Loop optimisation for parallel processing

M. Di Manzo*, A. L. Frisiani*, G. Olimpot

The problem of loop optimisation for parallel processing is examined in this paper and a method
is proposed to evidence the inherent parallelism in a FORTRAN-like loop. The method is based on
the concept of interrupting tasks and imposes little restrictions on the loop structure. Parallelism is
achieved by concurrent execution of the loop body for different sets of values for the indices;
processors activities must be synchronised and therefore the approach is best suited for SIMD
machines, even if it can be used also on other kinds of multiprocessor machines provided that the
processor switching and synchronising cost is low.

(Received December 1976)

In diesem Beitrag wird die Frage von der Ring-Optimisierung fiir parallele Verfahren gepriift und
eine Methode vorgeschlagen, um den inneren Parallelismus in einem FORTRAN- dhnlichen Ring
in den Vordergrund zu stellen. Die Methode griindet sich auf den Begriff von interferieren den
Aufgaben und erlegt kleine Einschrinkungen auf die Ring-Struktur auf. Der Parallelismus wird
durch eine beitragende Ausfiihrung von dem Ring-Korper fiir verschiedene Reihen von den Index-
werten erreicht; Prozessorentitigkeiten miissen synchronisiert werden und deshalb ist der
Anniiherungsweg am besten fiir SIMD-Maschinen verfolgt, auch wenn er auch bei anderen Typen
von Multiprozessorenmaschinen benutzt werden kann. wenn der Prozessorschaltung-und Synchro-

nisationkosten niedrig sind.

1. Introduction

The interest in parallel processing is rapidly increasing and
several unconventional machines have been developed in
recent years for various special purpose applications (Enslow,
1974). Some new problems arise in programming this kind of
computer system. In fact, when the number of processors is
large (tens or hundreds of units) a good utilisation of resources
necessarily implies a drastic reorganisation of programs to
evidence all the computation which can be performed con-
currently.

Such a reorganisation may be made by the programmer him-
self, if the language has suitable control structures, or by the
compiler, as an optimisation of the object code derived from
sequential source code but up to now there is no agreement
about what may be the best solution. The execution of a
program on a parallel machine is indeed sensitive to the pre-
sence or absence of a particular feature, much more than on a
standard sequential machine; this would encourage one to
leave more freedom of choice to the compiler. Moreover, it is
stated that as computer complexity increases, programmers
become less competent at optimisation (Lamport, 1975). On
the other hand, semantics can often allow a lot of parallelism
but that cannot be detected easily by a compiler.

In this work we will be concerned only with automatic
optimisation. In a program there are two main sources of
parallelism which can be detected by a compiler. The first
consists of arithmetic or logic expressions, like B* C + D * E;
clearly, we can concurrently execute B * C and D * E. This case
has been studied by Hellerman (1966), Ramamoorthy and
Gonzalez (1969) and Stone (1967), but its exploitation does not
look very profitable. The second source of parallelism consists
of loops. This case has recently been examined (Lamport,
1974) and is much more interesting (Erickson, 1975; Presberg
and Johnson, 1975). In this paper we will be dealing with loop
rewriting. Our goal is to remove some constraints which have
been introduced in other similar methods (Lamport, 1974),
which seem to be limiting. The approach is based on the

concept of interrupting tasks, commonly used in the deter-
minacy problem, a classical topic in Operating Systems
theory.

2. The determinacy problem
If a loop is executed sequentially, the determinacy of the result
is guaranteed by the fact that there is a specific order of execu-
tion. This is no longer true if the loop is executed concurrently
for all the values of the indices. Therefore, to restore determin-
acy, we must impose some constraints on the order of execution
allowing only limited concurrency for properly defined subsets
of values for the indices. The determinacy problem has been
solved for the general case of a system of tasks by Coffman
and Denning (1973), where task and system of tasks are defined
as follows:

DI. A task is a computational unit which can be specified only
in terms of its external behaviour; its internal operations
are of no concern.

D2. A system of tasks is a pair S = (1, <), where 7 is a set of
tasks and < is a precedence relation on 7.

The operations performed by a task can be defined by a

mapping from a set of input values to a set of output values.

Hence, two sets of memory locations, called domain and rarige,

can be associated with each task; the domain contains the

input values and the range the output values. In the following
we will call D the domain and R the range. A basic definition
can now be introduced:

D3. Tasks T, and T, are non interrupting if:

(T, < T)or(T, <T)or(D,nR, = D,nR, =
R,NnR, =)

It has been proved (Coffman and Denning, 1973) that a system
of non interrupting tasks is determinate. Clearly if the order of
execution is specified, thatis T, < T, or T, < T, the resultis
determinate. Also, if the input of one task is not the output
of the other and they do not share any output, then regardless
of the order of execution they will produce the same result.
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3. Basic considerations about loop rewriting
In this section we define the computational structure with
which we are concerned. Basic definitions are similar to those in
Lamport (1974) and are stated here for completeness. The main
difference is in assumptions, which are less restrictive than those
required by other similar methods (Lamport, 1974; Presberg
and Johnson, 1975).

In general, we will refer to a FORTRAN:-like loop of the
form:

DO1I, =¢,,u,

DO11, =¢,,u, (1)
(loop body)

1 CONTINUE
where ¢; and u; are integer non-negative valued expressions
(we could allow arbitrary integer values, but the solution would
become more complicated).

We make the following assumptions on the loop body:

1. The loop body contains no transfers of control to statements
outside the loop.

2. Function calls do not modify data.

3. For every subroutine call we can distinguish a set of input
parameters, which are not modified by the call, and a set
of output parameters, which are modified by the call.

4. For each input/output statement, the corresponding I/O
stream can be unequivocally identified.

5. Every occurrence, in the loop body, of a subscripted variable
is of the form V(e,, e,, . . . , €,), where each e; is a linear
expression involving the loop indices Iy, I,, . . . , I, or
constants.

Assumption (4) is needed because in rewriting the loop the
execution order of the I/O statements can be changed, and the
result is correct only if each input variable is assigned the
same input value independently of such an execution order,
and if the output values are written in the same order.

In a practical implementation, assumptions (2), (3) and (4)
are hard to satisfy. It may then be convenient to assume that
the loop body contains no subroutine or function calls and no
I/O statements. The meaning of assumptions (2), (3) and (4)
is that, for instance, a function call can be admitted in the loop
body only if we are sure that it does not modify data; in the
case of standard library functions such a knowledge can be
reasonably assumed.

Let N denote the set of all integers, and N" denote the set of
n-tuples of integers. The set A is defined as the subset of N"
consisting of all values assumed by {I,, I,, . . ., I,} during the
execution of loop (1). The elements of A can be ordered in the
usual way (Coffman and Denning, 1973; Lamport, 1974):
if P = {pl’ P2 - - - ’pn} and Q = {ql’ 9z, - -+ » qn} are two
n-tuples, P, Q € A, then P < Q if:

@pi=qivitl 2isj—1

®)p; <gq; lsj=n

Therefore, e.g. {2, 5,3} < {3,2,1} < {3, 4,0}

Our goal is to rewrite the loop in the following form:

DO1J, = A, i1y

DO 1J, = A ty @
DO 1 CONCFOR ALL (Jiy1y.--,Jm) € 2]
{loop body)

1 CONTINUE

where @ is a subset of N™ % Let ¥ be the subset of N™
consisting of all the values assumed by {J, ..., J,} and IT the
subset of N* consisting of all the values assumed by {J, ..., J;}
during the execution of loop (2).
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The lower and upper bounds for eachJ;, 1 £ i < k,canbea
function of the outer indices, thatis 4; = 4(J,,...,J;_;) and
;= p(Jy,...,J;- ). Parallel computation is performed within
the DO CONC FOR ALL; the loop body is executed con-
currently for all the elements of @, but the sequential order
of the statements of the loop body is preserved.

The DO CONC FOR ALL control structure was developed
for the ILLIAC IV FORTRAN compiler (Millstein, 1973;
Millstein and Muntz, 1975) and we regard it as a well suited
tool to evidence inherent parallelism in FORTRAN:-like loops.
To perform the above indicated rewriting we will construct a
one-to-one mapping y : A - ¥ so that {J,, ..., J.} =
Yy, . .., 1,). In loop (2) the ordering of execution of
the loop body depends only on the first £ indices J,, . . . , J;.
If we define a mapping & : A — II so that {J,,...,J,} =
n(ly, . .., I,) we can state the following rule (Lamport, 1974):

1. : given two n-tuples P, Q € A, the execution of the loop body
for P precedes that for Q, in the new ordering of execution,
if and only if n(P) < n(Q). o

The specification of = is the most critical operation, because (§'
rule (1). Moreover, looking at loop (2), we see that mapping 8

must also enjoy the following property: Q

2. :each index J;, 1 £ i £ k, must take on every integer valua
from its lower to its upper bounds.*

A mapping n which satisfies rule (2) will be called a valt‘é
mapping. Rule (2) is not so trivial as it may appear. Each inde¥
J; defines a partition &; on A ; the superimposition of partitions
¢; and ¢; defines a new partition ¢; ;, and so on. The partitiof
&y 2,..,i-1 then maps a subset of A to each (i — 1)- tuple
of values of {J1, . .. s Ji—1}. The original loop can be wrltteg
in form (2) only if w1th1n each subset of A the index J; cap
assume all the integer values from a lower to an upper bound 3

A criterion to verify if a given mapping is valid is reasonably
simple only if we restrict ourselves to linear mappings of the
form:

~~
i/ Gisad,

J; = Z aj;l,forl i<k

It can then be proved that mapping = is valid if all the followin
conditions are verified:
l.:l.ag,, =0forl £jsk—-i1=isk-1
2.4, _,,,=1forl ik
3.b;,, 20forl ik, k+1=j=<n

irj =
being by, = a,,, — 3 (a
t=1
(fori =1,b;, = ,,,j)
2.:1fd, 2d,... 2d,... 2 d,, h =n — k,is an ordering
thehtuple {b, s o b and dgy =dg, ..
d, = 0, it must be:

WW/E/T

Lrc-e+ 1 'b',rj)

vzod 1R 61 U 159N6 A 619801/

s—t
ds1+ (u"k—i+l - {rk—u-x) +'Zl d""i'AH'.i’
j=
forl £t <s—-1
dl‘ =1+ (u’k-l+l - {’k-i+ 1)
fort = s.

where 4; = u, — ¢, ifd; = b;, and u’s and £’s are those

defined in (2).

4. Construction of mappings - and y

In order to apply the previously described loop rewriting, it is
necessary to define mapping y; such a definition will be based
on the preliminary definition of mapping .

*In this case and from now on in the paper, lower and upper bounds
are themselves included in the set of values considered.
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4.1 Identification of the interrupt conditions

To define mapping = we must find which precedence relations
are to be imposed on any pair of distinct executions of the
loop body in order to guarantee the determinacy of results.
Therefore, we define tasks T, and T, to be the executions of the
loop body for two generic n-tuples P, Q € A respectively
and analyse the interference conditions between T, and T,

supposing they are independent. The domain and the range
of each task must be carefully identified. The domain consists
of:

(a) Variables and constants on the right side of assignment
statements.

(b) Function parameters.

(c) Subroutine input parameters.

(d) Variables and constants in conditional branch clauses.
(e) Variables in output statements.

The range consists of:

(a) Variables on the left side of assignment statements.
(b) Subroutine output parameters.

(c) Variables in input statements.

We can allow scalar and array variables and parameters, even
if array variables are usually not handled in FORTRAN.
From our standpoint, the only significant distinction is between
scalar or array variables or parameters, called simply variables
in the following, and subscripted variables. We will also use the
name identifier to denote a variable or the array name in a
subscripted variable.

By definition D3 tasks T, and T, are interrupting if there is
some range-on-range or range-on-domain overlapping. Con-
stants appear only in domains and cannot be responsible for
interrupting; therefore we are concerned only with variables
and subscripted variables. Overlapping can be detected by the
occurrence of the same identifier in the range of task T, and
in the range or domain of task T, or vice versa. If the over-
lapping is originated by a variable, the interrupt is independent
of actual values of P and Q and so all tasks are mutually inter-
rupting. This is a troublesome interrupt, because in such a case
no concurrent execution of the loop body is possible. If the
overlapping is originated by a subscripted variable, the inter-
rupt depends on the actual values of P and Q. In fact, in this
case the interrupt is due to a pair of subscripted variables
of the form:

vp = V(ep 1 p 25 ¢ ¢ 0 ep,k) (4)
v, = Vieg, 1, €425 - -+ €qk)

where the ¢, ; and e, ; are linear expressions involving respect-

ively n-tuples P and Q and V'is an array name. Tasks T, and T,

are interrupting if v, = v, that is if P and Q are a solution of

the following system:
{e.p. 1 = eq, 1 (5)
ep' k = eq' k

The general solution of system (5) gives all the pairs of tasks
which are interrupting because of the particular pair of
occurrences of the identifier V: the mapping n must preserve
the original execution ordering between every pair of inter-
rupting tasks. A system like (5) must be solved for every pair
of occurrences of all the identifiers which could be responsible
for any interrupt, in order to obtain all the constraints on the
definition of the mapping n. We let S;, for 1 < i < h, be one
of the & systems of linear equations which give all the interrupt
conditions; if the two n-tuples P and Q are a solution of system
S;, we will write S;(P, Q) = 0.

To preserve the execution ordering for interrupting tasks we
must find a partition {(4) = {4, 4,, ..., A4,} on the set A4
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which enjoys the following property:

Si{(P, Q) # Oforevery pair P, Qe A,
MLjil1Sishlsjsv,
Any partition on A which satisfies the above property is
called a suitable partition. Since mapping = must also obey
rule (1), we define an ordered partition as follows:
(D4) : A suitable partition {(A) is an ordered partition if, for
every pair of subsets 4; and 4;, P < Q for all the pairs
P, Q suchthat Pe A;, Q € A; and S, (P, Q) = O for
everyr, 1 < r £ h.If the above properties hold, we will
write A; < A;.
Obviously, a partition on A is also a partition on the set of
tasks. If {(A) is an ordered partition, all the tasks which belong
to the same subset can be executed concurrently; moreover,
if a task belonging to subset A; must be executed before a
task belonging to subset A, there is no task in A; that must
be executed after any task in A4; and so all the tasks in A,
can be executed before any task i m A4;. Therefore we can give
the following rule:

3. The result of the concurrent execution of loop (2) is deter-
minate if mapping © defines an ordered partition on A.

The mapping = is completely defined once we know the values =
ofkanda;,forl i<k, 1 <j<nlt shouldbepomted outo
that the value of k is not defined a priori, but is derived fromj

papeojumoq

the computation of the coefficients a;;. g
4.2 Definition of coefficients ay; §
Rule (3) imposes, for every pair of n-tuples P, Q € A for whrchg
S/(P, Q) = 0, that: 5
o

<0ifP < 6)S

Z a Iy, — 1) q)< ' 0 ()g

J=1 =20ifP>Q el

o

where {1, ,, I3 p, ..., I, ,} is the n-tuple P € A. If the equality 3
holds, k must be greater than 1 and the correct execution order-=
ing is preserved by some other index among the first k ones.
Writing the two inequalities (6) for each system S,,1 £t < hS ©
we obtain a set , of 2/ systems of inequalities of the following [3 N

[onJe/|u

type: §
Z oL, — L) S0 (20 S
&PQ)~0 M2
P<Q P> 0) z

Taking into account the previously defined meaning of P < Q<
(or P > Q), each system of Q, generates n systems of in-&
equalities; therefore we must finally solve a set Y, of 2hnS
systems of inequalities like the following (1 < ¢t < A3

1=r=n: >
'21 al;,—1;,) =0 (20 §
I3 i
S(P,0) =0
Lip =11 @®)
I.r—-l,p = Ir 1,9
L,=1, K {,, . +K)

where K is any posmve mteger. It can be proved that every
system R, € Y';, which has any solution,* reduces to the follow-
ing inequality:

2 cl.s,v Xv é 0 (g O) (9)
v=1
where the set X = {X,, X,,..., X,,} isasubsetof {I, p,...,

*If (8) has no solutions, it simply means that a pair of r-tuples P
and Q which satisfy the conditions for the first » components cannot
be a solution for the system S;; therefore such a system can be
ignored.
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1,1, ,...,1,, K} and the coefficients {c, , } are weighted
sums of coefﬁc1ents a,;. By varying s from 1 to 2hn, we obtain
a system Z, of inequalities which gives us all the constraints
that are imposed on the n-tuple {a,,,a,,, ..., a;,}. Recalling
that the variables X, X,, ..., X,, are non-negativc, a solution

for (9) is actually given by every n-tuple {@,, G132, ..., a1}
which solves the following system:

€151 =0 (20)

€12 S =0 (20 (10)

cl s,wo= 0 (> 0)
Notice that in writing (10) we have supposed that the variables
X, can take on any integer non-negative value, even if they are
bounded by the pairs {Z,, u,}; this hypothesis imposes some
unnecessary constraints, but the solution is fairly simplified.
Every solution of system Z, gives a possible definition of J,.

4.3 Definition of coefficients a;; for 1 < i £ k

Let Z¥ be the system of inequalities derived from Z, by
replacing all conditions like ‘less (greater) than or equal’
with the stronger conditions ‘less (greater) than’. A specifica-
tion of J, is a strong solution for an inequality of Z, if the
corresponding inequality of Z7 is satisfied.

If the chosen definition of J, is a strong solution for the whole
system Z,, then the value of k is 1; otherwise, the index J,
will be required to preserve the correct execution ordering in
all the cases in which the equality actually holds. Therefore J,
can be defined by solving a set Q, of 24 systems like the follow-
ing(l £t £ h):

é alj(I' ;) =0

Z az,( -L)s0 (20
.(P 0)=0
P<Q (P>0

and a generic J, is defined by a set Q, of 2h systems like the
following (1 <t < h):

Z a;l;, —
j=1

2 ari(Ii.p - 4, q)
j=1

S(P, Q) =0
P<Q (>0

By rewriting conditions P < Q and P > Q, the set 2, generates
a set of 2hn systems of inequalities Y, which has the same
structure of Y'; and can be reduced to a system of inequalities
Z, having the structure of Z,. Every coefficient c, ; ,, in system
Z,, is the same as ¢, ,, except that each a,; is replaced by the
corresponding a,;; for example, if ¢, ,, = 2a,; + 3a,,, then
Cs0 = 2a,; + 3a,,. Therefore system Z, can be derived
dlrectly from Z, by deleting all the inequalities which are
strongly solved and by replacing each ¢, ,, with ¢, ,,;
analogously, system Z5 can be derived by Z,, and so on.

I)=0 foreveryi:1 <isr—1

0 (= 0)

4.4 Value of k and valid mappings

Every solution of the set of systems {Z,,Z,, . .., Z,} gives a
possible mapping =, but we are interested only in valid map-
pings. Verifying conditions Cl and C2 is perhaps the most
complicated step in the definition of =, because it requires the
knowledge of the value of k. Since this value is not known
a priori, an iterative approach is needed: first k = 1 is tried out
and if it does not work, we must keep increasing by 1 the value
of k until eventually a valid mapping is found. Notice that at
least one valid mapping exists: it is the trivial solution
Ji=1,1 £iZn
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Usually it is possible to define many valid mappings, and we
must choose one; it seems most reasonable to choose the
mapping which minimises the number of steps in the outer
nonconcurrent loops. At present we know of no general
algorithm which can be used to identify such a mapping:
the problem is indeed complicated because the number of
steps depends on the value of k and on the minimum and
maximum values of each J;, and all these values are interrelated
in a complex manner. In most cases, a simpler and satisfactory
approach consists of minimising the quantity:

i — A S j§1 aij(uj -7

Since the summation is extended to positive terms, the mini-
misation may be accomplished by choosing the smallest possible
values for the g;;’s by trial and error.

4.5 Lower and upper bounds A; and y;
To complete the definition of mapping 7 we must find the lowers
and upper bounds 4; and py;, for 1 < i £ k. Recalling tha€
mapping 7 satisfies condition (1), all bounds can be defined by
rewriting each 1,, 1 £ j < k, as a function of

Voo sdodp, - L}

The notation is the same used for condition (1). Therefore, th
bounds are the following:

e

y®uoyy pep

g

@

'll "{rk + Z al r,'{r, %)T
t=k+1 ! )

" )

Ky = urk + Z al,r,'urt 3.
t=k+1 o

o

e i-1 %
)'i = [’k 1+1 + (di-'k—t+l.J’:) + 8
t=1 n 3

+ Z bi re re 8

t=k+1 3

< for2 gsigsk
i-1 a;;

Hi Up_ 441 + '=Z (dl P-4 1 Jr,)+ %

: 5

+ Z b, re U, >

- t=k+1 N
where ®
Jj—k-1 g

d =/ai,fj— _Z' ai,rk+g dl—trj f0r1_3‘—]+k %
i,rj \ t—g—: R a
a;,, fori=2-j+k. o

<

«Q

=

[0}

ﬁ

4.6 Completion of the deﬁnition of mapping vy
The only requirement for y is that it be a one-to-one mappingo
This goal may be simply achieved by imposing m = n an
J;=1,fork +1 =i < n. Infact, glvenaktupleKeH each.
value of the (n — k) tuple {1,..,--.,1,}identifies one and only=.
one n-tuple P € A. A complete example along this line 153
presented in Section 5. N

However, there is no real need to have m = n; moreover, in
some cases parallel execution is possible only if m > n. Let us
consider, for instance, the following loop:

DO1I=¢,u

A(l) = AU + H) (11)
1 CONTINUE ‘
where H is a constant. The set 2, is formed by two elements:

{al(lp - Iq) é 0 {al(lp - Iq) g 0
1.{I,=1I,— H 2.1, =1, + H

I, <1, L,>1,.

System Z, consists only of the inequality Ha, = 0. If we give
to @, any positive integer value, we obtain a loop similar to
loop (11) which does not allow any parallel execution. Never-

theless, if T; is the task associated to the execution of the loop
body for I = i, it can be easily verified, by inspection of loop
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(11), that the only interference is between the pairs (T, T;, );
so, if H = 2, we can execute task T, concurrently to task T,,
task T, concurrently to task T's, and so on.

On the other hand, so far we have supposed the coefficients
a;, to be integer valued for convenience. This restriction is not
necessary, since only the expression a,(/, 1) must be
integer valued; so we can impose Ha, = 1, that is by (3)

Jy = 7{11. Of course, J, must be integer valued, so the correct

resultis J, = lllll J orJ, = Ll_l l] - Consequently, the bounds

are
SLICER )
and
1 1
Hy = [E“J (Orﬂl = [I_iu] )
Assuming

= 5]
andJ, = I,1o0p (11) can be rewritten in the form:
DO 1J, = 4y, p,
DO 1 CONC FOR ALL J,/
H*J 2T, sH*x(J, +1) - 1)
A(J,) = A(J, + H)
1 CONTINUE
The use of non-integer coefficients has a serious drawback
in the consequent difficulty of checking the validity of mapping
7 and therefore we do not consider this possibility in the general
case; however, in a simple but common case like loop (11) the
validity is not a problem.
To complete the rewriting of the loop, set ® must be found; if
m = n this can be done simply by defining the inverse mapping
': ¥ - A and recalling that every I, = f((J,, J5, . . ., J,)
must always be bounded by ¢; and u;.

5. An example of loop rewriting
As a simple example of the application of the proposed
method, let us consider the following FORTRAN loop:
DO11, =¢,,u,
DO11, =/, u, (12)
DO 11; = /5, uy
AUy, 1y, I3) = A, 15, 1) + ALy, 1y, 1)

1 CONTINUE

Interruption is described by two systems S, and S,:
L,-1,,=0 ILi,—1,,=0

Sl: Il,p'—13,q=0 S2: IZ,p— 1q=0
IL,-1,,=0 I, - =0

The set Ql is made up of four systems of inequalltles
Z al_]( J,q) é 0

@y 1(P 0 =0
P < Q
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3
Jg al.i( i If.q) 20
w,: ) Sy(P, Q) =0
P> Q

3
,-:‘/:1 ajjl;, — Ii,p) =0
w;3: | S(P, Q) =0

P<Q
3
.Zlal.i(lf.p )20
j=
wy: | Sa(P, Q) =0
P>0
The system Z is:
— (@2, —a;3) K =0 fromow,
(@2 —a;3) K20 from w,
— (a;; — a) K <0 from w,
(@, —a;,)) K20 from o,

umoq

Any set of values which satisfies the condmons a,, > a3 and2
a,; > ay, is a strong solution. A possible mapping = 158_
therefore:

9

nid, =20, +1,

with k& = 1. Conditions (l) and (2) are satisfied, so the mappm
is valid. The mapping 7y is:

J, =21, + 1,
i d2 =1,
Jy =1,

Loop (12) can be rewritten as follows:
DOIJI =2{1 +(2,2u1 +u2
DO 1 CONC FOR ALL (Jz, L), £J, £ uy,
l3 J3<u3,{2<.,1_2-]2$u

- 212, Js) = A(JZa -’3, Jl - 2-’2) +
AW, —

J,JE/|U'rLUOO/LUOO'an':)!LuepEOE// sg°1u wouy p

A(JZ’ Jl
2"2’ Jz, Js)g
1 CONTINUE

ov/vee/eice

6. Conclusions
We have presented a method for loop rewriting based on theoo
concept of non-interrupting tasks. Assumptions are not very\l
restrictive, compared with similar methods and a large seto
of common loop structures can be optimised for parallelo
processing. The required computation is not simple becausef
a certain number of system inequalities must be solved; thiso
can slow down dramatically the compiler in the case of large,
highly nested loops, but the compilation time is less of a prob-%>
lem as the optimised code will be used many times. Possible=:
developments of this work could consist of an analysis of§
mutually invariant sets of statements which would allow more~
parallelism by removing the assumption that each processor
executes the whole loop body.
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Book reviews

Microcomputer Problem Solving Using Pascal by K. L. Bowles, 1977;
563 pages. (Springer-Verlag, $9-80)

This book is yet another contender for the ‘introduction to problem
solving and computer programming’ market and, like other recent
books, is based on PASCAL. The book is derived from courses
presented at the University of Calfornia at San Diego (UCSD).
UCSD have implemented a stand-alone single user PASCAL
system which is interpreter based and runs on a variety of micro-
computers, for example LSI-11, Z80 and Intel 8080 based systems.
The book is based on this PASCAL system, and is intended for
students with both mathematical and non-mathematical back-
grounds. The problem examples are of a non-numeric nature,
concentrating on graphical and string manipuvlation examples.
UCSD have extended PASCAL with built-in functions and pro-
cedures to suit these applications.

For those students who have access to a UCSD system with
graphics hardware, the book could be useful. However, I do not
feel that I can recommend the book for students using other
PASCAL systems. There are other books on the same topic which
seem to be much more system independent and therefore more
useful to a wider audience.

P. A. Lee (Newcastle upon Tyne)

The Design of Well Structured and Correct Programs by S. Alagic
and M. A. Arbib, 1978; 292 pages. (Springer-Verlag, $14-00)

I am impressed-this book is a welcome change from .he usual
programming text. The authors’ aim is to teach top-down program
development using Hoare invariance methods; they succeed. The
reader will not only pick up many good programming habits, but
also learn some PASCAL along the way. For programmers solving
the class of problems for which this methodology is suitable (i.e.
most) this book is a must. The authors assume the reader has done
some computer programming, but everything else is introduced
carefully, logically and well.

The book is well illustrated throughout by numerous examples and
exercises (minor criticism—no solutions) and the motivation for the
next step in the argument is always given. The examples used cover a
wide range of applications and are all taken from the literature but
the proofs are usually new. This means that the reader will often be
familar with the problem (gcd, file merging, 8 queens, etc.) and can
concentrate on the method of solution. I found this advantageous as
the text is quite concise and can best be digested in small bites.

The first three chapters cover the basic ground work and introduce
top-down design, PASCAL structured statements and their proof
rules and PASCAL data structures. In Chapter 4 these are brought
together in a number of case studies where particular solutions are
developed. This chapter is called ‘Programs and proofs’ but due to
the size of the examples used it would probably have been better
titled ‘Routines and proofs’. Having seen how to develop reliable
components the authors turn, in Chapter 5, to the very important
task of their interconnection. Procedures, functions and block
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structure are dealt with in this chapter whilst Chapter 6 deals with
recursive algorithms and data structures. Had the book stopped at
this point, it would have been highly recommmended, but the bestSis
yet to come; Chapter 7 covers the final structuring statement gotg!
Here much new material is introduced and I find it the most sa
discussion on the goto problem which I have ever read. The bogk
closes with appendices on PASCAL syntax, summaries of proaf
rules, a glossary and a good bibliography. 2
Like many good ideas Hoare’s preconditions and postconditio
are, once they have been pointed out, brillantly simple. Invariancegl
would claim, is one of the research topics which seems to offer mofst
help to the practising programmer. This text should be read by
anyone who is, or who wishes to be, a professional programmeg.
Good simple ideas like these should be brought to the attention ofza
much wider public and this book is a good first step in this directiof.
The book meets its aims and one cannot criticise it for things it do%
not try to do but perhaps we can now look forward to similar texts
based on FORTRAN and COBOL. If we continue in this way, work
which starts from a theoretical standpoint can impact upon and
improve our professional practice. N

SEEO

N
D. SimpsoN (Shefﬁel@
w

Artificial Intelligence, edited by A. Bundy, 1978; 253 page§
(Edinburgh University Press, £5-00) @
&
[¢)]
This is a collection of lecture notes from the course Artifici
Intelligence 2 given at the University of Edinburgh by the staff of the
Department of Artificial Intelligence. The course surveys all thosg
areas of artificial intelligence which must now be considered
classical and are under the headings Problem solving, Natural
languages, Question answering and inference, Visual perceptio
and Learning. It was aimed at second and third year undergraduates
from disciplines other than computing, but according to the
teaching notes students were expected to spend three hours a week 48
an interactive computer terminal. There must be some doubt
whether it is reasonable to mix the initial teaching of computer
usage with consideration of the ultimate power of machines, and in
an afternote the authors seem to accept this criticism.

There are four different authors, all well known in the field, and
different sections inevitably show a different style of presentation.
However, these are notes, terse and pithy, but not lengthy explana-
tions. They are not suitable for self-study by a novice, and would be
best appreciated by an intending teacher of a similar kind of course.
The general approach is to stimulate the students to find out for
themselves and constant use of the computer together with extensive
reading in a variety of topics is indicated. It would seem to make
heavy demands on an undergraduate’s time and mental agility, in a
way which is currently not fashionable, and the authors say that
later courses had less practical work and that students were divided
into groups according to programming ability. One thing has been
achieved; the case for this kind of course within a general curriculum
has been made firmly.

J. J. FLORENTIN (London)
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