The use of a synthetic jobstream in performance

evaluation

G. Haring,* R. Posch,* C. Leonhardtt and G. Gellt

A new computer system is required to replace the existing UNIVAC 494 system for the universities
at Graz. A synthetic jobstream matching the real batch load of the existing system was constructed
using Buchholz’s job (which was modified and transferred to FORTRAN). This synthetic jobstream
was used for comparison of different computer systems as well as for the selection evaluation process
itself. The construction of this synthetic jobstream is described in detail in this paper. The problems
of characterising the real load are discussed explicitly. Special attention was given to the question
of which parameters should be used, together with the decisions on the form of the scale and the sub-
division of the range of the parameter values. Furthermore a procedure is given for an optimum of
determination of the parameter values of the synthetic jobstream.

(Received August 1977)

Die Universitiiten von Graz standen vor der Aufgabe, das existierende EDV-System UNIVAC 494
durch ein neues zu ersetzen. Es wurde ein synthetischer Jobstrom konstruiert, der auf dem synth-
etischen Job von Buchholz basiert, welcher modifiziert und in FORTRAN iibertragen wurde. Dieser
synthetische Jobstrom wurde sowohl fiir den Vergleich verschiedener Computersysteme als auch
fiir den Proze der Auswahlbewertung selbst verwendet. Die Konstruktion dieses synthetischen
Jobstroms wird in diesem Artikel ausfiibrlich beschrieben. Explizit werden die Probleme im
Zusammenhang mit der Charakterisierung der realen Arbeitslast diskutiert. Dabei wird besonders
Gewicht auf die Frage der Auswahl der zu verwendenden Parameter sowie die Entscheidung iiber
den Maf3stab und die Unterteilung der Wertebereiche der einzelnen Parameter gelegt. Im weiteren
wird eine Prozedur zur optimalen Bestimmung der Parameterwerte des synthetischen Jobstroms

eingegeben.

1. Introduction

The performance of a computer system depends on a compli-
cated interaction and co-operation of different components—
the computer hardware, software and user programs—
including some stochastic elements. The results of this co-
operation are functions which are requested from the system
by the user’s application program. The performance of the
computer system is a result of the effectiveness with which these
functions are processed. That means that a mixture of physi-
cally and functionally different parts of the system has to be
evaluated. In this context it is important to underline that the
discussion and evaluation concerning the performance of a
computer system can only be based on the special applications
which are to run on the system.

The methods for measuring or describing the performance
are different and depend on the special goal. Basically there are
three purposes of performance evaluation: performance
projection, performance monitoring and selection evaluation.
The last one, i.e. performance as a criterion for selecting a
particular system, is the most frequent case and also the back-
ground of this paper. There are of course several other factors
which must be taken into consideration but this will not be
discussed further because they are described in another paper
reporting on the decision process as a whole (Gell et al., 1979).

As mentioned before, the performance of a computer system
depends on its special application. It is therefore important
to have a critical knowledge of the workload of the future
system. We shall consider the case when a system already in
use is to be upgraded or replaced by a new one. That means
that a real job profile is known and can therefore be analysed
and extrapolated. Proceeding on the assumption that there
will be no unexpected or rapid change in the users’ resource
requirements such an extrapolated future workload can become

*Technical University of Graz, Steyrergasse 17, A 8010, Graz, Austria

tUniversity of Graz, Universititsplatz 3, A 8010, Graz, Austria

The Computer Journal Volume 22 Number 3

05/wod dno-olwepese//:sdpy Woly peapeojumoq

the basis for evaluating the performance of the new system3
This assumption is valid even if the main deficiency in the run3
ning system is of qualitative nature, e.g. there is no time sharin%
facility, because it can be assumed that the processing profile=:
will be independent of the kind of processing. The situationo
however will be quite different, if the shortcoming of the run->
ning system is a quantitative one, e.g. not enough computing?
power to meet all of the users’ needs. The special situation—3
whether the deficiency is a qualitative or a quantitative one or a§
combination of both—must be known, e.g. from a question-3
naire. Depending on the extent of the quantitative lack, it is”
necessary to reevaluate the future workload by means of anj
accurate analysis of the users’ additional needs. This can be‘of,
done in different ways: either by extrapolating the require<S
ments specified by the users or by assuming jobs which”,
have not yet been executed on the system. The requirements’
of these jobs can be estimated on the basis of defined andS
specified problems, their solutions and the known users™
behaviour. Normally a combination of both methods will®
provide acceptable results as far as future workload is
concerned.

The users of the universities at Graz run their jobs on a
UNIVAC 494 with practically no TS-processing and only
limited software facilities. Now this system is to be replaced
by a new one with qualitative improvements in TS-processing
and software supply. An enquiry has shown that there is no
demand for extremely positive changes in the quantity of the
supplied computing power for the moment. As a consequence
of the assumption made above we were able to say that today’s
resource requirements could be the base of estimation of the
future workload. We described this workload, which is a pure
batch workload, by different parameters. These parameters
formed the basis for constructing a synthetic jobstream

representative of the real load which served as a means for
evaluating the new system. Difficulties arose from the fact
that we also intended to test the time sharing (TS) ability
of the new system, but we had no information of the future
TS workload. A description of the whole test and evaluation
process together with a practicable solution for this situation
will be published in Posch et al. (1979).

2. Evaluation techniques
There is a series of well known techniques for evaluating the

performance of a computer system which are listed and defined
below:

1. Timings
The cycle time and add times are compared to obtain a rating
of the evaluated systems.

2. Instruction mixes

With this technique the frequency of execution of certain
instruction types is specified and timings are weighted accord-
ingly to produce a figure of merit.

3. Kernel programs

A kernel program is a typical program to solve a given prob-
lem. Then this program has to be timed. The timing can be
found either by the execution of the kernel program or
usually by an estimation based on the execution times stated
by the manufacturer for the instructions that compose the
kernel program for a given system. As a rule there are no
I/O operations included in a kernel program because the
asynchronous nature of the I/O paths make reliable timing
difficult.

4. Analytic models
An analytic model is a mathematical representation of a

computing system, very often based on queueing theory
(Kleinrock, 1976).

5. Benchmarks

A benchmark is an existing user program, which—together
with other selected benchmarks—is executed and timed on the
system being tested.

6. Synthetic jobstream

A synthetic jobstream consists of synthetic programs, in
which the resource requirements of each job are the result
of values of special parameters. Synthetic programs include
I/O operations and are in fact executed on the system to be
evaluated.

1. Simulation

In this case the operation of the system is simulated by a
special driver which is either based on an event oriented
simulation model or on empirically derived data.

It is known and well discussed (Lucas, 1971 ; Osswald, 1973),
that in connection with the selection process only three of
these methods are full enough to give satisfactory results.
These are the techniques 5, 6, and 7, mentioned above. Perhaps
the greatest drawback of simulation is the relatively high costs,
for the preparation as well as adaptation and execution.
Apart from this fact, simulation creates some other problems
not always easy to solve—for instance the decision of how
many items should be included in the simulation, the valida-
tion of the system or the question of whether all effects of
software, such as multiprogramming, time sharing, etc. are
adequately considered.

Both of the remaining techniques: benchmarks and synthetic
jobstreams, share some common features:

1. The jobs must really be executed by the entire system;
therefore all its relevant aspects can be considered and

210

complex situations can be tested. The results can not be
refused or denied.

2. The effective processing time or the throughput rather than
the actual processor time are measured.

The main problem with both methods is that the resulting
workload for the test run must be representative of the job
mix of the installation in all the essential parameters of the
real workload, which are also to be used in formal description.
With the benchmark method this problem is reduced to the
proper selection of jobs of the real workload which can either
be done randomly or according to a given strategy. The arising
difficulties are manifold, mainly because it is necessary to
look over a rather long period of time in order to smooth
seasonal fluctuations in the workload. If the benchmarks
are selected by applying a random number generator based
selection process to the sequence of jobs in the real workload
during a long period of time, it is not certain that the selected
programs are still available—especially in a university environs
ment. There are other problems too, like the translation of a
large number of programs into the language used by the systerg
to be tested and questions concerning security and priva

of programs and data, etc. On the other hand, if you take
programs based on defined problems instead of extracting
jobs from the real workload you will run the risk that the

—
f=

benchmark may not be typical of the existing job profile. ©
Because of these difficulties we used the synthetic job methog
for constructing our test run. Compared with the benchmarg
method this method provides full flexibility since it is possib]g
to design jobs which can include almost any desired parameters
for measurement. The whole test run can be built as a sequencz!;
of formally identical programs in which the resource requires
ments of each single job are determined by special job paras
meters (see Section 3). In this case the main problem is how
to represent and describe the real job profile, that means té_
decide upon the variables used for describing the resourcg
requirements of each job in the real workload and the scalé
and subdivision for these variables, etc. The second point if
g N
the process of describing a real workload by means of a syns
thetic jobstream concerns the connection between this real
workload and the synthetic jobstream by determining the
special characteristics of each synthetic job. A description
these problems as well as a practical solution to them will b&
found in this paper.

sanb Aq

3. Connection between real and synthetic workload 73
This chapter describes the method used to obtain a representa
tive synthetic workload from a real job profile. The transition:
from the real to the synthetic workload can be done in twg
steps: =
1. Find out the characteristics of the real workload.

2. Fit the synthetic jobstream to these characteristics.

The method for this adaptation follows a paper of Sreenivasan
and Kleinman (1974) and is based on the joint probability
density of the real workload which is matched by that of the
synthetic stream. Each real job of the workload makes
demands on the various system resources, i.e. each of the real
jobs can be described by n variables X, X,, ..., X »» Which
represent characterising parameters of the jobs which are
loaded. The values of these variables which are known from
the system logfile for each job provide a measure of the usage
of the different system resources by this job. Thus each job
can be seen as a point in an n-dimensional space. The whole
workload is represented by a set of points in this space. But
an amorphous mass of points makes no sense. One possibility
for grouping this set consists in using cluster methods for
finding groups of jobs with special requirements of the system
resources (Hunt et al., 1971). Another method is to calculate the

¥20e |

The Computer Journal Volume 22 Number 3

joint probability density of jobs in discrete cells of the space.
Being aware of the fact that both methods are adequate
for constructing a synthetic workload, we decided to use
the second because it consumes less processing time. By
dividing each coordinate axis i (i = 1, 2, ..., n) into 1, discrete
but not necessarily equal intervals the whole space was sub-

divided into l'[1 discrete cells. With N, representing the

total number of]ObS in the real workload and

Ny i, <i, <l ,r=12,...,n)
the number of jobs in the cell (i; i, . . . i,), the probability
of finding a job in this cell is expressed by
Pul; cein T Nl'nz .. l,./Ntot (1)

Using these values of P; ;, . ;. the values of N/ ;, .
(primed quantities refer to the synthetxc jobstream) for the
synthetic jobstream are obtained from

ijliz...l' —P 'Nl’o((2)

is the assumed total number of jobs in the synthetic

iy i2 .. . in
where N/, i
workload.

The real total number of jobs in the synthetic jobstream can
be obtained by summing N;, ;, ..., over all cells taking into
account that the right side of equation (2) must represent an
integer value. By means of this equation the joint probability
density of the synthetic stream can be matched with that of
the real workload.

Within the synthetic jobstream it is necessary to characterise
the N ;, .. jobs of the cell (i, i, ... i,) by values for these
n variables. In contrast to Sreenivasan and Kleinman (1974),
who used the central point of the interval as a representative
value for each variable, we assumed that we could obtain a
better representation of the jobs in each cell by using the mean
value X; of each variable X; (j = 1,2, ..., n) taken from the
N, i, ... i, jobs of the real workload:

iyiz..in
%iyiy. .. 0) = N_'_ DS 0 0y 0);

iy iz . . in
v=1

j=12,...,n 3)
where x{") (i i, . . . i,) is the value of the variable X; for the
v-th job belonging to the cell (i; i, . . . i,). Therefore the
N{, .. i, jobs of the synthetic jobstream representing the
Ni i, ..., jobs of the real workload belonging to the cell
(i, i, ..., have the identical requirements of system resources
which can be determined from the characterising values
Xi(iyiy...i,))withj=1,2,...,n

For the variable X, the total requirement consumed by the
whole synthetic stream is given by:

tot(x,) = Zl 21 21 Xy iz i) Nijiy i

k=12...,n 4
This equation can be used to determine N}, a method which
is described later in this paper. ‘

The method of matching the joint probability distribution
favours the jobs that occur most frequently. Often there
are situations where infrequent jobs place heavy demands on
the system resources. In this case the considerations made
above are altered by using a weighted joint probability
density (Sreenivasan and Kleinman, 1974). This modification
was not used in our situation, as will be explained later in
this paper.

4. Characteristics of the real workload

To obtain the characteristics of the jobs running on the
UNIVAC 494 we evaluated the system logfiles during the period
from 1 January to 30 June. A total of 51716 jobs was executed,

The Computer Journal Volume 22 Number 3

30352 of them with at least one FORTRAN task and 44837
with at least one execution task. The major part of those
programs having no FORTRAN task but at least one GO task
were relocatable elements resulting from a FORTRAN
compilation with a following load task. Therefore it seemed
obvious to reconstruct the real batch workload from synthetic
FORTRAN jobs. The form of these synthetic FORTRAN
programs will be described in Section 6.

To characterise the jobs of the real workload we selected
three variables:

X, Total number of words transferred between central
memory and second storage (discs and drums) and vice
versa.

X, Total CPU time used by the execution phases of the job.
X, Maximum amount of core used by the execution phases of
the job.

An important decision was to choose the special scale and
intervals of the three describing variables resulting in a sub-
division of the space into cells. In this special case we con-g
sidered linear and logarithmic scales. For variables X, and X3 5
we decided on a logarithmic scale, with parameter X wem
used a linear scale. The logarithmic scale should guaranteem
that those jobs which occur infrequently but use resources ofg
the system intensively are adequately considered. Otherwise3
these jobs would either not be representcd properly in the:
synthetlc jobstream or small differences in the number of Jobsf’
in these weakly populated cells would result in assngnmentso
of synthetic jobs to single cells not representing the behav1oura
of the job profile of this cell. Together with the decision on the3
form of the scale we decided on the upper limits of the three'o
variables. 32K was a natural limit for the core requlremento
because on the UNIVAC 494 FORTRAN generated program:
can only be addressed within this limit. As an upper limit for X & 13
we took 100 megawords and for X, 3020 secs resulting in thes
fact that only one of about 1000 jobs did not fall in a cell of our3
three-dimensional space. 2

In order to decide on the number of intervals /; for the valueso
of each variable a model of the synthetic Jobstream wasy
generated by means of a program which calculated the meaqg
values of the variables and their ratios using different valuess
of N/, and different subdivisions of the parameter axis. This>
decision is strongly connected with the stability behaviour o
the selected subdivision. The definition of the stability of a,
given subdivision is based on the stablhty of a range of N, m@
The stability of an interval in which N;,, ranges is defined byﬂ>
the length of this interval divided by the sum of the differences>
between the smallest and highest values of each of the [0, 1
normalised parameters in this interval. The stability of a sub--
division is defined as the maximum stability of an intervalb.
with a predefined length.
The term ‘execution phase of the job’ comprehends all ‘G
tasks of a job but no compilations or other phases.

In addition to these variables the jobs were characterised by
the following parameters, which were however not considered
as separate variables in the sense of Section 3:

Z

N
o
oR

1. Ratio of the number of words transferred to the disc sub-
system to the number of words transferred to the drum
subsystem: this ratio was used for tests on the UNIVAC 494
only because our equipment comprised these subsystems. In
the synthetic jobstream for evaluating other systems all
transfers were made to a disc subsystem.

2. Number of printed lines: originally it was intended to use
this parameter as a fourth dimension. Later this idea was
rejected because the I/O transfers resulting from the print
file of the job were already taken into account in variable
X, and a fourth dimension would have caused troubles in

dimensioning the program system to analyse the real work-
load. In each cell (i i, i;) the mean value of the number of
lines printed by jobs in this cell was therefore calculated
and used as a parameter in the synthetic program.

. Time of compilation and number of FORTRAN statements:
the mean values of these two parameters were calculated
for each cell to see whether it was justified to assume that
there was a strongly positive correlation between these two
parameters and that we could confine ourselves to the num-
ber of FORTRAN statements to reconstruct the compilation
part of the real workload.

4, Number of cards read: this parameter was neglected because
the major part of cards read—the program cards—were
already considered in the number of FORTRAN statements
and the number of data cards was small in comparison to
these. Large data files are usually read from a secondary

(a) X,:

0-100

X,: 0-3020

Xs;:
b) X;:

0-32
0-100

X,: 0-3020

X;:
() X;:

0-32
0-100

X,: 0-1800

2.

X;:

0-32

MCW
sec
KCW
MCW
sec
KCW
MCW
sec
KCW

10 intervals
8 intervals
4 intervals

10 intervals
8 intervals
8 intervals

20 intervals
15 intervals
8 intervals

The subdivision (a) had a relatively stable behaviour but as a
result of the large core intervals—consequence of the rounding
errors in equation (2)—too many memory-intensive jobs had to
be considered in the synthetic jobstream which led to a mean
value for memory requirements which was substantially higher
than the mean value of those in the real workload. As a con-
sequence of the relatively small cells subdivision (c) was very

storage and are therefore considered in parameter X.

The following three subdivisions were evaluated:

instable. No stability could be reached within an acceptable

total amount of CPU time for the synthetic jobstream. The

a

CPU time (secs)
3020.00 +
I 1 3
1109-19 +
I 13 11 20
407-39 +
I 219 111 42
149-63 +
| 241 235 112
54-95 +
I 146 267 95
20-18 +
1 231 488 171
7-41 +
I 432 634 162
272 +
1 3589 1642 258
0-00 + _ =+t — —+— —+ — —+ = — + —
0-00 3-16 10-00 31-62 100-00 316-23

Fig. 1 Distribution of the real jobs in the core interval 4-8 KCW

18
38
12
20
17

10
12

_ + —_
1000-00

words transferred (KCW

21

6

20
—t+ — —+ — — 4+ —
3162-28 10000-00 31622-78

central memory (KCW)

number of jobs CPU time (secs)

in effect total mean total
250 227 73277 323 2664-4
255 231 7590-6 329 2707-0
260 242 7979-7 330 2832-4
265 247 8028-6 325 2879-4
270 250 8030-7 321 2897-6
275 256 8348-3 32:6 2993-6
280 262 9120-9 34-8 31054
285 268 9454-2 353 3184-7
290 272 9548-6 351 3201-7
295 278 9652-2 347 32587
300 281 96546 34-4 33060
305 287 10314-8 359 3405-3
310 293 10645-8 363 34469
315 298 10893-9 359 35224
320 304 11666-1 384 3596-1
325 310 11727-0 37-8 3681-6
330 315 11772:5 37-4 3757-0
335 318 11941-7 37-6 3796-2
340 323 11952-3 37-0 38477
345 329 12310-2 37-4 3944-8
350 331 12310-8 372 3957-6

Fig. 2 Short cut of the output to determine N,

mean
11-7
11-7
11-7
117
11-6
11-7
119
119
11-8
11-7
11-8
11-9
11-8
11-8
11-8
119
11-9
119
119
12-:0
12:0

total
287250
29052-0
32068-0
32639-0
327730
38859-0
41433-0
59938-0
60127-0
60814-0
60923-0
79624-0
80063-0
808350
837250
84064-0
84363-0
84590-0
84777-0
85076-0
85113-0

words transferred (KCW)

mean
1265
125-8
132-5
132:1
131-1
151-8
158-1
223-6
2211
218-8
2168
277-4
273-3
271-3
2754
2712
267-8
266:0
2625
258-6
2571

CPU time/
words transf.

3:92
3-83
4-02
4-07
4-08
4-65
4-54
6:34
6:30
6:30
6:31
7-72
7:52
7-:56
7-18
717
7117
7-08
7-09
691
691

202 udy 61 U0 1s9n6 Aq £65801/60¢/€/22/9101E/|UlL00/WO00"dNo"0ILBPEDE//:SARY WOy PAPEOUMO

The Computer Journal

Volume 22 Number 3

CPU time (secs)

3020-00 +
I
1109-19 +
I
407-39 +
I 2 1
149-63 +
I 2 2 1
5495 +)
I 1 2 1
20-18 +
I 2 3 1
7-41 +
I 3 5 1
272 +
I 26 12 2 -
00+ — —+— —+— —+— —+— —+— —+— —+— —+— — + —
0-00 316 10-00 31-62 100-00 316-23 1000-00 3162:28 10000-00 31622-78 o
words transferred (KCW) g
Fig. 3 Distribution of the synthetic jobs in the core interval 4-8 KCW ;—
Q
most acceptable subdivision was (b), resulting in a joint equation (2) because it is impossible to assign, for instance(é
o

probability density which could be used for constructing the
synthetic jobstream. Its distribution in the core interval
4-8 KCW is shown as an example in Fig. 1.

5. Number and distribution of jobs in the synthetic stream

With subdivision (b) described in Section 4 we had to determine
N/, the number of jobs in the synthetic stream. For this
purpose we determined N, ;, .. . ; from equation (2) by means
of the joint probability density calculated from equation (1)
and the total requirements of the whole synthetic jobstream
according to equation (4). This procedure was done for Ny,
between 50 and 800 incremented by 5. In addition to the total
requirements the mean values of the three variables X, X, X3
and the ratio X,/X, were also calculated. Fig. 2 gives a short
cut of the resulting output. The final choice of N/, was guided

by the following considerations:

1. The mean values of the variables for the synthetic load
should be within a reasonable neighbourhood of those of
the real workload. The expected difference between these
values and those of the real load was of 259, approximately
for X, and X, because infrequent jobs with heavy demands
on the resources of the system still occurred but were not
represented in the synthetic stream. We therefore tried to
find a good coincidence for the ratio X,/X; of the real
and synthetic loads, thus ensuring that the synthetic job-
stream has the same structure of CPU/I/O usage as the real
load.

2. The total CPU time used by the synthetic stream should not
be higher than a given value (4 hours on the UNIVAC 494).

3. N/, should be determined in such a way that there were only

stable intervals beyond this value.

Considering these three points we selected N;,, = 320 as the
total number of jobs which corresponds to an effective stream
of 304 jobs. The difference of 16 jobs results from rounding in

real load synthetic load
number of jobs 44,837 304
central memory (mean) 124 KCW 11-8 KCW
CPU-time (mean) 484 sec 38-4 sec
words tranferred (mean) 3704 KCW 2754 KCW
CPU-time/words transf. 7-66 7-18

Fig. 4 Comparison between real and synthetic load (V;,, = 320)

The Computer Journal Volume 22 Number 3

2-4 jobs to a cell. S
Fig. 3 shows the distribution of the synthetic jobs in the;
core interval 4-8 KCW for comparison with Fig. 1. The re5
quirements to be matched from these jobs in each cell are;
known from the real workload by equation (3). Fig. 4 shows ag
comparison between the different values of the real and syn<
thetic workload. By equation (4) the total of the expected>
CPU time of the whole synthetic jobstream was 11666 secsg

woo

6. The synthetic job 3

As already mentioned in Section 4 we used a syntheti®

FORTRAN program to build a jobstream, becaus&

FORTRAN is the programming language primarily used ore

our system. We restricted ourselves to one program, whicl

means that the total synthetic jobstream is built on the basis>
of FORTRAN programs in which each program consists oﬁ

a sequence of identical statements. This restriction to onés

program was justified by the fact that the parameters used ins

this synthetic program were sufficient to describe the reaE

workload. b

In Section 4 we pointed out that the number of FORTRAN
statements showed a strongly positive correlation to the
compilation time (correlation coefficient = 0:92). Therefor¢:
we restricted our synthetic program to 288 program cards—S
the mean value of program cards per job in the real workload—z

to reconstruct the compilation part of the real load. z

The basis for the synthetic program was Buchholz’s syntheti¢:
job (1969) which was transformed to FORTRAN. Doing thisg
transformation the following points had to be considered to"
obtain a version acceptable for the predefined goals:

1. The program has to be written in ANSI standard
FORTRAN to prevent problems when using this program
on different systems.

2. The FORTRAN version should consist of 288 statements
exactly.

3. The structure of the original version of Buchholz’s job
should be preserved.

4. In addition to the original version it should be possible
to simulate the print parts of programs.

5. The CPU time shall be consumed primarily by statements,
the distribution of which corresponds to a workload,
resulting from scientific applications.

The synthetic program consists of the following parts:

213

READ
PARAMETERS

GENERATE
RECORDS
P
READ MASTER- AND
DETAIL RECORD
. PROCESS
KERNEL
i
F WRITE MASTER-
AND DETAIL RECORD
WRITE
MASTER RECORD
T F
READ NEXT
MASTER RECORD .
I

Fig. 5 Overall flowchart of the synthetic program

declaration, print, file generation, file and kernel processing.
Fig. 5 shows an overall flowchart of the program. Usually
the program consists of generation of a file of master records
and one of detail records on a secondary storage according
to the parameters read. The records of both files are then read
and compared. If they match, the kernel of the program will be
processed. If not the next master record will be read. This part
includes the generation of a new master and a new detail file.
Fig. 6 gives a listing of our FORTRAN version of the program.

Within the declaration part the only system-dependent
assignments reside in the DATA statements specifying the
logic unit number for the reader (ICIN 1), the printer
(IP = 2) and the secondary storage units (MASGEN = 5,
DETGEN = 6, NEWMAS = 7, DETOUT = 8).

As mentioned before the requirements of a single synthetic
job were determined by the parameters describing the program.
The memory requirement of the job could be fitted by choosing
the dimension of the array TABLE accordingly (see Section 7).
The selected value of the dimension has also to be assigned
to the variable IDIM and to be used in the dimension of
TABLE 1 which occupies the same memory locations as
TABLE. For each synthetic job there are four integer para-
meters, the values of which have to be read from data cards:
NMAS number of master records to be generated

214

*JOB F TUG/RACHHOLZ J,F8050RJEO1,,15D,100D/0
s

*FOR NY SYN

$ INTEGER TABLEl(_________,1),TABLE()
INTEGER U, CHECK, COUNT, CARD (20) , TEMPC, SUM,

KRET , DREC (51) ,DKEY (3) , DSUN , DCIIECK , DDATA (3, 15) ,

*nAsczu MASTER, DETOUT, DETGEN ,DETIN
LOGICAL ILOG,LOGEKD
DIMENSION MREC (51) ,MKEY (3) ,MDATA(3,15), ZBUF(6), INTEG(BS)
DIMENSIGN ITEXT (15)
EQUIVALENCE (MREC (1) ,HKEY (1)),

* (MREC (4) ,MSUM) ,
* (MREC (5) ,MCHECK) ,
* (MREC (C) ,MDATA(1,1))

EQUIVALENCE (DREC (1) ,DKEY (1)),

* (DREC (4) ,DSUM) ,
* (DREC (5) ,DCHECK) ,
* (DREC (6) ,DDATA (1,1))

EQUIVALENCE(MASGEN MASTER) ,
(DETGEN,DETIN)

EQUIVALENCE(CARD(3) /NMASL) ,
(CARD(S),WDETI),

* (CARD (7) ,NREP) ,

* (CARD (9) ,NPRINT)
EQUIVALENCE (TABLE (1) ,TABLE1(1,1))
DATA DET1,DET2/4HDETA,4LIL /

DATA MASTI1,lMAST2/4HEMAST,4HER /

DATA INULL,ISL, IZZ/4H0000 av////.4n2222/
DATA IPAS/4H PAS/

DATA ICIN,IA,IB,SUM/1,253,17,25365/

DATA IP/Z/

DATA MASGEN,DETGEN,NEWIAS,DETOUT/5,6,7,8/
TIME(I)=I

ILOG=.TRUE.

Iz2=1

ELTIME=0.

NMAS=-1

NDET=-1

IDIM= e

0»n

DO 10 J=1,IDIN
10 TABLE (J)=J-1

DO 1000 I=1,15
1000 ITEXT(I)=INULL

DO 1001 1=1,6
1001 ZBUF (I)=1725.13

DO 1002 1=1,35
1002 INTEG(I)=I-1
READ (ICIN,100) (CARD(I),I=1,20)
LOGEND=. FALSE.
IF (CARD (1) .EQ.ISL) GOTO 16
WRITE(IP,207) NMAS1,NDET1,NREP,NPRINT
IF (CARD (1) .NE.IPAS) GOTO 1
IF (NPRINT.EQ.0) GOTO 17
DO 151 I=1,NPRINT,3
WRITE (IP,208) (INTEG(J),J=1,35)
WRITE (IP,209) (ITEXT(J),J=1,15)
151 WRITE(IP,206) (2BUF(J),J=1,6)
17 CONTINUE

COUNT=0
CHECK=0

[

MASTER GENERATION

[eXeNe]
~N

IF (NMAS1.EQ.NMAS) GOTO 3

NMAS=NMAS1

REWIND MASGEN

IF (NMAS.EQ.0) GOTO 211

DO 20 J=1,NMAS

‘MSUM=0

J1=3/100000

J2=J/10000-10*J1
J3=J/1000-10*J2-100*J1
J4=3/100-10*33-100*J2-1000*J1
J5=3/10-10*J34-100*33-1000*J2-10000*J1
J6=J-J5*10-J4*100-J3*1000-J2*10000-J1*100000
INTKEY=J6+J5*%16+J4*256+J3*%4096+J2*65536+J1*1048576
MKEY (1) =INULL

MKEY (2) =INULL

MKEY (3) =INTKEY

CHECK=CHECK+J

MCHECK=CHECK

TEMPC=INTKEY

DO 21 K=1,15

MDATA (1,K) =MAST1

MDATA (2,K) =MAST2

21 MDATA (3,K) =TEMPC

20 WRITE (HASGEN) MREC

211 CHECK=0

MREC (1) =ISL

WRITE (MASGEN) MREC

20z udy 61 U0 1s8nB Aq £6580%/602/€/22/10M4e/|ufL00/W0d"dNo"oIWEPEDE//:SARY W) PAPEO|UMOQ

DETAIL GENERATION

[eXeXKel

w

IF (NDET1.EQ.NDET) GOTO 4
NDET=NDET1
IRATIO=NMAS/NDET

REWIND DETGEN

IDANZ=1

IF(NDET EQ.0) GOTO 301

DO 30 J= IRATIO, NMAS IRATIO
DSUM=0

J1=3/10€000
J2=J/10000-10*J1

Fig. 6 Listing of the synthetic program (continued overleaf)

The Computer Journal Volume 22 Number 3

J3=J3/1000-10%J2-100*J1
J4=3/100-10*J3-100*3J2-1000*J1
J5=3/10-10*J4-100*J3-1000*J2-10000*J1
J6=J-J5*10-J4*100-J3*1000-J2*10000-J1*100000
INTKEY=J6+J5*%16+J4*256+J3*%4096+J2*65536+J1*1048576
DKEY (1) =INULL
DKEY (2) =INULL
DKEY (3) =INTKEY
CHECK=CHECK+J
DCHECK=CHECK
TEMPC=INTKEY
DO 31 K=1,15
DDATA (1,K) =DET1
DDATA (2,K) =DET2

31 DDATA (3,K)=TEMPC
WRITE (DETGEN) DREC

- IF(IDANZ.EQ.NDET) GOTO 301

30 IDANZ=IDANZ+1

301 DREC(1)= ISL

WRITE (DETGEN) DREC’
CHECK=0

TAPE PASS

[eXoXe]
S

IF (NMAS1.LE.0) GOTO 1
ASSIGN 7 TO KRET

REWIND MASTER

REWIND NEWMAS

REWIND DETIN

REWIND DETOUT

READ (MASTER) MREC

IF (MREC (1) .EC.ISL) GOTO 11
IF (LOGEND) GOTO 8

READ (DETIN) DREC

IF (DREC (1) .EQC.ISL) GOTO 9
T=TIME(0)

KEYTEST

[eXeKe]

COKRTINUE

IF (HKEY (3) .LT.DKEY (3) .OR.LOCEND) GOTO 8
IF (MKEY (3) .EQ.DKEY (3)) GOTO 53
WRITE(IP,200)

GOTO 12

53 CONTINUE

@

KERNEL

ann |0

B=100.

c=7.

I=0

61 I=I+1

IF(I.GT.NREP) GOTO 63

IF(IZ.GE.IDIM) 12=1

ISW=IDIM/NREP

IF (ISW.EQ.0) ISW=1

IC=I

A=20.

JJ=1

GOTO 6101
6102 IF((IA.GT.IB).OR.(I.GT.0).0R.ILOG) GOTO 6103
6104 IF((IA.LE.IB).OR.(IZ.NE.O)) GOTO 6105
6106 IF((IA.GT.IB).OR.(I.GT.0)) GOTO 6107
6108 IF(IC) 6105,6106,6109
6109 IF(11.*A*C+A+B+1.) 6105,6106,6110
6107 IF(11./33.+A/22.+13/25.) 6105,6106,6108
6105 IF(-11.*A*C+A+B+l.) 6106,6107,6108
6103 IF(-257.*A*C-A-B-1.) 6104,6105,6106
6101 IF(-1.*A*B-A-B-13.) 6102,6103,6104
6110 IH=I2+JJ

TABLE1 (IZ,JJ)=TABLE (1Z) +TABLE (IH)

IA=IC+IA+TABLE (I2)+IA

IC=10

GOTO 611
612 1C=13

A=257.

GOTO 613
614 1C=25

A=7.

ILOG=.FALSE.

GOTO 615
616 A=3925.

B=23.

GOTO 617
618 A=9.

GOTO 619
620 A=298.

GOTO 621
611 A=20.

B=23.

GOTO 612
613 A=2,

B=7.

GOTO 614

Fig. 6 (continued)

615 A=2932.
B=0.

GOTO 616
617 A=15.
GOTO 618
619 B=25725.
GOTO 620
621 A=71.
ILOG=.TRUE.
GOTO 622
623 B=5. ’
GOTO 624
625 A=3.
GOTO 626
627 B=3.
GOTO 628
629 A=237.
B=1.
IC=5
GOTO 630
622 A=9.
GOTO 623
624 I1C=257 -
GOTO 625
62€¢ B=723.
GOTO 627
628 B=13.
GOTO 629
630 A=7.
IZ=IZ+ISW
GOTO 61
63 GOTO KRET, (7,15)

WRITE DETAIL

[eXeXe]
~

MSUN=SUM

DSUM=SUM

CHECK=DCHECK
COUNT=COUNT+1

WRITE (DETOUT) DREC

READ (DETIN) DREC

IF (DREC(1) .EQ.ISL) GOTO 9

WRITE MASTER

[eNeKe]
@

WRITE (NEWMAS) MREC

READ (MASTER) MREC

IF (MREC(1) .EQ.ISL) GOTO 11
GOTO 5

RUNOUT

[eXeXe]

9 LOGEND=.TRUE.
DKEY (3) =122
WRITE (DETOUT) DREC
GOTO 8

END TPASS

[eXeXe]

11 ELTIME = TIME(1)
WRITE (NEWMAS) MREC
IF (CHECK.EQ. (COUNT* (COUNT+1) *IRATIO) /2)GOTO 12
WRITE (IP,203)

12 CONTINUE

PRT END

[eXeXe]

13 WRITE(IP,204) ELTIME
WRITE (IP,202) COUNT
GOTO 1

COMPUTE PASS

[eKeKe]

14 ASSIGN 15 TO KRET
T=TIME (0)
GOTO 6

CRETURN

onn
202 udy 61 U0 1s8n6 Aq £6580%/602/€/22/910M4e/|UfL00/W0d"dNo"oILEPEDE//:SARY W) PAPEOUMOQ

15 ELTIME=TIME (1)

GOTO 13
16 sTOP
100 FORMAT (2A4,4(16,A2) ,10A4)
200 FORMAT (//2GH SEQUENCE ERROR HALTED RUN)
202 FORMAT (5X,15HAKTIVE RECORDS: ,16)
203 FORMAT (//27H CHECKSUM ERROR HALTED PASS)
204 FORMAT (/15H ELAPSED TIME= ,F7.1)
206 FORMAT (1X,6F10.2)
207 FORMAT (1X,6HNMAS1=,16,1H ,6HNDET1=,16,1H ,SHNREP=,16,2H

*7HNPRINT=,16) °
208 FORMAT (1X,1011,2512)
209 FORMAT (1X,15A4)

END
*END

NDET number of detail records
NREP number of repetitions on processing the kernel
NPRINT number of lines to be printed.

It was also necessary to provide the possibility of reading
not only one data card but NPAS data cards because with
big jobs the values of NMAS, NDET, etc. could be too large,

The Computer Journal Volume 22 Number 3

leading to an integer overflow or the reservation of too large
areas on the secondary storage. The total requirements caused
by the parameter values of the NPAS data cards should
correspond to the prescribed resource requirements of each
job. The procedure for determining NPAS and the parameter
values is described in Section 8.

Within the file generation part of the program NMAS master
records and NDET detail records were generated and written
on a secondary storage file together with a trailer record for
each file. Each output statement transfers an unformatted
FORTRAN block (265 CW on a UNIVAC 494) from the
central memory to the secondary storage. Each of these
blocks represents a record consisting of an integer array of
51 elements. The numbering of the records was done by
simulating the PL/I integer to text conversion based on the
conversion of the decimal value into a new value with a
hexadecimal basis. In this way the master records were
numbered from 1 to NMAS in the decimal system. The detail
records were given keys between 1 and NMAS, in which a
step of |[NMAS/NDET] was used. This system made it
necessary that NMAS > NDET.

The kernel of the synthetic job, which is executed NREP
times if the key of the master record matches with the key
of the detail record, consists of instructions the distribution
of which follows the Gibson Mix II for scientific applications
(Osswald, 1973). The kernel is primarily responsible for the
CPU time consumption of the job. The memory references
of the kernel are distributed in a cyclic way to prevent a system
with paging facilities from swapping parts of the data area
for a long time. Arithmetic overflows occurring on special
systems should be ignored.

7. The characteristic parameters
The parameter values of each job determine the resource
requirements of this job. These are in particular the total area
of central memory used, the total CPU time used, the number
of words transferred and the number of lines printed by this
job. For reconstructing the real workload, it is important to
know the relation between the parameter values and the
resulting resource requirements.

The amount of central memory used results directly from the
values of the dimension for the array TABLE

CORE,4, = CORE,,;. + dimension of TABLE ®)

where CORE,,,;. represents the core requirements of the pro-
gram without the array TABLE together with all linked
routines including the runtime system (4030 CW on the
UNIVAC 494).

The total number of lines printed results from the sum of
the different values for NPRINT on the NPAS data cards:

NPRINT,; = 3 NPAS,. NPRINT, (6)
i=1

where we assume that there are n different groups of data
cards, each group consisting of NPAS; identical cards. If there
is only one set of identical data cards, i.e. n = 1, this relation
reduces to

NPRINT,y, = NPAS . NPRINT 6)
where NPAS represents the total number of data cards and
NPRINT the value for the number of lines to be printed

which appears on each of the NPAS data cards.
The total amount of CPU time used results from

CPTIME, . = ao + 3 (a, . NPAS, + a, . (NMAS, +
i=1

NDET)) + a, . NPAS, . (NMAS, +

NDET),) + a, . NDET),) . NREP, .

NPAS; + a5 . NPAS, . NPRINT)) @)
The terms in this equation correspond to the different steps
in the synthetic program:

a, the CPU time used if all
parameters are equal to
Zero

a; . NPAS; results from the handling

216

of the data cards

results from the genera-
tion of the master and
detail files

CPU time used for pro-
cessing and updating files
CPU time spent in the
kernel of the program
CPU time used for print-
ing lines.

a, . (NMAS; + NDET))

ay . NPAS, . (NMAS; + NDET),)
a4 . NDET, . NREP, . NPAS,

as . NPAS, . NPRINT,

It was not necessary to consider the trailer blocks explicitly,

because in the first case (generation of files) there are exactly

two trailer blocks, the influence of which is therefore covered

by the term a,. In the second case (processing of files) there are

exactly two trailer blocks for each execution following

NPAS; which are therefore covered by the term a, . NPAS,.
In our situation (n = 1), this equation reduces to

CPTIME,,, = 4o + @, . NPAS + a, . (NMAS + NDET)
+ a; . NPAS . (NMAS + NDET) +
a, . NDET . NREP . NPAS +
as . NPAS . NPRINT

Like the CPU time, the number of transferred words can

~~
g 3
@) pspPeojuUMO

derived from i
TRANSqu = by + 3 b;.(2.NPAS, + 1). (NMAS;, 2
i=1 Q

+ NDET; + 2).265 + b, . NPAS, . 8

NPRINT; (8%

where the different terms represent the following: ;5
b, the amount of transfer§

if there are no explicig
file or printer operationg

number of words by ﬁl%
operations where the
number of blocks results
from the sum of NMASS
master records, NDE'IS
detail records and twads
trailer blocks, which were=
written once when being?
generated and were thenS
read and written duringz
processing, i.e. during up®
dating the files for each?
data card (NPAS,)-giving
a factor of (2.NPASy3
+ 1). Each block hasgs
265 CW. =
number of transfers3
resulting from printing
output lines.

by .(2.NPAS,; + 1). (NMAS, +
NDET; + 2). 265

4

b, . NPAS, . NPRINT,

For n = 1 the equation reduces to

TRANS,g01 = by + by . (2. NPAS + 1). (NMAS +
NDET + 2).265 + b, . NPAS..
NPRINT 8"

Estimators a, b} for the constants a,(i = 0, 1, ..., 5) and
bj(j = 0, 1, 2) can now be determined by executing the syn-
thetic job with different values for the parameters and measur-
ing the CPU time used as well as the number of words trans-
ferred on the UNIVAC 494 system. We made 62 experiments
to determine the estimators a; and 65 experiments for the
constants b7, i.e. about 20% of N,,,. The test conditions were
identical to those of the total jobstream—that is to say normal
conditions as they are found on our system every day. The
parameters for the synthetic job were varied in an iterative

The Computer Journal Volume 22 Number 3

and empirical way between the following limits:

NPAS 1- 10
NMAS 0- 200
NDET...... 0- 100
NREP...... 0-10000

NPRINT ... 0- 330

resulting in a distribution of the experiments in the X;-X,-
plane summing all intervals of the central memory—similar
to that of the synthetic stream to be built (Fig. 7).

The values for the CPU time used and the number of words
transferred, which resulted from these tests and which are
known from the system logfiles, were used—together with the
parameter values giving these resource requirements—for
determining the ‘estimators @} and b; by means of a linear
regression analysis.

Using the following abbreviations

NPAS ... Uy
NMAS + NDET u,
NPAS.(NMAS + NDET) U,
NDET.NREP.NPAS U,
NPAS.NPRINT................. us

equation (7’) can be written as follows:

Yi=ay +a;.uy; + a.uy; + az.uz; + ay.uy; + as.us; (9)
where i = 1, 2, . .., 62 denotes the index of the experiment.
u,; provides the values of the selected parameters of the syn-
thetic job and y; the measured CPU time used according to
these parameter values. The equation (8') for the number of
transferred words can be rewritten in a similar form. Generally
speaking a linear model is written as follows:

- -

y=Uda+e (10)
where)7 is a (n x 1) vector of observations, U an (n x k)
matrix of known coefficients (n > k), t_I: a (k x 1) vector of
parameters and : is an (n x 1) vector of ‘error’ random
variables with E (5 = 0 and dispersion matrix
V() = E(e.ef) = o?.1
where I is the (n X n) identity matrix.

The assumption that the model is a linear one can be justified
by Fisher’s test (Kendall et al., 1973). The least square method

to solve the problem of estimating the parameters a is well
known. Since the conditions for a full rank linear model exist
the estimators together with their confidence intervals can be

Therefore equations (7°) and (8’) were written as follows:

CPTIME = 0-00304 + 0-08518 NPAS + 0-00509
(NMAS + NDET) + 000820 NPAS.(NMAS +
NDET) + 0:00054 NDET.NREP.NPAS +
0-01296 NPAS.NPRINT (11)

TRANS = 16976:61 + 1:00572 (2.NPAS + 1).(NMAS +
NDET + 2).265 + 28-22512 NPAS.NPRINT(12)

8. Construction of the synthetic jobstream

The next step was to determine the values of the characterising
parameters of the synthetic jobs in such a way that the resulting
requ1rements corresponded to the mean values of the real
workload in each cell, which resulted from equation (3) and
were described in Section 5. That means that for the given
values of CPTIME and TRANS the parameters NPAS,
NMAS, NDET, NREP and NPRINT had to be determined
according to the regression equations. For this purpose
equations (11) and (12) were transformed into

NREP = (CPTIME — 000304 — 0-08518 NPAS — 0-00509. 9
(NMAS + NDET) — 0-00820 NPAS.(NMAS + £
NDET) — 0-01296 NPAS.NPRINT)/(0-00054 &
NDET.NPAS) (13)z
NMAS + NDET = (TRANS — 1697661 — 28:22512 5

NPAS.NPRINT)/(1-00572 (2.NPAS + 3

1).265) — 2 (14)o
The problem was solved by the procedure described below.Z
From equation (14) NMAS + NDET was calculated w1tho
NPAS = 1 and the known value of NPRINT. This sum mustcu
in any case be split into two values, i.e. one for NMAS and2
the other for NDET, always taking into account that NMASo
must be larger than or equal to NDET. In our case this sub-J
division was made according to the ratio between the number3
of disc transfers and the number of drum transfers. By means3
of these values for NMAS and NDET NREP was calculated3
from equation (13). When NMAS or NDET became too large,m
(>300) or (>400 000) respectively, the whole procedure was3

repeated using the value of NPAS incremented by 1. Thisy
limitation of NMAS and NDET was necessary to prevent'\’
the reservation of too large an area of secondary storage.S
The limitation of NREP was to prevent an integer overflow.?
To be sure that rounding errors with this procedure wereoo
acceptable, the values for the calculated parameters wercco
substituted in equations (11) and (12). The resulting valueSg

for CPTIME and TRANS were later compared with theo
given ones. When the deviation was larger than a given3
tolerance the procedure was repeated with a new value ofg

determined in an unequivocal way (see below). NPAS by incrementing the old one by 1. >
>
a confidence interval §
N
index value lower limit upper limit -
0 0-00304 —0-93609 094217
1 0-08518 —0-17332 0-34367
2 0-00509 —0-00139 0-01157
3 0-00820 0-00550 0-01090
4 0-00054 0-00054 0-00055
5 0-01296 0-00897 0-01712
b confidence interval
index value lower limit upper limit
0 16976-61004 13487-79386 20465-42623
1 1-00527 098951 1-02103
2 28-22512 22-14894 34-30130
The Computer Journal Volume 22 Number 3 217

CPU time (secs)

3020-00 +
I
1109-19 + B - o
| 1 1 1
407-39 +
1 4 11 3 1 1 1 1
149-63 +
1 4 10 9 2 1 1
54-95 +
I 3 14 9 3 1
20-18 +
I 6 16 8 1
7-41 +
I 8 18 6
272 +
1 3 100 47 7
o0+ — —+— — 4+ — —+ — — 4+ — —+ — —+— —F— — + = — + —
0-00 316 10-00 31-62 100-00 316-23 1000-00 3162-28 10000-00 31622-78 o
words tranferred (KCW) g
Fig. 7 Distribution of all synthetic jobs (summing over all memory intervals) §
Q.
CPU time (secs) g
3020-00 + g
I >
1109-19 + g
I <
407-39 + 8
1 2 1)
149-63 + e
I 2 2 1 el
54-95 + °
I 1 2 1 3
20-18 + g
I 2 3 1 %
7-41 + o
I 3 5 3 5
2:72 + o
I 25 13 - - - N
00+ — —+— —+— —4+— —+— —+— —+— —+ — —+— — + — N
0-00 3.16 10-00 31-62 100-00 316-23 1000-00 3162-:28 10000-00 31622-78 L
words transferred (KCW) S
Fig. 8 ‘Real’ distribution of the synthetic jobs in the core interval 4-8 KCW §
o
o

With this procedure the parameters of all N, jobs were
determined.

Fig. 8 shows the ‘real’ distribution of the synthetic jobs in
the core interval 4-8 KCW, after this procedure. The differ-
ences from Fig. 2 are: one job in the CPU time interval
(0-00, 2-72) moved from the interval (10-00, 31-62) for trans-
ferred words into the next interval (31-:62, 100-00) because the
transfer requirements of this job were near the margin of these
two intervals; two other jobs which were within the transfer
interval (100-00, 316-23) shifted up from the CPU time interval
(0-00, 2-72) to the next interval (2:72, 7-41). This was due to the
fact that both jobs had to print many lines which could not be
done within the given CPU time. These were jobs where the
execution phases result from assembler input printing lines
faster than can be done in FORTRAN (fast print jobs).
Finally the sequence of jobs in the synthetic stream was fixed
by random selection.

9. Conclusion and experiences

This paper described all the steps necessary to construct a
synthetic jobstream, the resource requirements of which
match those of the real batch workload running on a UNIVAC
494 system in a university environment. After completion of

218

these test runs on three different systems we can say that for the3
selection process this synthetic jobstream was useful with the~
following advantages:

1. It is a practicable method of constructing a realistic test runj>
which can easily be adapted by vendors of a system to be=.
tested.

2. After completion of the theoretical work it is a quick way
to construct a valid representation of a given batch workload
assuming that enough information on this load is available.

3. According to our experience we are able to say that the
results of this method can not be replaced by others, for
instance by executing sample jobs or by theoretical
considerations.

It should be mentioned that it is necessary to give an exact
procedure for the execution of the test run to obtain comparable
results (e.g. a better optimisation of the compilation of some
of the jobs can only be allowed if required for all).

The restriction to a pure batch load was necessary because
the existing system had no real TS facility. The resulting
synthetic batch load—together with a synthetically predefined
and simulated TS load based on assumptions as far as the
qualitative and quantitative nature of the most probable

¥20¢ I

The Computer Journal Volume 22 Number 3

work to be done on a terminal in a university is concerned—
defined the total test run to be executed on the systems to be

References
BucHHoLZ, W. (1969).

compared in a selection evaluation process, resulting in the
replacement of the existing system by a new one.

A Synthetic Job for Measuring System Performance, IBM Sys. J., Vol. 8, No. 4, pp. 304-318.

GELL, G. et al. (1979). Entscheidungskriterien und Ergebnisse des Auswahlverfahrens bei der Planung eines Universititsrechenzentrums

to be published.

HunT, E. et al. (1971). Who are the Users? An Analysis of Computer Use in a University Computer Center, AFIPS Conf. Proc., Vol. 38,

pp. 231-238. .

KENDALL, M. G. et al. (1973). The Advanced Theory of Statistics, Vol. 2, Ch. Griffin, London.

KLEINROCK, L. (1976). Queueing Systems, Vol. 2, Computer Applications, J. Wiley, New York.

Lucas, H. C. (1971). Performance Evaluation and Monitoring, ACM Comp. Surv, Vol. 3, pp. 79-91.

OsswWALD, B. (1973). Leistungsvermogensanalyse von Datenverarbeitungsanlagen, S. Toeche-Mittler, Darmstadt.

PoscH, R. et al, (1979). Ein leistungsorientiertes Bewertungsverfahren zur Auswahl von GroPrechnern, to be published.

SREENIVASAN, K., and KLEINMAN, A. J. (1974).

On the Construction o

f a Representative Synthetic Workload, CACM, Vol. 17, pp. 127-133.

Book reviews

Distributed Processing and Data Communications, by D. R.
McGlynn, 1978; 305 pages. (Wiley, £14-50)

There is a computer somewhere which has a splendid piece of
software running in 1t. The suite is known to the cognoscenti as
AFABOG, or Automatic FAshionable BOok Generator. It runs in
a background partition, monitoring trendy buzz terms as they flash
through the trade press. As soon as more than five conferences/
seminars with a particular buzz phrase in their promotional hand-
outs have been held, instructions are sent to a publisher somewhere
to commission a book with the appropriate buzz terms in the title.
The suite is quite clever. It extracts subheadings from conference
handouts and correlates them with previously successful chapters in
books and articles in the trade press. From this a picking list is
generated which is sent to the author. All that the human being has
to do is pad out the paragraphs to make up chapters. The system
does the rest—it sells the product, despatches, invoices, deals with
complaints and pays royalties to the author.

This book is a splendid example of the work of AFABOG. It has
caught the ‘distributed processing’ and ‘data communications’
markets slap on the crest of their individual fashionability waves. A
couple of years ago it was all ‘structured programming’ and ‘data
base management’—next year it will be ‘microprocessing’ and ‘office
automation’. The contents of the book are not particularly inter-
esting. It is basically a cull of previously published material, reduced
to its elementary level, and slightly repackaged. It is difficult to see
just what market the book is aimed at. On one level it is full of
technical guff like ‘Modified Frequency Modulation has a recorded
bit density . . . of 6536 frpi, compared to 8170 frpi for GCR code. On
the other hand MFM has a phase margin of 0-125 bit cell time com-
pared with 0-20 for GCR’. On another, it is supremely lacking—in
the section on data comms software it discusses IBM systems soft-
ware products only, and unless the reader is already familiar with
IBM’s marketing practice, he is left very little wiser and probably
very confused.

One of the fundamental problems of distributed processing
continues to be that of distributed data base, and maintaining the
integrity of it. This book ducks the question head-on. In four para-
graphs a tiny overview is given, and dismissed—‘The topic of
distributed data bases is a complex one that can only be briefly
outlined in this work’.

There is a chapter on network control architectures. This is most
illuminating, not for its technical content, but more for the insight it
gives the reader into the author’s own biases. For example,
X25/HDLC earn 1} pages, Burroughs data link control gets 3 pages,
and SNA/SDLC gets 18 pages; Decnet earns 14 pages. There is no
attempt made to compare and contrast the eight control architec-
tures, and the reader is left with the impression that the only worth-
while approaches are those of IBM and DEC. While this might be
true, it certainly is not a professional thing to do, to make the
uninformed reader believe it without going into the pros and cons of
the argument.

The Computer Journal Volume 22 Number 3

ojumoq

The most useful part of this publication is the back end. There isad
good index, a fair glossary and a very useful appendix containing a&
systems man’s checklist on the considerations of implementing data 5’
comms. Called ‘Technology forecasting and assessment’, it is a quite 3
rigorous walkthrough of the salient points. If the book retailed at a§
third of its price, it would be worth buying for this last part. As it?
is...

oe/

SEAN O’CoNNELL (Woodley)2

p

ool

Quick Cobol, 2nd Edition, by L. Coddington, 1978; 257 pages.:
(Macdonald and Jane’s, £6:50)

00'dn

The aim of Mr Coddington’s book is twofold. Firstly and primarily%
to give users of computers a knowledge of the most commonly usedg
business computer language; secondly to give computer personnels
an easier introduction to COBOL.)

The first aim succeeds to a greater extent. The book is easily%

readable and the only question must be whether any user of%
computers needs such extensive knowledge of a computer language.g
The success of the book as far as the second group is concerned isS
more questionable. Although the book does give a good intro-@
duction to COBOL there have been considerable changes in methods5
of programming since the first edition of the book in 1971. Mr¥
Coddington discusses these in a fairly perfunctory manner recom-o
mending the reader to a book on advanced COBOL for more2
detailed information. This seems to suggest that alterations td2
COBOL have all been in the more advanced use of the language’,
whereas, for example, the new indexing methods are probably easierg
to understand to someone learning the language. It is also slightlya
disappointing to find structured programming covered in one.
paragraph in the preface. . s

I have not read the first edition of the book but would have thoughté
that in a second edition more changes could and should have beeny
included.

J. EMERsON (Horsham)

Specimen copies
Information and Management is the Journal of the IFIP Users Group
(IAG) published by North-Holland. Volume 2 number 1, February
1979 contains an article by Isaac Auerbach, a founder and first
President of IFIP. He is a Distinguished Fellow of the BCS, among
his many honorary titles.
The guest editorial by Howard Resnikoff covers the need for
research in information science.
Free specimen copies of this publication are available for qualified
readers of the Journal on application to
Mr J Dirkmaat
North-Holland Publishing Co
PO Box 211
1000 AE Amsterdam
The Netherlands

219

