Description of a program for nonlinear programming

J. Mottl
Geofyzika, Brno, Jeéna 29a, Czechoslovakia

The paper describes a program for solving the problem of nonlinear programming and includes the
program itself in FORTRAN. Two illustrating examples are given.

Die Arbeit beschreibt Programm fiir ein nichtlineares Programmierungsproblem und enthiilt auch
das eigene Programm in FORTRAN. Zur Illustration sind zwei Beispiele beigefiigt.

L’article décrit le programme pour la solution du probleme de la programmation non-linéaire et
contient le programme seul en FORTRAN. Pour I’ illustration deux exemples sont présentés.

(Received July 1977)

1. Introduction
Let us consider the problem of nonlinear programming in the
form

g(X) <0 e=1,2....m €))
f(x) = min )

where x =(x;,x,...x,...x,) and g.,f are nonlinear
functions.

2. Definition of the function determining the feasible domain
The F function will be introduced so that its value at the point
X; is

F(x;) = Z gt(x) 3)

=1
(See Fig. 1) where g7 is defined in the following way:

g(x) >0->gt =g,

8(x) <0—-gt =0 @
According to (3) and (4) the F function exhibits the property
that in the feasible domain (g.(x) < 0,e=1,2, . m) its
values are smaller (zero) than in any other place of the non-
feasible domain.

For the above properties, the F surface should function as a

governing surface for searching the feasible domain.

3. The solution of the nonlinear programming by the method of
gradual achievements of the feasible region
Let us designate j as the step of achieving the feasible region.

1. j = 1 Let us choose arbitrarily the starting point x,.
The lowermost point x, (x, = X, in Fig. 2) will then be
found by the searching program S on the surface

m
F=3% gt ©®)
o=
This represents the feasible solution from the point of view of
limitations (1) only.

2. In the second step the following member will be added to
the F

grj=2 =JS(X) + [— f(x;) + 4] (6)
it means that
mfy
F=3 gt )

where 4 is the chosen constant (see Section 7). By the
searching program we will find point x; (x, = X3) on the
surface (7).

pebjumog

3. During the following steps j, then, g; always changes afteg
achieving the feasible region (x; — x;, ) according to 3

8ri = &riv1 =& + 4 @)
The realisation of this algorithm is clearly visible in Fig. 28
from which it follows that it can lead to finding the feas1blg
solution with the smallest quantity f.

The necessity for the exceptional steps j=1,2 (ie. ﬁrs§
achieving arbitrary feasible solution with no regard to f(x)O
and then the addition of the supplementary limitation g,g
formed from f(x)) follows from Fig. 2.

At the choice of the special starting point x, = x, accordmé
to Fig. 2, though, the immediate appllcatlon of g,;(gsj=1 1@
Fig. 2) would mean that the point x, could not achieve the
following feasible solution (x,), because, accordmg to Fig. 25
the common intersection of the feasible regions does not exxs%
from the point of view of g, e=1,2...m and gfj_l.\,
During the realisation of the formerly mtroduced algorlthn%
though, such a situation could not happen.

4. The description of the searching algorithm S

It follows from the above description, that, during the indi®
vidual steps j, the lowest point on the F surface according to (
(where the feasible region will exist) would always be looke
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Fig. 3

for. The searching itself will thus be implemented in the
direction of the F surface decrease.

The method chosen is explained in Fig. 3, which represents
surface F in the form of curved valley (two-dimensional
problem)—we want to move in the direction of its decline.

At the starting point x, the gradient to the F surface is found
numerically. In the negative direction of this gradient (thus in
the direction of the decline of F ordinates) we move forward
along straight line G, by distance 4 into point x$!, which re-
presents the lowest F ordinate on straight line G,.

Point x, will be designated as x, point x$! as x, (this designa-
tion follows from the definition F(x,) > F (x;)) and through
these points X, , X, straight line P, is fitted. Along this line we
move ahead in the direction x, — x, (thus in the direction of
decline of F) into the point with the lowest F ordinate desig-
nated as xk!. From this point, then, we still move ahead in the
direction x; — x, along straight line P; by distance D into
point xF:.

In point x%! the gradient to F surface is again found and in the
negative direction of this gradient we move ahead along
straight line G, into its lowermost point x§2.

Points x%! (on the previous straight line P,) and x§2, (on
straight line G,) are again designated as x, , x, (according to
the rule F(x,) > F(x,;)). Through these points x, , X, straight
line P, is fitted and we move ahead in the direction x; — x,
(the direction of decline of F surface) to point xX? (the point
with the lowest ordinates F). In addition to it we move on from
xA2 by distance D along straight line P,, up to point xF2.

In point x%2, the gradient to the F surface is found and we
move in its negative direction along straight line G, into their
lowest point x§2. Points x£2,x§: will be designated as
X; , X, (F(x,) > F(x,)) and through them a straight line P,
will be fitted etc.

5. The termination of the process

According to the method described in Section 4 we move ahead
The Computer Journal Volume 22 Number 3
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along the valley for so long until we find the feasible domain
(that is the step j in the sense of Section 3). After g,; — g,j+1
acc. (8) the whole procedure is repeated. The last from the
sequence of these feasible domain is then the searched extreme.
At a certain step j, it can happen, though (for generally un-
dulated F surface) that there can be more depressions. From
these depressions, then, only some are with the feasible
domain (F = 0), while others exhibit (¥ > 0) in the lowest
place, where the point may be stuck (see example 2 in Section
8).

In order to solve this eventuality at least partly the following
operation is introduced. If we are not able to find a point
exhibiting F = 0 in step j within a chosen number of steps
sending straight lines G respectively P(z = z,,) (during the
search of the J# valley), we will choose a new starting searching
point X, = X outside of this valley.

Let us assume that through a scale reduction the assumption
of the existence of a feasible point can be achieved in the area of
the magnitude H" about point x" (where n is the number of
variables, H is the dimension chosen). Let us then deﬁneg
Xo = Xg as the centre of gravity of this area of searching, =
weakened by ‘cavities’ in the vicinity of points Xy exhibiting 3 a
magnitudes Hi(Hy < H). Points xx are these points, where &
the lowest places of ‘unsuccessful depressions’ were found S

n
0=

H"S
in introduced (w will be chosen, for instance, within the =

during the course of the process. If the designation w =

Q

interval (0,1 — 0, 25) then g
X 3

x{*—w}lx‘m, 3
xG,,=T——‘#7&)——,t=l,2....n (9)§

o

If the number of points X, in the step j considered reaches the 3
limiting value # = 5#,,, then the process terminates. It means o
that we have searched through the step j the neighbourhood of =
o\ depressions on the surface, without reaching the feasible s %
domain. Further searchmg is already less hopeful. Thus the & o
extreme is the point in the last found feasible domain, i.e. in the >
preceding step j.

0v/95¢/€/ce!

6. To determine the direction of the straight line
The gradient to the F surface for determining the direction of & ®
straight line G will be derived numerically from F values in the 3 3
points at the distance 4 from the central point in the direction 2 =
of individual co-ordinate axes. <g

For the searching the lowermost point on the straight line &
G (or P) the simplest algorithm was chosen, where it proceeds S
along the straight line in steps of the length 4 (K, steps), that 3
leads to the point x;y. The neighbourhood of this point will Z
be searched by means of the same algonthm (but now being of a 5 a
smaller step i < h) and in the k,; number of steps to both Z
sides from xgy on the straight line G This way, the final point N
xgy+ Will be found. This simple algorithm is chosen because
x%. and x%, do not need to be defined precisely. Straight line P
will be found by fitting points X, , X, (according to Section 4).
Finding the minimum point on it (x£.) is then analogous to the
case of straight line G.

When the situation x; = x, occurs the program chooses
Xy — X, =1fort=1,2....... n; thus we can leave the
point where x was stuck and the process can continue.

7. The complete algorithm

Precision of the solution will be influenced by the choice of
constant 4 (Fig. 4). If the process is to be terminated after r
steps the following should be chosen

7 =+ o) — fx))]
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where x, designates an estimate of the solution to be found. If,
further, the found solution is to be made more precise, it is
enough to define the found x, as a starting point of the new
solution, where chosen 4 is smaller (and thus the searching
interval for A and A’ is adequately smaller).

8. Dlustrative examples

Example 1
g1 =0 —22)2 +(x; —22)2 - 168 <0
8= —(x; —25% —(x;, —22)> +224<0
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Table 1
i [ L] L%1% M KAPM
? 2 9 3 12 2
Bl avy nyLe u DELTP oME
«dU0uE+U) s 10UUL+UT e« 19UUE+UD «SU0UL+01 +1000k+02 «200 oo
XL
«100UE +02 el AUV +u2

Fum 13000 )E+009
1 - r4 19,00uL

Fbe ,82uaursE+i0e
1 - 4 1y,¢520

FPa 327015E40¢
- ¢ 19.0luy

Fls 89008 3Es0e
) - 2 20,1803

Fom ,275428E¢n¢
- 2 16,7571

tPm 42718778402
1 - 2 18,0182

PUR L0LA3UDE+0L
I 2 15,0219

Fum 19n3n5E+40¢
1 = 2 16,5333

FP3 o9ublUsE+yl
- 2 15,0704

FUm ,154773E402
1 - 2 le,9109

FO=s 1000UJEsue
1 - 2 1s,uud0

Fom 9583/ 3E+1j1
1 - 2 13,0549

FPa 9583/ 35E+01
1 - P3 13,0999

FuE 67542ype0¢
- - 2 14,1996

FGm 448701540
1 - 2 11,0879

ru= .9753062E+01
- 2 1¢,/7843

FGa ,Ehpsantenl
1 - 2 11,0819

I91T1AL VECTHR x0
2e0UUY

vedl/Y

beqyol)

1le4508

Be82059

Oed404

8,29/

Ye830/

lUeglul

1241742

FEASIHsLe UOMAIN

12467/8

14+8)00

1408100

19,591/

14451098

FEASIdLE DBMALL

lue1UYY

1ve4200

202 Yol 0z uo isenb Aq 89[80?/993/€/ZZ/GI9!U9%Ig[LUOO/LUO "dnoplwep
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Table 1 continued

Table 2

FPas ,Bob3asE+0L
1 . 2 11,0049 106 4d00

FUm /20632E+0¢
B 2 18,0990 187287

Fom o3u5223E+01
1 - 4 lu,3643 loe32/71

FO® J740003E¢01 FEASIBLE DBMAIN
1 - 2 LICLITY 2Veloyl

Pis L3109 7E+n)
1 - 2 Y.4798 ¢le6270

FUE oBo36LSESOL teadisle LOMAIN
1 - 2 Y.28u6 23e1006

Fbs ,8u6035E+01
1. 2 Y7076 233244

FPm ,B8UbSHE+NL
1 - 2 9.70746 25+3¢aa

Flm ,b7381/74E+02
= 2 12,0146  24e3002

Fos ,20/732E+01

1 - 2 Y.buu7 2ve3l0/
FPa ,20809aE+01L
1 - 2 9,492 2944050
FUa 3754428402
1 - 2 9,191 20,4404
PUs (530022E+01 FEASIBLE DOBMAIN

1 = 2 1C.y/77  27+5a91

FG= ,4b1ud1E40L
1 - 2 10,5797 2¢/e74l0

rFes (44d1luydlbe+nl
- 2 1Cen7d7 27e74l0

Fums ,822/7/5E+0¢
- 2 - rrad 29.02u4

PGz (4203932401
1 = 2 16,490 ¢7 49415

FPs ,4589405+71
1 - 2 lu.,o1/8 2/ 8014

Fom ¢b47002E40¢
1 - 2 Y,49?2 du,.6804

Fom o3240 5E¢0u
1 - 2 11,9903 2942902

r0s J96gy/ )B4l tEASIBLE DOMAIN
1 - 2 11,7357 494092

= — 3x, » min - g,; = — 3x, + DELTJ
X0 =(19;5)
Example 2
g, = 2x, + 0,03708x% — 0,8898x} + 6,674x3 — 16,0202x,
— 11,002 <0
g = —2x, +0,5x; +1<0

85 = 0,02377561716x% — 0,734996505x3 + 7,12039086x7 —
— 23,78989107x, + 1,35x% — 16,2x, + DELTJ
Xo =(4;3)

9. The FORTRAN program

The description of input data of the program OPT.

The input data for each problem form two control cards,
cards with values of the starting vector of variables and the
subroutine GFUN for a calculation of functional values set up
by the program user.

(a) The first control card (615)

columns variables input
1-5 N®) the total number of variables
(N < 100)
6-10 M(m) the total number of limitations
(M <99)
11-15  KM(ky) the number of rough steps on

the straight line P and G
16-20 KMC(k,,) the number of fine steps on the

straight line P and G making
solutions more accurate
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N " K

2 )

H VL
«S0NGLeLY PERITIIX IS |

XL
79N e PYAVIArR e |

FO= ,00uUUUIE+OU
- 2 a,v0u0

FO® o450000E+01
1. 2 4,0090

Fus .121117E+01
. - 2 3.5070

Fus 53UUYVESLU
1. 2 2.9948

Fus .2748u82E+01
1 = 2 2.48082

FGs ,2518u/7E+ud
1 . 2 2./178

FPm ,2518u/7E+u1
1.2 2.7178

Fba ,180u10E402
1 - Fi 4.2485

FGos ,280335E4+01
1. 2 2.349%3

FPa ,2495128401
1 - 2 2.0329

FO® ¢14%)43p+0&
1 - 2 a,54u3

.
-
.
.

.

FGm ,250422E+014
h - 2 2.,0622

FPes ,250009E+01L
1 - 2 249923

Fus ,5ua1viEene
- 2 “eqbuYH

Pom ,2D8459E%01
1 - 2 20353

FUs ,14435Y0E+0¢«
1 - 2 Yea0dy

Foe ,317G03E+01
1 - 2 10,4/0k

FUm ,3oba21E+ul
) - P3 10,0704

Fus ,111842E+01
- 2 11,8%0¢8

LYY in KAPM
3 Iy P

AviL

DELTP OMEBA

«12VUE+LD «SUOUE+01 «4500E+04 +2844E4+00

INTILAL VECTOR X0

Se0OVUL

rEAdlBLE
JeNUVU

ttadisle
oe9Vla

Feasisie
4.72u8

Feasisile

Y5850

2+9/7V0

9e9/00

0e5020/

Veded2

Ven/d4a

Ve740%

V.9403

Ve94¢0

veB202

De7482

wEkw VECIBR XU=Xi

se0YbO

70008

readiste
weZUL/

FkadisLe
6eadu0/

DEMAIN

DUMAIN

DOMAIN

POMAIN

DOMALIN

DBMAIN

21-25 ZM(zy)

26-30 KAPM ()

uo 1senb Aq 89/80%/952/S/zzZ/a1on4e/|ulwos/wod dno-olwapese//:sdny WwoJj papeojumoq

the limiting number of generated>
straight lines P and G in ones

step KAPA s
the limiting number of steps)
KAPA R

(b) The second control card (8E10.3)

columns variables

1-10 H(h)

11-20 HVL(h)

21-30  HVLC()

3140 D

41-50 DELTP(Z)

51-60 OMEGA(w)

input

the length of step during the
numerical calculation of the
gradient of the F surface

the length of step on straight
line G (P)

the length of a refined step on
straight line G, P

the distance between x%., and
x? on straight line P

the decline of the value of the
section

the ratio of the ‘cavity’ about
point X, (i.e. the centre of the



unsuccessful depression) and the
total volume of the searching
space
(¢) The third control card (as well as the following ones)
contain the vector x*
61-70 x* the centre of the searching area

(d) Cards with starting values of vector x,, of variables (8E10.3).
N starting values of the vector of variables is given on
these cards in an increasing sequence. For instance for
N =13, the first computer card contains the starting
values x,, = Xo,¢ and the second card contains values

Xo,9 = X0,13
(e) Subroutine GFUN is in the form

SUBROUTINE GFUN (x, DELTJ, N)
DIMENSION x(1), G(1)
COMMON/GGG/G(100)
: statements for a calculation of functional
: values of individual limitations
e G(1),GQ2),....GM)
: calculation of the functional value of the
preference function G(M + 1) in the form
: GM + 1) = f(x) + DELTJ
RETURN
END

Note:

In the program general integer variables are used for the
input and output statements to designate the input and out-
put arrangement, i.e. NI and NO respectively. These
numbers have to be defined by assignment statements at the
beginning of the main program (for instance

NI=2and NO = 5).

Note:
The part of the program marked * serves to print the course of
the process as a whole. For solving practical problems, it is
possible to leave this part of the program out, the program then
executes more economically and it prints the achieved feasible
regions only.

As illustration of the subroutine GFUN, the input values of
problem 2 are in the program given.
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DINEDSIBN X0 (1004, XP(40U),AN(100),66(100), XKAP(100),
+ X110, Xn{10U)»X£(100),XL(100)

CLMHUN /GHI/ JAY

COMIMY /GG, Gi1ud)

NimYy
Nymi]
REAJ(ME,10G) by My KMV ANL, LA, KAPM
1y0 FUKMAT(0]D)
WRITE{NG,LCLIN, M, KNV, AML, 120, KAPM
LUl FOROAT(LIHL pOXr iHwsBR) LHM DX 2HKM) 48X, SHKMC, DK ) 2HEZM, 3X, AHKAPM/
+617/)
READ (4L, 10Z) Ayrvb,ynVeC, u, heL TP, 8MEGA
1Uu2 PuRGAT(BELC )
W ITETNO,LUS)N,HYLsNVLC Lo uElL TP, bMEGA
LuS FORNAT(LIMUPZXoLHN» 9K, SHAVL,)0X,4HHVLL,11Xs1HY,
*7XpHHOELTP R UHUMELA/OE L2404/ /78X 2HXLY/)
READ(N], L1V (XILi)stml, )
REAJ (N1,102) (Xu(l),lel,N)
ARITE(ND,103) (xe(l),imi,N)
lud FRKIAT(DEL2,.4)
CALL RUMBUN, HonMv, KmUr (L) KaPM,NY,

+ FonVe, VLU, U, LELTP»BMEGA,) XLy
+ XX, AKpatir XKAP p K1y XHy X 2)
Ewp
SUBRUJUTINE ROMO (1Mo KNV,KMCy IZM,KAPM,NB,
+ MoV, VLU, U, UELTP,BMEGA, XL,
* X0, XP,XKsGr XRAPy X1 XH) XZ)
DIMENSIBN XO(N),XPIN) s XK(N),GBIN),XKAF(N),X2(N),XH(N),XZ(N),
+ XL(N)

CoMAbN /GFHJI/ JX1

COMMBN /BUG/ 6(1ud)

Jxiey

DELTI=D,

CALL FBAR(F,X0,DeLTu,N,FU)
WRITETNG,104)FY

1ud FORMAT(L1HU,SHF U, E12,0,1UX,#INITIAL VECTOR aU®)

CALL TIVEIN,nNB,Xu)
DE 20 Ist,W

20 XAAP(])=0.

-

KAF=Y
CALL PRESUN(wy A1), XH)
FrumfFy

11 12=0

<

-

DB 21 I=i,N

X£(1)=d.

KM=y

CALL PRESUN(WrX0)»X1)
FlsFo

IF(FU Eu,U,) GuTy 7

3 CALL GRADIN,X1,XP,XR,GG,KM, KMC)M,DELTY,FL1oHVL,HVLC,H)

IF(F1.E0.U.) GaTu 12
KMnsKhy
WRITL (NS, 1058)F]

1ud FUKHAT(1HU,31HFGe,El2,0)

a

v

-
o

110 FHRNAT(LIHU, SHEP=,E12,0)

1Ub FUKNAT(LIHU,ShF e, E1,D)

12 CALL PRESUN(H, X1, X1D)
7 1F(JXienEely) UGHIB Ou

1u7 FURMAI(LHU, SAFQm,E1240, JUX, 2FEASIBLE LOMAINE)

8 IF(KAP.tQeRAFM) 3Ty 1N

9 XGUIIm(ALCLI) =t IFUA*XNAP (1)) /(1 =FLBAT(KAP)®OMEGA)

1uB FURGAT(IHU,3HFUR,ELlZ,0,1uX,2NEW VELTONR XOD=Xu#)

13

14

CALL 1IVE(N, nb,x1)
IF(FUGE,F1) GUTu 5
Do 4 1=1,N

X=xXo(])

X0(1)mx1(1)

X1([)=x

xsf.

FU=F1

Flex

IF(F1,3k,FH) LUTL 1D
CALL PRESUNCivpK1sXH)
Fr=f ]

ue 6 Ist,N
XZC1) =X ¢t (1
1e=1241

TP (1L ,Eualzn) ueiB &
CALL PRIMUN, AL, X4, XK 659 KMy RMC, M, NELTY,FO HYL,HVLC,D,F1)
TF(Fl,Ev,liy) BuTy 12
IF(FU,EUeU,e) LUTY 7
WRITE (NU,01M)Fy

CALL TIVEUN,Nd,Xxu)
ARITLINU, U)K}

CALL TIVEUN, WO, X3
GoTy §

JX1m0)
CALL SFUNUXO,LLLIJ,N)
NELTI==G(Me])

) DELTJ=DELIJ+pELTP
CALL FBARIM, XU, DLL1Y,N,FU)
wRITL{NU, dL7)Fy

Cabl TIVEUM, ub,X0)
Gute |

RAParaPaey
Ve 9 131,
XRAP()=XRAP(T)+aZ (1)/FLUAT(LZ)

CaLL FBAKIM,XO0,peLTu, ¥,Fu)
WRITE (NG, LU FY

CALL TIVE(N, 8, Xu)
GeTy 11

ConTlvJde

RETUKY

[ 30

SUBRUJTINE GRAY(wyXUsXP XK, 5Gr KMy KMC, My DELTU/FUIHVL)HYLC,H)
DIMENSION XO(N),XP(N)sXK(N),GB(N)

DO | Isi,N

XG(J)eXO(1)en

CALL FBAR(M,XU,DLLTI ", F1)

XG(1)@X04) mH=H

CALL FBAR(M,x0,DELTY,N,F2)

XG(])&XO( 1)+

GG(I)e(FLI=F2)/ (HeH)

CALL XVYSI(N,XU,4P,xK,)GS,KM,KMC,HVL,HVLC,C,n,DELTS,FO)
RETURN

END

6 Aq 89/80%/9G¢2/€/z2/o101E/|UlWO0/WOod dno"lWwapede//:sdjy Woly papeojumoq

¥20¢ UdJe 0¢ uo isen

SURUUTINE PRINCws XUy Xt XKy 3Gr KMy KMCos My LELTV)FO HVL,HVLC/DIFL)
UIMENGLION XU(N),k1(N) s XK(N),GG(N)

pe 1 j-;,u

GG(I)=xu()=xi(1)

CALL XVYSI(id,XU, X1/ XNsGG,KM,KMC,HVL,HVLC,C,",DELTI,FO)
ALFD = v/Cc

Do 4 [mL,N

X3(]1)eXO(1)=GG(T)wALFY

CALL FBAR(M, X1,nelTy,N,F1)

RETURY

END

SUBRO JTINE XVYST(N,XUsXP,XK,66,KM,KMC,HV,HVL,C,M,DELTJ,FO)
DIMENSIBON XO(N),XP(N)sGG(N),XK(N)
Cs0,

Vo 12 [si,N

CaC+uG(1)*6G (1)

IF(C,NE,Do)GBTY 14

DY 13 Isi,n

Gu(])=g,

CoFLUAT(N)

CsSgr((C)

IPREP )

IPREPSIPREP+]

CALL PRESUN(N/sAQsXP)
GUTR(2,3,7),IPREP
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2 KpPsy
KK®KN
ALFVEAV/C
o190 4
3 KP=ar4l
KK®KAC
ALFysHVC/L
Vo 5 Is1,N
XK(I)mXP(1)=GG(1)*ALFVeFLBAT(KP)
CALL FBAR(M,XK,DELTY,N,FK)
IF(FR,BELFC) GuTa 6
CALL PRESUMN(N/,XKsX0)
FUSFK
IF(FO,EW,V,) GBTY 7
1F (KK, EW AP) GUTY 1
KP=KP+1
G61y 4
RETURN
EnD

CFS

o

~

SUBRUYTINE FBAR(N, X DELTIIN,F)
DIMENSION X(N)
COMMUN /6FJ7 X1
COMMON /BUG/ G(100)
CALL GFUN(X,DELTJ,N)
FaU,
Mimte}
IF(JX1,EQe1) Mimpm
08 | jwy,nt

1 IF(G(1)46T40,) FaFeull)
RETURN
END

References
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SUBROUTINE PREGUW(N, X1,X2)
DIMENSION X1 (N),n2(N)

0e 1 1=y,N

Xe([)=sXi(i)

RETURSN

Enb

-

SUERBGTINE TIVE (1) NO,X)
VIMENSTION X (W)
NT=y '
IP=y
InE[PeNT=1
TR IR GToN) Inmy
whITLINU,L00)IP, 4XKptall), 1® (P, IK)
1U0 FUKAAT(1I5,31 =,14,1UF1V,4)
IPsPeNT
IFCIP LE N) G8Te 1
RETuURYN
Enp

-

SUBRUBUTINE GFUW(X,Del1J,N)

DIMEMSION X(N)

COMMBA /GLG/ G(1uD)
G(1)m2,0X(2)4U,007089X () )*2dwD,B8B898eX(])n03eb,6742X(])ww2
+ «l6,U202*X(1)~14.002

G(2)m=2,0X(2)%u,00X())el,
G(3)80,02377561716%R(1)92d4wyy734990650D*X(1)we347,12039086X(1)ww2
+ w23,/8989107X11)el,300X(2)n22wi0,20X(¢)+DELTJ
RETURN

END

Book reviews

Proceedings of the 1978 UKSC Conference on Computer Simulation,
Chester, April 1978; 556 pages. (IPC Science and Technology
Press, £26:00)

The conference was jointly sponsored by the UK Simulation
Council and the (US) Society for Computer Simulation. As will be
referred to later, there were some notable European contributions
particularly from the Dutch school. Fifty-three papers in all are
contained, all in their original form with no further editing or
record of discussion. Whilst this has some drawbacks, it has made
for remarkably rapid publication and the proceedings were available
the same month as the conference.

The conference programme had an agreeably catholic range and
spread. In many ways the general papers of the three open sessions
look to have the most permanent value. One would mention here the
seminal work of Dekker (the Dutch school) discussing the use of the
new generation of parallel processors for simulation, the paper by
Elzas (Holland again) entitled ‘Whither simulation ?”—and giving
some answers to this apparently rhetorical question—as well as a
session on the portability and universality of simulation languages.

Turning to techniques, there was further evidence—as if this was
needed—of the role played by the digital computer in simulation,
the cuckoo that may yet evict the original analogue occupant of the
nest. Dickie and Ricketts for example had a paper detailing a
comparison between 13 numerical integration routines: Runge-
Kutta rides again. There were also sessions on simulation method-
ology and hardware aspects that touch on the fundamental question
of whether simulation is or will ever be a discipline.

Other sessions were of the more conventional form: illustrative
applications. It was interesting to see the use of the Van der Pol
oscillator in haematology studies; perhaps we shall all have an
artificial radar set inside us yet. The final session offered some
workmanlike applications to control applications.

Your eagle-eyed reviewer spotted two minor typing errors in the
papers (reproduced photographically of course): one gave us
‘reactor’ for ‘vector’; another ‘limped model’ for ‘lumped’—how
often have my models indeed turned out to have a limp.

The overview of the conference proceedings suggests two disparate
elements whose mixture, one hopes, was intellectually explosive;
crude mechanics turning pots and handles with metaphysicians
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relating the model of the model to a model or, in Dekker’s notation,o
‘systems’ to ‘sistems’. Have we simulated the dynamics of a con-3
ference?

09/

J. Lewins (London)3.

g/|u

Syntactic Pattern Recognition: An Introduction, by R. C. Gonsalez%
and M. G. Thomason, 1978; 283 pages. (Addison-Wesley,o
$29.50, $17.50 paper)

/€/ec

The series editor’s foreword describes this book as ‘the first textbook§
written at an introductory level with emphasis on fundamentals of =
formal language and automata theory as they apply to pattemg
recogmtlon and machine learning’. Syntactic pattern recognition has®
its origins in the crippling inability of decision theoretic patterng
recognition systems to construct or use structural descnptlons of the@
important relationships in a scene. The essential idea is to exploxtm
the analogy between a class of images and well formed sentences0
generated by an appropriate grammar; then the desired structural’)
description of the image corresponds to the parse structure of theO
corresponding sentence. After a brief introductory chapter, them
authors present a clear account of formal language theory and itsS.
extensions to tree, web, and shape grammars. Most of the examplesm
relate to some area of picture processing. Ledley’s early grammar forN
chromosomes is well documented. A number of parsing algorithms
for context-free grammars are given, as are their extensions to tree
grammars. There is a chapter on stochastic automata motivated by
the non-uniformity of the distribution of patterns and deviation
from such patterns. The final chapter shows how a simple grammar
might be inferred from a set of example sentences. Within its terms
of reference, the book is clear, well written, with lucid examples.

There is however a significant lack of examples of working systems.
Only the Moayer-Fu fingerprint system is described, with no data
about its performance. As a field, syntactic pattern recognition
seems too intent on developing its formalist framework, and too
little concerned with computing the basics of perception, such as
surface orientation, texture or movement. Given its roots it is
surprising and sad to see that it equates perception with structured
classification rather than the computation of useful structural
descriptions.

J. M. BrADY (Colchester)
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