on which they operate.

@ Set names

Similarly, convenient groupings of elements into sets must also
be uniquely named (e.g. INVOICE, CUSTOMER-RECORD).

@ Synonyms

If different people call the same element or set by different
names, then synonyms are necessary to identify its unique
name with its variations.

States

It is often convenient to name the states that an element or set
can take and define the conditions for which each state applies
(e.g. MALE is SEX = 1, FEMALE otherwise).

@ Levels .

Level numbers are used to specify the depth of a set within
their hierarchical structures (Waters; 1977).

Single keys ,
Each element must be uniquely identified (Grindley; 1975) b
a key so that procedures can join (Codd; 1970) the occurrences
of the variables on which they operate (e.g. PRODUCT-CODE
is the key of QUANTITY-IN-STOCK); if the key is itself a
single element then it is termed a single key.

@ Composite keys

Otherwise, the key is termed composite (e.g. PRODUCT-
CODE/RESOURCE-CODE is the key of USAGE-QUAN-
TITY).

The Computer Journal Volume 22 Number 3

CLOCK-NUMBER and NATIONAL-HEALTH-IN-
SURANCE-NUMBER are both keys of EMPLOYEE-PAY-
RATE).

9. Key relations

One key may have an m:n relationship (Davenport; 1977),
with another key and these relations dictate access paths
through all data (e.g. m» EMPLOYEE-NUMBERSs work in one
DEPARTMENT-NUMBER and no other).

Pictures

The format and character set of each element must be specified
(e.g. DATE is 99AAA99).

@ Units

The units of measurement of numeric elements, that are not
simply decimal numbers, contribute to calculating logic and
must be specified (e.g. SALES-PRICE is measured in pence
per metre).

@ Value ranges

The minimum and maximum values of each numeric element
contribute to data validation logic (e.g. SALES-PRICE is
between 10p and 99p).

13. Normal values

The normal (or nodal) value of an element is often useful in
estimating (e.g. SALES-PRICE is usually 15p).

14. Actual values

Sometimes, all actual values of an element must be specified
(e.g. PRODUCT-CODE is 0007, 0013, . . ., or 9972 may be
useful when choosing a data base algorithm).

197

202 udy 61 U0 188n6 AQ GZHB0Y/S6 L/€/2Z/10M4e/|ufLo0/W0d"dNo"oIWePEDE//:SARY W) PAPEOUMOQ

15. Value distributions

Also, the number of occurrences for each actual value may be
useful (e.g. SEX = 0 occurs 2,000 times and SEX = 1 occurs
8,000 times may be relevant in data base inversion).

16. Value relations

Further, relationships between the values of different elements
may be stressed (e.g. if CHAIN-STORE-CODE # 0 then
PRIORITY = 1).

Messages

Contents
Each message must be defined in terms of the elements and
sets it contains.

Locations

The source of each input message and destination of each
output message must be specified, particularly if they are to be
teleprocessed.

Replications

The number of copies of each message must be specified,
particularly

@ Control replications whereby several versions of the same
message may be compared for accuracy, and

@ Recovery replications whereby copies of messages are
necessary to recover from failures.

@ Replications by locations

Further, the number of copies of a particular message can vary
between locations.

@ Frequencies

The arrival times of input messages and the departure times of
output messages must be defined (e.g. ORDERS are daily,
STATEMENTS are monthly), noting that these frequencies
may vary between

@ Frequencies by time—different periods, and
@ Frequencies by locations—different sources/destinations.

26. Normal occurrences

The normal (or nodal) number of messages input/output is
necessary for estimating the traffic and workload of a system
(e.g. 5,000 ORDERS per day).

@ Minimum occurrences

The minimum number of times a particular message can occur
vitally affects the logic of a system—probably most messages
have a minimum occurrence of zero to cover extreme circum-
stances (e.g. no ORDERS per day during a postal strike).

28. Maximum occurrences

The maximum number of times each message occurs is useful
for estimating peak traffic and workload.

29. Occurrences by time

The number of messages may vary between different periods.

@ Occurrences by keys

The number of messages that can occur for a particular
key usually has a profound impact on the logic of a system
but is often overlooked (e.g. can several ORDERS be input
for the same CUSTOMER-CODE and can several ORDER-
LINEs refer to the same PRODUCT-CODE? If so, what
special procedures are necessary ?)

31. Occurrences by locations

The number of messages may vary between different sources/
destinations.

198

@ Message type sequences

Different types of input message may arrive in a particular
order(e.g. INSERTIONS, AMENDMENTS and DELETIONS
precede all TRANSACTIONS); similarly, different types of
output messages must usually depart in a defined order
(e.g. RECONCILIATIONS precede all RESULTS).

@ Message sequences

Occasionally, all input messages of the same type arrive in
strict order (e.g. CLOCK-CARDS are in EMPLOYEE-
NUMBER sequence); output messages usually depart in
strict order, if only to help locate those that are subsequently
queried (e.g. PAYSLIPs are output in FACTORY-NUMBER/
DEPARTMENT-NUMBER/EMPLOYEE-NUMBER se-
quence).

34. Near sequences

Input messages sometimes arrive almost in order (e.g. ORDER-
LINEs are usually in PRODUCT-CODE sequence for ea
ORDER but not always).

@ Sequences by locations

The order of messages can vary between different sources/
destinations, and

papeojumBe

hy w

@ Sequences by replications different copies of the messageg

37. Error rates

The proportions of incorrect messages are necessary for est%-
matmg

Media

The devices supporting input and output messages must
specified.

@ Formats

So must their precise layouts.

peoe//}

Data base
@ Contents

Each logical, data base record must be defined in terms of t
elements and sets it contains.

Locations

The sites of data base records must be specified, particula
if they are to be distributed.

B/S61/c/zz/o01e/|ulwoogi0o dnoo|

MB'Aq GZv80

@ Control replications

Data may be replicated so different versions can be compar
for accuracy, or

ARG | UO S0

8oz |ud

Recovery replications can be quickly recovered from
failures.

@ Replications by locations
Further, the number of copies may vary between sites.

@ Frequencies
The times at which the data base is updated must be defined,
noting that these may vary between

@ Frequencies by time—different periods, and
@ Frequencies by locations—different sites.

48. Normal occurrences

The normal (or nodal) number of logical, data base records is
necessary for estimating its size.

@ Minimum occurrences
The minimum number of times a particular type of data base

The Computer Journal Volume 22 Number 3

record can occur affects the logic of a system—often, this is
zero for the case of the very first run of a system.

50. Maximum occurrences

The maximum number of times each data base record occurs
is useful for estimating peak sizes.

51. Occurrences by time

The number of data base records may vary between different
periods, and

52. Occurrences by locations—different sites.

53. Hit ratios
The proportion of data base records that are accessed.

54. Hit groups
Highly-active areas of the data base.

55. Faninjout ratios

The number of times an accessed data base record is hit by
input/output messages.

56. Volatilities
Data base growth and/or decay.

57. Overflow patterns
Distributions of inserted data base records.

Procedures

Contents

Each procedure must be defined in terms of the statements it
contains, for making decisions and taking appropriate actions.

@ Names

Procedures and individual statements may be uniquely named
(e.g. labels); each statement may perform a function for

Create verbs—generating a value of an element (e.g.
including +, —, x, =, 3, II, roots, powers, sine, cosine,
tangent, etc.) or an occurrence of a set (e.g. a data base record
or output message),

Destroy verbs—eliminating an occurrence of a set (e.g.
an invalid input message or a deleted data base record), or

Test verbs—deciding which actions should be taken (e.g.
including <, =, >, etc.). ‘

63. Frequencies
The times at which each procedure is operated may be stressed.

References

ADS (1969). A Study Guide for Accurately Defined Systems, NCR Ltd.

@ Sequences

64. Keys

Further, the frequency of amending an element of one data
base record which is a key for another record deserves emphasis
(e.g. SALESMAN-CODE on CUSTOMER-RECORD can
only be changed at the end of a month).

65. Sequence keys

The records of a physical data base are usually ordered on
sequence keys (which include record keys) and their frequency
of change may also be significant (e.g. in preserving the
sequence of a large serial file); further, it may also be important
to specify if

66. Sequence key series—the new values of sequence keys are
always greater than their old values, or

67. Sequence key cycles—the values of sequence keys may be
swapped.

ojumoq

68. Strategic delays
Many delays may be incorporated in a physical system purely2
as technical strategy (e.g. reallocated stocks will not be(_g-h
be returned to free stock until the day after they were originallyg
allocated).

=
i
69. Frequencies by time S
The times at which a procedure is operated may vary betweenS

different periods, or
70. Frequencies by locations—different sites.

71. Normal occurrences

/W09 dno-oIWwe

normal (or nodal) value,
72. Minimum occurrences—-a minimum value, and
73. Maximum occurrences—a maximum value.

74. Occurrences by time
These occurrences may vary between different periods,

75. Occurrences by keys—different keys, and

76. Occurrences by locations—different sites.

1dy 61 uo ysenb Aq Gz180v/S6L/S/cz/eIME

Sometimes, procedures must be operated in a defined sequence =
and this can have a profound impact on the logic of a system 2
(e.g. stocks must be allocated first in—first out for outstanding ~
orders before today’s orders in customer priority sequence).

LEAVENWORTH, B. M. (1977). BDL—Non-procedural Data Processing, The Computer Journal, Vol. 20 No. 1, pp. 6-9.

Bosak, R. et al (1962). An Information Algebra, CACM, Vol. 5 No. 4.

Copp, E. (1970). A Relational Model of Data for Large Shared Data Banks, CACM, Vol. 13 No. 6.
DAVENPORT, R. A. (1977). Data Analysis for Database Design, Proceeedings of IRIA Conference on Data Analysis and Informatics, Paris.

GRINDLEY, C. (1975). Systematics, McGraw-Hill.

MARTIN, J. (1967). Design of Real-Time Computer Systems, Prentice-Hall.

NCC (1969). NCC Systems Documentation Standard, National Computing Centre Ltd., Manchester.
PENGILLY, P. J. (1976). An Approach to Systems Design, The Computer Journal, Vol. 19 No. 1, pp. 8-12.
PSL (1975). PSL Users’ Manual, ISDOS Working Paper 98, University of Michigan, USA.

TeicHROEW, D. and HERrsHEY, E. (1977). PSL/PSA—A Computer-Aided Technique for Structured Documentation and Analysis of Informa-
tion Processing Systems, IEEE Transactions on Software Engineering.

WATERS, S. J. (1977). CAMO2: A Structured Precedence Analyser, The Computer Journal, Vol. 20 No. 1, pp. 2-5.

WATERS, S. J. (1979). Systems Specifications; Documentation, Standards and Languages, National Computing Centre Ltd., Manchester.

The Computer Journal Volume 22 Number 3 199

