Minimising the NAND-NOR-XOR network of modulo 2

sum of boolean products
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Properties of the exclusive-OR (XOR) gate are used in order to determine the minimum realisation
cost of logical functions written as a modulo 2 sum of minterms (factorised or not). Saving of NAND
and NOR gates are tabulated. Extended results about opportune type of factoring are thus known.

Les propriétés de 1’opérateur OU-exclusif permettent de déterminer le coiit minimal de réalisation
de fonctions logiques écrites sous forme d’une somme modulo 2 de mintermes (factorisés ou non).
Les nombres de portes NAND et NOR économisées sont tabulés et fournissent des renseignements
étendus sur le type de factorisation qu’il est opportun de réaliser.
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1. Introduction
Several papers have been published about the implementation
of XOR gates in AND-OR networks (Miessler, 1972; Csanky,
1969; Edwards, 1975; Mukhopadhyay and Schmitz, 1970;
Bivol, 1968; Schmookler, 1969; Banks and Majithia, 1973;
Edwards and Hurst, 1976) orin NAND-NOR networks. More
recently it has been proposed to build universal module with
the aid of XOR gates.

The purpose of this paper is to examine the opportunity
of introducing XOR gates in a modulo 2 sum of minterms in
order to minimise the (NAND-NOR) XOR networks built in
NAND and NOR gates, when the output gate is a XOR gate.
This question is even of interest in biomedical engineering,
since restrictions in power dissipation and propagation delay
time are not always consistent with the implementation of
LSI devices. For this purpose some typical properties of the
XOR operator are used.

2. Some properties of the XOR operator
2.1. Symmetry property
The symmetry property of the XOR operator is defined as

adb=adb
Hence
ab®cd=ab® cd
= (a/b) & (c/d) m
2.2. Negation property
Itis true that
adb=a®db=adb
Hence
a®bc=a@®bc
a® bc=ae (blc) #))
Similarly
a@®bc=adbc
=a@® @Gl _ 3
ab@cdDef=abDcd @ ef
= (a/b) ® (c/d) & (e/f)
and, more generally,
ab ©...0yz=(b)®...d0Y2) @
—_——
D terms, D = 2D’ terms
D=2D
ab @.. ®xy=(a/b)® ... ® (x/y) one overlining
_—
D terms
D=2D"+1 D=@2D + 1)terms 5)
whereas

The Computer Journal Volume 22 Number 3

.. oz=@lb)d...d Ol (6)
hence
z@B@...®§=a®b@...®z )
c terms
c=2c¢

iObd.. ®y=a®b®...d x @ j one overlining (8)

¢ terms
c=2c +1
Another transformation gives
abed ® efgh = abed @ efgh
=(@b)lcld@(elf)lglh
and more generally
el ® ... ®wiyz= (@) lcld) @ ... Wyz) ©)
M terms
A special feature is_
abe @ efg = abe ® g = abe @ efg
= ((a/b) | c) @ (e[f) | &) = (a/b/c) ® (e/f]3)
and more generally
abec® ... 0 xyz=((a/b) | ) D ... ® ((x/y)|2)

=@/bfc) @...® (x/y?)

M terms

M =2M' 10
also
LaBE@...GBx}%:(Elblc)ea...@(ilylz)(ll) :

M
A special case is
abDco®d=ab®cdd
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=@b)®cdd (12)
Another case is
AdDcd®eDf=abDcd®edf
=@b)®(c/d)@edf (13)

3. Minimum (NAND-NOR) XOR synthesis of sum of minterms
Five types of minterms have been defined in previous papers
(Tosser and Brochet, 1974; Tosser, 1976; 1975): we respectively
defined the indexed minterms my, mc, and m,, as direct,
complemented and mixed minterm (product of binary variables)
i.e.
mp = I x;, mc = IIX;, my = I x;. IT x; with i # j
i J 1 J
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where x; and x; are binary variables; x; and X; are called first
order direct and first order complemented minterms, respect-
ively. D, d, C, ¢, and M are respectively the number of direct,
first order direct, complemented, first order complemented
and mixed minterms constituting the modulo 2 sum of min-
terms.

From the above relations a complete tabulation of the
(NAND-NOR) XOR realisation of the 31 possible sets of
type of modulo 2 sum of typical minterms is given (Table 1).

The realisation cost of the first five sums of typical minterms
are deduced from the results of the above paragraph; line 1
of Table 1 is derived from relations 4 and 5; line 2 is obvious;
line 3 comes from relation 6; line 4 comes from relations
7 and 8; line S comes from relations 9, 10 and 11. The other
possible sets of sums are obtained from suitable combinations
of typical minterms and their realisation costs are deduced
from the first five realisation costs, taking into account some
further allowed saving of gates: for instance, the realisation
cost of the sum of first order complemented and mixed
minterms (line 9) is M NAND- and M NOR-gates, whereas
the separate realisation costs respectively are 0 or 1 inverter
gate (if c is even or odd) (line 4) and M NAND and M NOR
gate (line 5); one gate is saved by simultaneous realisation
since

i0.. QU ®... =a®.. Qudopyd .
— Y
¢ terms =a®...0ud(/B/(y{d)®

c=2"+1
and
i0..0TQuR @ ... .

=a®.. DtOaPP @ ...

=a®.. 0td(/plylde®...
c=2

Comparing equation (10), or (11), with equation (9) justifies
special cases **, or *.

For case number 12, when D and C are both even or odd,
i.e. (D + ¢) is even, the total number of overlinings is zero,
whereas an overlining remains when (D + c) is odd. It is the
same situation that occurs in cases 19 and 30.

4. Factoring within a modulo 2 sum of minterms

When a minterm or a binary variable is common to several
terms of a modulo 2 sum of minterms, the distributivity of the
AND operator and the symmetry of the exclusive-OR (XOR)
operator allows typical transformations of the binary addition
in the general factorised form as follows:

. (my.m3) ® (my.my) =...® (my (m3 & my))
where m, is the common minterm, m; and m, are the factorised
minterms. General results about the realisation cost of factor-
ised modulo 2 sum of direct, complemented, mixed, mixed
and direct, mixed and complemented minterms have been
previously presented (Lotfi, 1977). They are calculated in an
algebraic way; for instance, when the initial minterms are
direct minterms and when the common minterm is direct and
the factorised minterms are direct and first order direct
minterms, the factorised expression is transformed as follows:

D k d
.eBI_Tx,(kZ1 ij@gl Xp)

-@Hxi(zklj]-xj®;xl)

the symbol Y representing a modulo 2 sum,
Hence

k
---@H?‘i(‘é?%@f}xl)
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S BC . xd B xy )DL DX D )
if D is even (14)

B x B Xy )DL DD . L)
if Dis odd

Another solution would be
k
. @Hxi(zl‘:ﬂxj @Zl‘,x,)
i J
_— -k_—
= ...@I.Yx,-(kZI.ij @Zlﬁx,)
i J

B Sx N Xy )DL DX D )

if Diseven
=...®0((.../xi.. .)l((...GB(---/x,-/ ). XD .. )
if Dis odd (15)

The lower realisation cost when D is even (D = 2 D’) corres-
ponds to the first development; 1 XOR, (D + 1) NAND apg
1 INYV gates are used.

The lower realisation cost when D is odd (D =2 D’ +
corresponds to the second development; 1 XOR, (D +
NAND, 1 NOR gates are used. If the modulo 2 sum 23
minterms S contains an even number of direct minterm, tlg
total expression could be written as

S=Hx,@ﬂxu®ﬂxv@ﬂx,.(2§ﬁ x; ® %‘, xp)
t u v i k=1 j =1

and transformed in
= fxf . )® (e fxy) . )R x]..)D
Cooefxif oo JCoo (/X)) D .. . X, D ..

and after reduction of this overlining
=(...fx/..)®(. .. /x)..)D(...[x,...) D
oo/ oo oo c®(Cofxjf .. B ... OX, D ..
(16)
It appears that the inverter gate realising the factorised surig
merges with the inverter gate realising an unfactorised mins
term, which is exactly the footnote * in Table 2. The minimurg
synthesis cost is obtained in this way for any typical commofi
minterm and typical sum of factorised minterms, and detailed
tabulations are drawn (Lotfi, 1977). Hence, the saving of gate@
is calculated from the general (NAND-NOR) XOR synthesrs
cost of modulo 2 sum given in Table 1 (the cases * and ** are
not considered) and from the minimum synthesis cost of thg
factorised expression. 2
The extended tabulation of the saving of gates can be shorF
ened since it is noted that no saving of gates is obtained when the
initial minterms become factorised minterms of the same 1ype;
A thorough algebraic study of the expression of the savmg,
of gates shows (Tosser and Lotfi, 1978) that a further reductlog
of the tabulation is obtained if some simple saving conditions
are introduced. For instance the factorised realisation cost of
(D + d) direct minterms, when a direct common minterm
exists, is 1 @, (D + 1)/ and 1 INV if D is even and 1 @ ,
(D + 1)/ and 1] if D is odd. (equations (14) and (15)) whereas
the unfactorised realisation needs (D + d)/ if D is even and
(D + d)/and 1 INVif D is odd. Hence the gate savingis:

D+d— (D +3)=d- 3if Diseven,
D+d+1—(D+3)=d-2if Dis odd.

But when D is even the INV gate may reduce with another
INV gate related to unfactorised minterms, as shown in
equation (16). Hence the number of saved gates is marked
d — 3*on Table 2. The saving conditions are Dis even (or odd)
and d # 0 because no saving is obtained if both common and
factorised minterms are of the same type. All the data about
saving of gates are thus introduced in Table 2; the special

Wr100/W00" dgsroiwapese;/:sdny
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Table 1 (NAND-NOR) XOR minimum synthesis. Number of NAND, NOR and INVERTER gates needed in addition to the
output XOR gate.

Type of m; Number of minterms  Number of gates Comments
0
1 Direct D D 0 0 When D is even
D 0 1 odd
2 Istorder direct d 0 0 0
3 Complemented (o 0 C 0
4 1st order complemented c 0 0 0 When cis even
0 0 1 odd
5 Mixed M M* M** 0
6 Direct and mixed D+ M D+ M* M** 0
7 1stdirect and mixed d+ M M* M** 0
8 Complemented and mixed C+M M* C+ M* 0
9 Istcomplemented and mixed c+ M M* M** 0
10 Direct and 1st order direct D+d D 0 0 When D is even
D 0 1 odd
11 Direct and complemented D+ C D C 0 When D is even 9
D (o 1 odd z
12 Direct and 1st order complemented D+ ¢ D 0 0 When D + ciseven §
D 0 1 odd &
13 Ist order direct and complemented d+ C 0 C 0 3
14 1st order direct and 1st order complemented d + ¢ 0 0 0 When cis even 3
0 0 1 odd =
15 Complemented and 1st order complemented C + ¢ 0 C 0 When cis even @
0 C 1 odd )
16 Direct, Ist order direct and complemented D + d + C D C 0 When D is even §
D C 1 odd 3
17 Direct, 1st order direct and 1st order D+d+c D 0 0 When D + ciseven
complemented D 0 1 odd =<
18 Direct, 1st order direct and mixed D+d+ M D+ M* M** 0 8
19 Direct, complemented and 1st order D+ C+c¢ D C 0 When D + ciseven %
complemented D o 1 odd S
20 Direct, complemented and mixed D+C+ M D+ M* C+ M* 0 =
21 Direct, 1st order complemented and mixed D+ ¢ + M D+ M* M** 0 3
22 1storder direct, complemented and d+C+c 0 C 0 When cis even o
1st order complemented 0 C 1 odd N]
23 1st order direct, complemented and mixed d + C + M M* C+ M* 0 N
24 1storderdirect, 1st order complemented d+ c+ M M* M* 0 2
and mixed S
25 Complemented, 1st order complemented C + ¢+ M M* C+ M* 0 g
and mixed -
26 Direct, 1st order direct, complementedand D +d+ C + M D+ M* C+ M** 0 P
mixed S
27 Direct, 1st order direct, D+d+c+ M D+ M* M** 0 =
1st order complemented and mixed 2
28 Direct, complemented, 1st order D+C+c+ M D+ M* C+ M*™ 0 ©
complemented and mixed =
29 1st order direct, complemented, d+C+c+ M M* C+ M* 0 g
1st order complemented and mixed N
30 Direct, 1st order direct, complemented, D+d+C+c¢ D C 0 When D + ciseven
1st order complemented D (o 1 odd
31 Istorder direct, complemented, D+d+CH+c+MD+ M* C+ M* 0

1st order complemented and mixed

Notes

/ is the symbol of NAND gate

| is the symbol of NOR gate

0 is the symbol of inverter gate

*When a mixed minterm contains only one true variable an INV gate may be substituted for a NAND gate; several INV gates related
to the same variable may then be replaced by one gate.

**When an even number of mixed minterms contain only one inverted variable an INV gate may be substituted for a NOR gate; several
INYV gates related to the same variable may then be replaced by one gate.

cases *, ** and t are then examined whenever they occur; these 5. Practical application
situations must not be forgotten especially when practical = We now consider some examples.
factorisation is used.
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Table 2 Saving of gates by factorisation

Line Type of initial Type of common Number of factorised Number of saved Saving
minterms minterm minterms NAND-NOR-gates  conditions
direct direct or
1 1st order direct D+d d— 3* Diseven
2 D+d d—2 Disodd f2ndd#0
3 d d— 3* diseven
4 d d—2 dis odd
5 complemented  complemented or C+ec c—3 ciseven
Ist order or
6 complemented c c—2 cisodd
7 mixed direct or
Ist order direct C+c+ M C + 2c — 3* Corc#0
8 complemented or D+d+ M D+ 2d-2 Disoddor M # 0
1st order
9 complemented D+2d-3 Disevenand Dord # 0
10 mixed D+d+C+c+MD+2d+ C+ 2c—-3DordorCorc #0
11 direct and direct or 1st g
mixed order direct D+d+C+c+ Md+ C+ 2c— 3* dorCorc#0 g
12 complemented complementedorist D+d+ C+c+ MD +2d+c—3 D + ciseven and D # ®
13 and mixed order complemented D+2d+c—-2 D + cisoddor ord#0 §
M#0 orc#0 3
- 3
Comments =
D, d, C, ¢, M is respectively the number of direct, 1st order direct, complemented, 1st order complemented and mixed mlntermﬁ

*an inverter-gate may reduce with another inverter-gate related to unfactorised minterms

5.1. Ist example: a Reed-Muller expanded form
The function has been proposed by Mukhopadhyay and
Schmitz (1970)

J=X3@ X3 X3 @ X1 X3 X5 @ X3 X4 X5 @ Xy X, X3 X4
D Xy X3 X4 X5 D Xy X3 X4 X5
The factoring possibilities are given in Table 3.

Table 3
Number and type common Factorised saving of comments

of initial minterm minterms gates

minterms

3, mixed Xy Cc=1, NO* Table 2
M=2 line 7

1, complemented X, D=1, NO Table 2

4, mixed c=1, line 12
M=3

1, complemented X, c=1, NO Table 2

3, mixed M=3 line 13

4, mixed X4 M =4  NEVER

4, mixed Xs C=2 NO* Table 2
M=2 line 7

*an equivalent solution is obtained by substituting x; for x;
and inverting the factorised term.

5.2. 2nd example
The function to be minimised is

S=X1 %3 @ X2 X3 @ X X3 X4 X5 D x5 X3 X4 X5 D X3 %4

@ x; x3 x4 ©

@ Xy X3 X4 X5 @ Xy X2 X3

This modulo 2 sum contains M = 5 mixed minterms, D = 2
direct minterms and C =1 complemented minterm; the
(NAND—NOR) XOR minimum synthesis generally requires
(Table 1, line 20) D + M* = 7* NAND gates, C + M** =
6** NOR gates and 1 XOR gate, i.e. a total number of 14 gates.
But 7* /reduces to 3 /and 4 ( since four mixed minterms contain
a true state of only one variable; 4 @ reduces to 3 @ since two
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minterms, i.e. x3 X4 and X; X, x3, contain the one true state x
the corresponding (NAND-NOR) XOR expression of f'is:

f= ()_;1laxs)®l(§zlsx3)®(x2£xslx4lx5)
@ (x; l_,(’gz/xa./xs)) ®
@ (X3 | x4) ® (x2/x3/x4) @ (x1/Xx3/%4/%5)
9710 11 12
@ (xl 1x]

for which 13 gates are required. (3/, 61,30,1®).
But 6**| may be 4 | and 2 0 since an even number of mxxeaﬁ
minterms, i.e. x; X and x, X; for instance contain one inverte
variable; 2 @ reduced to 1 0 since it is the same variable. Theft
7*/ reducesto 5 /and 2 @, since two mixed minterms (omitting
xy X3 and x, X3) contain only one true variable. And 2 )
reduces to 1 @ since the inversion of x; has already been r@
alised at the previous step. The (NAND-NOR) XOR express1oﬁ
of fis

f= (321/5;3) 1® (x2/43‘c3) D (x; i X3 x4l x;)
@ (x3 % (x27/x4/x5))
@ (X3 | x4) ® (x2/x3/x4) D@ (x1/Xx3/X4/Xs)
B YCNENES

for which 11 gates are required (5/,4],10,1 &® ). It is the
minimum (NAND-NOR) XOR synthesis of this modulo 2 sum
of minterms using the special cases * and ** given in Table 1.
Other savings of gates could be obtained from the following
transformations.

The first 4 terms may be written

xl 23 @xes @fzf3f4is @xZ23x4X5 =
= X3 (X, @ x; @ X, X4 X5 D X3 x4 X5)
The initial mixed and complemented minterms are factorised ;
the factoring minterm is x5 which is a 1st order complemented

minterm; the factorised minterms are direct, 1st order direct
and complemented minterms with D =1,d =2, C = 1.

=i
g/zz/é@ueuu[Luoo/LuOO'dnoouﬁepeoe//

yz08hudy 61 uo
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According to Table 2 line 13 (D + c is odd) the saving of
gates, with respect to the general (NAND-NOR) XOR synthe-
sis (cases * and ** are not considered), is D + 2d —2 = 3 and
the synthesis of these four factorised minterms needs D = 1
NAND gate, C + 1 = 2 NOR gates and 1 XOR gate.

The last four terms may be written

X3Xqg @ X3 X3%X4 D Xy X3X4%X5D Xy X3 %3 =

= X3 (X4 @ X2 X4 @ Xy X4 X5 @ X X)
The initial minterms are direct and mixed; the factoring
minterm is x,; the factorised minterms are direct, comple-
mented and 1st order complemented and their number
respectively are D = 2, C = 1 and ¢ = 1. According to Table 2
line 11 (d = M = 0) the saving of gatesis C + 2¢ — 3 = Oand
the synthesis needs a total of six gates, D = 2 NAND gates,
C + 1 = 2 NOR gates, 1 INV gate and 1 XOR gate.

The general (NAND-NOR) XOR synthesis of the only first
four terms needs, according to Table 1 line 8, with M* =
and C =1, M* = 3* NAND gates and C 4 M** = 4**
NOR gates and the total cost is seven gates; 3* / may reduceto 1/
and 20;4** | may reduce to 2| and 10 the two above
reductions are not cumulative since some minterms are used
for each reduction. Finally, the minimum cost is 3 NAND
gates, 2 NOR gates and 1 INV gate, i.e. six gates.

The general (NAND-NOR) XOR synthesis of only the last
four terms needs D + M* = 2 + 2* = 4* NAND gates and
M** = 2** NOR gates (Table 1, line 6) i.e. 6 gates. 4*/ may
reduce to 2/ and 1 @; the minimum cost is then 2/, 2|, 10,
i.e. 5 gates. We shall consider two reduced (NAND-NOR)
XOR factorised synthesis. Using the first factorisation only,
the predicted cost is: 7 — 3 + 5+ 1 = 10 gates where 7
is the general cost of the first four terms and 3 the saving of
gates, 5 the minimum cost of the last four terms and 1 the XOR
output gate. And using both factorisations, we obtain

4+ 6 + 1 =11 gates
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6. Conclusion

Saving of gates can be obtained when some minterms of a
modulo 2 sum of minterms are factorised. General results are
tabulated. Technological restrictions are easily taken into
account.
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