Proof by semantic attributes of a LISP compiler

P. Deransart

IRIA, Domaine de Voluceau, BP 5—Rocquencourt, 78150 Le Chesnay, France

This paper illustrates the possibility to prove correctness of a compiler defined by semantic attri-
butes. Source language and object code are first described. The source language corresponds to
LISP compilable functions and the object code to an abstract machine. Then the translation between
them is defined and the proof technique is described and illustrated by some examples. The interest of

this technique is the modularity of the proof.

Cet article montre comment il est possible de prouver la correction d’un compilateur décrit par
attributs sémantiques. Le langage source et le code objet sont introduits en premier lieu. Le
premier correspond aux fonctions LISP compilables et le second 2 une machine abstraite. La

traduction de I’'un dans I’autre est ensuite définie et la méthode de preuve est exposée. L’intérét de
cette méthode repose sur I’extréme modularité de ce type de preuve.

(Received September 1977)

Compiler description by the method of semantic attributes is a
well known technique and is now used frequently. Not so
familiar are the possibilities to use this technique for proving a
compiler correct. This involves using the syntax-oriented
description to prove recursively correctness. We show here the
possibility to apply such a proof method, to a LISP compiler.

We were led to consider LISP because of its simplicity and
the possibility to describe the LISP semantics with an ‘apply’
function. The compiler is correct if, given any sufficient
arguments and any environment, the execution of the generated
code of the compiled function is equivalent to the function
‘applied’ to the same arguments, with the same environment.
The LISP used here is a subset of a compilable LISP, defined
in order to study the definition of LISP by a compiler and its
portability. We shall present first the source language and its
semantics defined by the ‘eval’ and ‘apply’ functions, and then
the object code for the target abstract machine (i.e. an inter-
mediate code suitable for implementation on an IBM machine
(Lux, 1975) as well as a DEC machine (London, 1971)).
Finally, we prove the translation, verifying at the same time the
correctness of the given semantic attribute description. A
certain knowledge of LISP and semantic attributes is assumed.

1. Source language: syntax and evaluator

A context-free subset of the source language syntax is given in
Appendix 1.1, described in a BNF-like notation, where the
terms LAMBDA, QUOTE, COND, T and NIL are considered
as reserved words. With the exception of the LABEL function,
it includes the usual LISP expressions.

The evaluator defines the syntax of evaluable expressions
implicitly by means of tests. It operates like the pure LISP
evaluator. It takes twoarguments: an expressionand the alist.
The alist argument is formed, as shown by the function ‘pairlis’,
by a left-branching list of dotted pairs, including a variable and
the associated value. The alist corresponds to the evaluation
context. It will be presumed that the evaluated expressions
have no free variables, implying that each variable is defined at
least once in the alist. It is easy to understand the evaluation
process, reading the function ‘eval’ (Appendix 3) which
evaluates each argument of a function with the same context.
One will note the principal difference from pure LISP: if a
function is an identifier, it is only a function name and not a
variable; in particular, there are no functions as arguments of
LAMBDA expressions.

The relationship between syntax and evaluation are studied in

240

Deransart (1977). We consider now here that the evaluator
evaluates only well formed expressions, as defined by the given=
syntax.

2. Object language and implementation
The abstract target machine (see Appendix 2.2) consists of:

1.

4.
S.

wioJ} pepeojumoq

¥

peog//:sd

nodlwa

A memory zone including a potentially infinite number ofo
cells. We don’t describe this zone here, assuming that theo
notation ‘S-expr corresponds to the memory address of theS
S-expression (‘adtc’ in the object code described in Appendixg
2).
A potentially unlimited atom table, where each identifier is5
represented only once and where the recursivity of LISPZ
implies that each atom does not point a value, but a stack of 2
values, called a bound-stack. The notation ‘Ident denotes the™
address of the atom identifier.
A unbounded stack-zone. Each atom has a bound-stack and £
there is also an argument-stack and a return-stack with the%
return addresses of the called subprogram. The top of the
argument-stack is denoted sp and the content c(sp).

A zone for programs and subprograms.
An instruction counter, denoted co.

vz/e Jufw

01senb Aq

All these elements are organised as shown in Fig. 1. There are
ten machine instructions described in Appendix 2.2: 4 concern®
the argument-stack manipulations, 2 the bound-stacks, 2 theS
return-stack and 2 are branching instructions. The machinen
sequentially executes the instructions of the program, thel
counter being initialised to 1 (the first instruction).

CELLS
z

\ ATOM-TABLE , /

STACKS

RETURNS

e

PROGRAMS

BOUNDS

Fig. 1 Abstract machine

The Computer Journal Volume 22 Number 3

The evaluator executing an abstract machine program is
denoted by EV.

3. Description by semantic attributes

Each attribute represents a concept useful for generating the
object code. At each node of the syntactic tree where it is
defined, the attribute has a calculated value. So the attribute
‘CAPPLY’ denotes the generated code at the node {Function)
(rules 7 and 8 in Appendix 1.3) and denotes the complete
generated code at the node {Prog) (rule 0).

We will use five sets of attributes (see Appendix 1.1):

(@) CEVAL, CAPPLY, CEVCON, CEVLIS: four names
for the same concept—the generated code. This denomina-
tion makes easier the identification within the evaluator.

(b)) PBOUND, OBOUN D: for generating the push and pop
instructions of the bound-stack, used only in the LAMBDA
expressions.

(¢c) LAB, OUTC, LABI, LAB2: These attributes denote the
addresses of the generated instructions. LAB denotes the
next instruction to be generated (H-LAB(Function) in the
rule 0 is initialised to one and S-LAB(Function) in the same
rule denotes the address of the last instruction of the
program: ‘S-LAB(Function) : RETURN’). OUT C(output
address of conditional form) is used to generate the code for
a conditional branch, and LAB1 and LAB2 to build the
generated code of PBOUND and OBOUND.

(d) NARG, NVAR, TOP, ALIST: The first two attributes
count respectively the number of arguments of a function
and the number of variables to be bound to the arguments
values. In the sequel, we will assume that the following
condition is satisfied:

H-NARG(Function) > S-NVAR(listvar)

in each occurrence of rule 8, since the result is not defined
otherwise (more variables than arguments).

TOP simulates the evolution of the top of the argument-
stack, ALIST the alist.

() TEXT denotes the original source language text corres-
ponding to the syntactic node (terminal or not).

The translation using semantic attributes and syntax of the
source language is described in Appendix 1.3. To understand
the translation it is sufficient to read the ‘circulation’ of the
attributes, denoting the dependency of the attributes at each
node. This is illustrated in rule 11 by the ‘circulation’ of the
attribute LAB of the node (Listcond) (see Fig. 2).

The dependency of the attributes at different nodes is funda-
mental to understanding the organisation of the proof. In
Fig. 2, we see that H-LAB(Form) depends on H-LAB(List-
cond), meaning that to calculate H-LAB(Form), it is necessary
first to calculate H-LAB(Listcond). This result is inherited. By

H-LAB

S-LAB

<Listcond>
/\\
M URN

Jum| {f' nil to \
f,iut instruction
,of <Listcond>
/ \
4 \
// +1
H-LAB <Form> S-LAB

N\
H-LAB <Form> S-LAB H-LAB <Listcond'> S-LAB

- Pop the intermediate result
- jump to address 'out of condition'

Fig. 2 ‘circulation’ of the attributes LAB in the rule 11. Indications
about the generated code added to the inherited attribute

giving the synthesised attribute

The Computer Journal Volume 22 Number 3

contrast, the value of S-LAB(Listcond) is synthesised from
S-LAB(Listcond’). Furthermore the calculation of the in-
herited value of H-LAB(Form’) depends on the value of the
synthesised attribute S-LAB(Form). This is called the ‘circula-
tion’ of the attributes. The dependencies must not be cyclic or,
in other words, the attributes descriptions be coherent. The
compiler will be proved correct under the assumption of the
coherency of this description.

4. Presentation of the proof

To prove that the compiler is correct, we have to prove the
identity of the results obtained by two methods: first the result
of a function applied to arguments localised at the top of the
argument-stack with an alist equivalent to the bounds-stacks
and corresponding values in the argument-stack. Secondly the
results of the execution of the corresponding generated code
with the same arguments at the top of the stack and the same
context (alist). This is illustrated by the commutativity of the

diagram of Fig. 2: o
3

_ apply S

Function, (c(sp — n + 1) : c(sp)), alist ——sresults &

(o}

translation §

EV EX

Object code, same arguments, alist 3
c(sp — n + 1) to c(sp) g

Q.

The generated code is correct if and only if the abstract maching_

being in an initial state characterised by:

co =1
sp=a

list of c(sp — n + 1) : c(sp) = list of evaluated arguments
alist = «

The execution of the code produces a final state such:
co = return instruction

sp = a + 1 (add only one argume
to the argument-stack)

V/OVZ?S/ZZ/GIO!UE/IU[LUOO/LUOO'an'O

apply (function, list of evalug
ated arguments, a)

N
Since the apply function (by definition) does not modify the
context, this last identity proves the conservation of the contexg
through evaluation. To express the properties to be verified, wé
use the Hoare notation (1969) with pre- and post- conditionsg
Thus, S-CAPPLY representing an object programme, wg:
denote:

c(sp)

LL

EV(S-CAPPLY()) by {S-CAPPLY()}
and the last assertion will be expressed as:

20z ludy

pre-condition post-condition
co=1,sp =a,alist =«
la =[c(sp — n+ 1) : c(sp)]
{S-CAPPLY(Prog)}

co = S-LAB(Prog), sp =a + 1

c(sp) = apply(Prog, la, o)
where n is the number of arguments presumed to be at the top
of the argument-stack. By convention we will use

n = S-NVAR(Prog) (rule 0, Appendix 1.3) .

In this notation we use the same symbol (Prog) as an argument
supplied to apply and as a representation of the non-terminal
Prog in the attribute occurrence. There is in fact a strict
correspondence between the non-terminals of the grammar and
the elements supplied as arguments of functions eval, apply,

241

evlis or evcon (Deransart, 1977). Thus, according to the non-
terminal {Form), we have the assertion:

co = H-LAB(Form), sp = H-TOP(Form)

sp = H-TOP(Form) + 1

{S-CEVAL(Form)}
co = S-LAB(Form),
c(sp) = eval(Form, H-ALIST*(Form))*
There are analogous assertions associated with the non-
terminals:

(Listvar), (Listcond), (Listarg) and {(Function)

The proof technique studied in Pair, Amirchahy and Néel
(1976) consists of associating one of the attributes of the con-
sidered non-terminal symbol to the assertion. Here it is the
attribute S-CEVAL for the non-terminal symbol (Form),
S-CAPPLY for (Function), S-CEVLIS for {Listvarg) and so
on. The proof is performed by induction, the order of recurrence
being the order of evaluating the associated attributes.

5. Proof

We consider each rule in turn, rule 0 to rule 14. For each rule
we organise the proof in three parts: hypothesis, conclusion and
proof of the conclusion, using the semantic definitions. The
termination of the proof results from the finiteness of the
syntactic tree of a finite sentence and of the coherency of the
description by attributes.

We show the proof on only one example, i.e. for rule 6.

R6 {(Form) = ({Function) {Listarg))

Semantic definitions: see Appendix 1.3, rule R6, S1 to S9
Hypothesis

H1:

co = H-LAB(Function)

sp = H-TOP(Function)
la = [c(sp-H-NARG(Function) + 1) : ¢(sp)]
{S-CAPPLY(Function)}
co = S-LAB(Function)
sp = H-TOP(Function) + 1
c(sp) = apply(Function, /a,
H-ALIST¢(Function))

H2:

co = H-LAB(Listvarg)
sp = H-TOP(Listvarg)
{S-CEVLIS(Listarg)}
co = S-LAB(Listarg)
sp = H-TOP(Listarg) + S-NARG(Listarg)
[c(sp-H-NARG(Listarg) + 1) : c(sp)] =
evlis(Listarg, H-ALIST(Listarg))

Conclusion
co = H-LAB(Form)
sp = H-TOP(Form) sp = H-TOP(Form) + 1
{S-CEVAL(Form)}

S-LAB(Form)
eval(Form, H-ALIST¢ (Form))

co
c(sp)

Proof
The definition S1 gives the -calculation of S-CEVAL(Form):

S-CEVAL(Form) =

S-CEVLIS(Listarg) S-CAPPLY (Function)
S-LAB(Function : POP S-NARG(Listarg) ;

*H-ALIST¢ (Form) denotes the attribute H-ALIST, where the
address of the associated value has been replaced by its contents.

242

By the definition of H-LAB and S-LAB (S5 to S7), the elements
of S-CEVAL(Form) are evaluated sequentially. In this case we
can use the Hoare rule of composition:

If P{Q,} R, and R,{Q,} Rthen P{Q, ; 0,} R
Thus we give the four steps of the evaluation of S-CEVAL
(Form):
Initial state
co = H-LAB(Form) = H-LAB(Listarg) (S6)
sp = H-TOP(Form) = H-TOP(Listarg) (S3)
state after evaluation of S-CEVLIS(Listarg) (H2)
S-LAB(Listarg) = H-LAB(Function) (S7)
H-TOP(Listarg) + S-NARG(Listarg)
= H-TOP(Function) (S3) (S4)

[c(sp — H-NARG(Listarg) + 1) : c(sp)]

= evlis(Listarg, H-ALIST*(listarg)) = la
state after evaluation of S-CAPPLY (Function) (H1)
co = S-LAB(Function)
sp = H-TOP(Function) + 1

¢(sp) = apply(Function, evlis(Listarg, H-ALIST(Form)),
H-ALIST¢(Form)) (S8, S9)
final state (after execution of the POP instruction):
co = S-LAB(Function) + 1 = S-LAB(Form) (S5)
sp = H-TOP(Function) + 1 — S-NARG(Listarg)
= H-TOP(Form) + 1 (S4)
c(sp) = eval(Form, H-ALIST¢(Form)) (see definition of eval in
this case—Appendix 3—and the POP instruction does not

change the top content of the argument-stack).
QED.

co =
sp =

6. Conclusion

We have shown, for a simple case, that it is possible to prove
completely a compiler using a very modular method. It is also
possible to introduce current optimisations (test on NIL, T
clauses, open compiled functions, non-duplication of the
POP. . .) without having to change all the proof, but only a
few modules, eventually using new attributes. The method we
have presented may be useful for the reliability of more com-
plex compilers.

Proof for a more complex LISP compiler has been presented
in Deransart (1978a) and the use of such a proof technique in
order to synthesise attribute definitions has been developed in
Deransart (1978b).

Acknowledgements
I am indebted to Messieurs Pair, Lorho and Schuman and
Madame Gaudel for their contributions to this work.

Appendix 1
1.1 Definition of the attributes

Attributes Circulation* Type Use

CEVAL S Set of instructions Generated code
CAPPLY S Set of instructions Generated code
CEVCON S Set of instructions Generated code
CEVLIS S Set of instructions Generated code
PBOUND S Set of instructions Generated code

to push bounds
OBOUND S Set of instructions Generated code

to pop bounds
LABI H Positive integer Address of the

first instruction
to push bounds

The Computer Journal Volume 22 Number 3

20z udy 61 U0 188n6 A Z1/80%/0%2/€/22/10M4e/|ufoo/Wod"dno-oIepED.//:SARY W) PAPEo|umMoQ

LAB2 H Positive integer Address of the
first instruction
to pop bounds

LAB H, S Positive integer Address of the
next instruction

OUTC H Positive integer Address of the
first instruction
after the
condition

NARG H,S Non-negative Number of

integer functions

arguments

NVAR H, S Non-negative Number of

integer functions

bounded
variables

TOP H Index Index of the
argument-stack
top

ALIST H List of pairs Inherited
context

TEXT S String Text
corresponding

to an atom or
an expression.
*H = inHerited, S = Synthesised.

1.2 Syntax
{Progd> = (LAMBDA((listvar))({Form})
(Form) = number | ()| NIL | T | Ident |
(QUOTE({S-expression)) |
(COND(listcond)) | ({Function) (listarg))
(Function) = Ident | (LAMBDA((listvar)){Form}))
(Listarg) = (Form) (listarg) | empty
(Listcond) = ((Form) {Form)){listcond) |
({(Form) (Form))
(Listvar) = Ident(listvar) | empty
{S-expression) = number | ()| NIL | Ident |
list)) | ((Dotted pair))
(List) = {S-expression) {List) | (S-expression)
{(Dotted pair) = {S-expression) . {(S-expression)

1.3 Translation

Notations:

Attributes are written with capital letters and the node is

normally written with parenthesis: H-ALIST(x)

Generated symbolsare underlined : : PUSHQ TEXT(S-expr) ;

The calculations are written between brackets.

RO (Prog) = (LAMBDA({Listvar)){Form})
S-CAPPLY(Prog) = S-CEVAL(Form)

S-PBOUND(Listvar)

[S-LAB(Form)

+ S-NVAR(Listvar)]

: RETURN ;

S-OBOUND(Listvar)

[S-NVAR(Listvar) + 1]

S-NVAR(Listvar)

H-LAB(Form)
H-TOP(Form)

H-TOP(Listvar) = S-NVAR(Listvar)
H-ALIST(Form) = [add to the head of the initial
alist

H-ALIST(Prog) the content of
S-ALIST(Listvar)]
H-NARG(Listvar) = S-NVAR(Listvar)
H-LABI1(Listvar)
H-LAB2(Listvar)
S-NVAR(Prog)
R1 (Form) = number

1
S-LAB(Form)
S-NVAR(Listvar)

The Computer Journal Volume 22 Number 3

S-CEVAL(Form) = H-LAB(Form) : PUSHQ
" "TEXT(number) ;
S-LAB(Form) = [H-LAB(Form) + 1]
R2 (Form) =()INIL|T

as above, but the generated code is:
H-LAB(Form)
: PUSHQ °NIL ;
or H-LAB(Form) ~
: PUSHQ 'T ;
R3 (Form) = Ident -
as above, but the generated code is:
H-LAB(Form)
: PUSHV 'TEXT(Ident)
[H-TOP(Form) —
assoc(TEXT(Ident),
H-ALIST(Form))] ;
R4 (Form) = (QUOTE(S-expression))
as above, but the generated code is:
H-LAB(Form)

: PUSHQ
"TEXT(S-expression)
RS (Form) = (COND(Listcond))
S-CEVAL(Form) = S-CEVCON(Listcond)
H-TOP(Listcond) = H-TOP(Form)
S-LAB(Form) = S-LAB(Listcond)
H-LAB(Listcond) = H-LAB(Form)
H-OUTC(Listcond) = S-LAB(Listcond)
H-ALIST(Listcond) = H-ALIST(Form)
R6 (Form) = ({Function){Listarg))

(S1) S-CEVAL(Form) = S-CEVLIS(Listarg)
S-CAPPLY (Function)
S-LAB(Function) ; POP
S-NARG(Listarg) ;
(S2) H-NARG
(Function) = S-NARG(Listarg)
(S3) H-TOP(Listarg) = H-TOP(Form)
(S4) H-TOP(Function) = [H-TOP(Form)
+ S-NARG(Listarg)]
(S5) S-LAB(Form) = [S-LAB(Function) + 1]
(S6) H-LAB(Listarg) = H-LAB(Form)
(S7) H-LAB(Function) = S-LAB(Listarg)
(S8) H-ALIST(Listarg) = H-ALIST(Form)
(S9) H-ALIST
(Function) = H-ALIST(Form)
R7 <(Function) = Ident

S-CAPPLY(Function) = H-LAB(Function) : LINK

H-NARG(Function)

TEXT(Ident) ;
S-LAB(Function) = [H-LAB(Function) + 1]
R8 (Function) = (LAMBDA({Listvar)){Form))

S-CAPPLY(Function) = S-PBOUND(Listvar)
S-CEVAL(Form)
S-OBOUND(Listvar)
H-LAB(Function)
S-LAB(Form)

H-LABI(Listvar)
H-LAB2(Listvar)
H-TOP(Form) H-TOP(Function)
H-TOP(Listvar) H-TOP(Function)
H-ALIST(Form) = [add to the head of
H-ALIST(Function) the
elements of the list
S-ALIST(Listvar)]

nnn

S-LAB(Function) = [S-LAB(Form)
+ S-NVAR(Listvar)]
H-LAB(Form) = [H-LAB(Function)
+ S-NVAR(Listvar)]
H-NARG(Listvar) = H-NARG(Function)
H-NVAR(Listvar) =0
R9 (Listarg) = {(Form){Listarg)

20z udy 61 U0 188n6 A Z1/80%/0%2/€/22/310M4e/|ufoo/W0d"dno-oIepED.//:SARY W) PAPEo|umMOQ

S-CEVLIS(Listarg) = S-CEVAL(Form)
S-CEVLIS(Listarg’)

= [S-NARG(Listarg’) + 1]

= [H-TOP(Listarg) + 1]

= H-TOP(Listarg)

= S-LAB(Listarg’)

= S-LAB(Form)

= H-LAB(Listarg)

S-NARG(Listarg)
H-TOP(Listarg’)
H-TOP(Form)
S-LAB(Listarg)
H-LAB(Listarg’)
H-LAB(Form)

H-ALIST(Form) = H-ALIST(Listarg)

H-ALIST(Listarg’) = H-ALIST(Listarg)
R10 (Listarg) = empty

S-CEVLIS(Listarg) = empty set

S-NARG(Listarg) =0

R11 {Listcond)

R12 {Listcond)

R13 (Listvar)

244

S-LAB(Listarg) = H-LAB(Listarg)
= ((Form){Form)){Listcond)
S-CEVCON(Listcond) = S-CEVAL(Form)
S-LAB(Form)
: BRN[S-LAB(Form’) + 2] ;
S-CEVAL(Form’)
S-LAB(Form’) : POP 1 ;
[S-LAB(Form’) + 1]
: BR H-OUTC(Listcond) ;
[S-LAB(Form’) + 2]
:POP1 ;
S-CEVCON(Listcond’)
[H-TOP(Listcond) + 1]
H-TOP(Listcond)
S-LAB(Listcond’)
H-LAB(Listcond)
H-LAB(Form’) [S-LAB(Form) + 1]
H-LAB(Listcond’) [S-LAB(Form + 3]
H-OUTC(Listcond’) = H-OUTC(Listcond)
H-ALIST(Form’) = H-ALIST(Listcond)
H-ALIST(Listcond’) = H-ALIST(Listcond)
H-ALIST(Form) = H-ALIST(Listcond)
= ((Form){Form})
S-CEVCON(Listcond) = S-CEVAL(Form)
S-LAB(Form)
: BRN H-OUTC(Listcond) ;
S-CEVAL(Form’)
S-LAB(Form’) : POP 1 ;
= H-ALIST(Listcond)
= H-ALIST(Listcond)
= H-TOP(Listcond)
= H-TOP(Listcond)
= H-LAB(Listcond)
= [S-LAB(Form) + 1]
= [S-LAB(Form’) + 1]
= Ident(Listvar)
S-PBOUND(Listvar’) = S-PBOUND(Listvar)
[H-LABI1(Listvar)
+ H-NVAR(Listvar)]
: PUSHB
TEXT(Ident)
[H-NARG(Listvar)
+ H-NVAR(Listvar) — 1];
= S-OBOUND(Listvar)
[H-LAB2(Listvar)
+ H-NVAR(Listvar)]
: POPB TEXT(Ident) ;
= H-TOP(Listvar)
= H-NARG(Listvar)
= [S-NVAR(Listvar’) + 1]
= [H-NVAR(Listvar) + 1]
= [add to the head of
S-ALIST(Listvar’) the pair
(TEXT(Ident).
[H-TOP(Listvar)

H-TOP(Form’)
H-TOP(Listcond’)
S-LAB(Listcond)
H-LAB(Form)

H-ALIST(Form)
H-ALIST(Form’)
H-TOP(Form)
H-TOP(Form’)
H-LAB(Form)
H-LAB(Form’)
S-LAB(Listcond)

S-OBOUND(Listvar’)

H-TOP(Listvar’)
H-NARG(Listvar’)
S-NVAR(Listvar)
H-NVAR(Listvar’)
S-ALIST(Listvar)

+ H-NVAR(Listvar’)

— H-NARG(Listvar) + 1])]
= H-LABI(Listvar)
= H-LABI(Listvar)

H-LABI(Listvar’)
H-LAB2(Listvar’)
R14 (Listvar) = empty

S-PBOUND(Listvar) = empty set
S-OBOUND(Listvar) = empty set
S-NVAR(Listvar) =0

S-ALIST(Listvar) = empty list

Appendix 2 Object language

2.1 Target abstract machine

(a) Memory zone including potentially infinite number of cells.

(b) Potentially unlimited atom table.

(c) Argument-stack denoted by the top sp and c(r), contents of
the element of row r.

(d) Bound-stacks denoted by spx and c(r).

(e) Return-stack.

(f) Zone for programs.

(g) Instruction counter (co).

The execution cycle is: execute the instruction with label con-

tained in co, as long as possible. co is initialised with 1.

2.2 Instructions (Object code)

Instructions Effect
PUSHQ adtc sp =sp+1;
c(sp) = adtc ;
t=co + 1.
PUSHV X n =sp+1;
{c(sp) i=c(sp—n—-1);
i=co + 1.
PUSHB X n spX =spX + 1
{cX(st) =s5p—n,;
t=co+ 1.
POPB X spX =spX — 1
{co =co + 1.
LINK »# name =sp+1;
{c(sp) = name(n arguments)
=co + 1.
POP n c(sp — n) = c(sp) ;
{ =sp—n;
=co + 1
POP sp =sp—1;
co =co + 1.
BRN lab co = if ¢(sp) = nil
{ then lab
else co + 1.
BR lab co = lab
RETURN non described.

Remarks: the return-stack is not described here. adtc repre-
sents addresses in atom-table or cell zone.

Appendix 3 Evaluator written in an ALGOL
68-like notation
eval(form, alist)
if form = number, () or NIL, T
then Form
elif form = Ident
then assoc (Ident, alist)
elif form = “(QUOTE S)”
then S
elif form = “(COND.LS)”
then evcon(LS, alist)
else co form = “(S1. S2)” co
apply(S1, evlis(S2, alist), alist)
fi

The Computer Journal Volume 22 Number 3

20z udy 61 U0 188n6 A Z1/80%/0%2/€/22/310M4e/|ufoo/W0d"dno"oIepED.//:SARY W) PAPEo|umoQ

apply(function, listvarg, alist)
if function = Ident
then exec(Ildent, Listarg, alist)
else co function = (LAMBDA S1. S2) co
eval(S2, pairlis(S1, listarg, alist))
fi

evlis(Listarg, alist)
if Listarg = NIL
then NIL
else co Listarg = (Al Listarg’) co
(eval(A1, alist). eviis(Listarg’, alist))
fi

eveon(Listcond, alist)
if Listcond = NIL
then NIL
else co Listcond = ((S1 S2) Listcond’)) co
if eval(S1, alist) # NIL
then eval(S2, alist)
else evcon(Listcond’, alist)
fi
fi
pairlis(listvar, listvarg, alist)
if listvar = NIL

References

DERANSART, P. (1977). Definition and implementation of a Lisp system, using semantic attributes, 5¢th annual 111 Conference.
DERANSART, P. (1978a). Technique de preuve par attributs appliquée & un compilateur Lisp, Coopération Franco-Soviétique, Paris.
DERANSART P. (1978b). Proof and Synthesis of Semantic Attributes in compiler definition, IRIA—LABORIA report no. 333.
Hoareg, C. A. R. (1969). An Axiomatic Basis for Computer Programming, CACM, Vol. 12 no. 10.

LonpoN, R. L. (1971). Correctness of two compilers for a Lisp subset. Repot n° CS 240, University of Stanford, October 1971.

then alist

else co Listvar = (V. LV), Listvarg = (VA. LVA) co
(V. VA) . pairlis(LV, LV A, alist))

fi

Appendix 4 Example of object code
Function FACT (Factorial)
Source Language:
(LAMBDA(N) (COND((EQUAL N 0)1)
(T(TIMES N(FACT(SUBI N))))))

Object code;

1 :PUSHB’NO ; 12 : BRN 22 ;
2 :PUSHV’'NO ; 13 : PUSHV’NO ;
3 :PUSHQ’0; 14 : PUSHV'’N 1 ;
4 :LINK 2 EQUAL ; 15 : LINK 1 SUBI1 ;
5 :POP2; 16 : POP 1 ;
6 :BRN10; 17 : LINK 1 FACT ;
7 :PUSHQ’l ; 18 : POP1 ;
8 :POP1; 19 : LINK 2 TIMES
9 :BR21; 20 : POP 2 ;
10 : POP ; 21 : POP1 ;
11 : PUSHQ T ; 22 : POPB’N

23 : RETURN

o"olwapeoe//:sdyy woly papeojumdq

LorHo, B. (1974). De la définition a la traduction des langages de programmation : méthode des attributs sémantiques, Thése, Université Pau}

Sabatier de Toulouse, 29 Novembre 1974 (French).

09’

Lux, A. (1975). Etude d’un mode¢le abstrait pour une machine Lisp et de son implémentation, Thése—Université Scientifique et Médicale da

Grenoble, 19 mars 1975 (French).

PAIR, C., AMIRCHAHY, M. and NEeL D. (1976). Preuve de descriptions de traitement de textes par Attributs, IRIA-LABORIA (French).

fwoo

Book reviews

Current Trends in Programming Methodology, Vol III Software
Modeling edited by R. Jeh and K. M. Chandy, 1978; 379 pages.
(Prentice-Hall, £13-85)

Mathematical modelling (often less aptly named operations research)
has been widely used as an aid to management in improving the
efficiency of a business. It is now recognised that the varied tech-
niques which have evolved can also be applied to the design and
tuning of computer systems, often noted for their misuse of re-
sources. This volume, with an odd title, attempts to describe the
main methods of modelling and apply them to a range of problems
associated with computer performance. The individual authors of
the nine chapters are able to write with authority.

The major topics discussed are statistical analysis of performance
data; the analysis of a network of queues using simulation, theory
and a comprehensive package called RESQ (Research Queuing
Analyzer); graph theory applied to parallel computation, frequency
monitoring, job scheduling; deadlocks; memory management;
mathematical programming.

Each chapter is well supplied with examples relating to computer
performance.

The book should be of value to the traditional system designer
seeking additional quantitative support in decision-making; it
should also interest the OR worker who is seeking new challenging
problems. Finally, all undergraduates in computer science should be
exposed to an introduction to the topics discussed in the book.
It is well produced and has an extensive bibliography of 313 ref-
erences; surprisingly, there is no index.

T. Vickers (Twickenham)

The Computer Journal Volume 22 Number 3

Introduction to Formal Language Theory, by M. A. Harrison, 1978
594 pages. (Addison-Wesley, £15-75)

q ¢1480¥/0v¢/e/cc/a1oMe/|u

A

This book covers most of the material one would expect from th&
title. The author says he assumes knowledge of finite automataﬁ
Turing machines and computer programming; I feel maths is a morg
important prerequlslte The approach taken is relatlvely formah
proofs of the major theorems (constructions) are given but somg.>
proofs are left to the reader.

The first half of the book covers type 2 and 3 languages/grammarg
and their associated automata including some discussion o
ambiguity and decision problems. A brief look at the rest of the
Chomsky hierarchy and some representation theorems then lead to
the meat of the remaining half of the book. This is one of the best
accounts I have seen of deterministic languages and parsing
problems.

The material as presented develops in a logical and coherent way
but I would have preferred to have seen more explanation for the
motivation of the study. My major criticism of the book is that the
computer science professional (or indeed student) could work all the
way through it yet still validly ask the question ‘why bother ?’. There
are many good reasons for studying this subject and I wish the
author had brought these out.

The book is well printed with good examples, problems and illu-
strations. There are commendably few printing errors for a book of
this complexity.

In summary, I find this book sound yet unexceptional; it is neither
inspired nor bad.

D. SiMpsoN (Sheffield)

245

