Algorithms supplement

Note by the Editor : .

Algorithm No. 107 is published under our agreement with the
Institute of Mathematics and its Applications, and is associated
with the authors’ article in the JIMA, Volume 24, Number 1,
August 1979. :

Algorithm 107
A WEIGHTED SIMPLEX PROCEDURE FOR THE SOLUTION
OF SIMULTANEOUS NONLINEAR EQUATIONS

W. L. Price and M. Dowson

Authors’ Notes

The weighted simplex (WS) procedure provides an alternative to the
Newton-Raphson (NR) procedure for the solution of N simul-
taneous nonlinear equations in N real variables, rapid convergence
being obtained from a sufficiently good initial approximation. In
contrast to the NR the WS procedure does not involve the compu-
tation of derivatives. The principle of the WS method, together
with the results of comparative performance tests, are published
elsewhere (Price, 1979).

Given the set of equations f; (x1,...,x38) =0, i=1,.. .N, the
procedure operates on the data associated with a SIMPLEX of
N + 1 points in N-space. Prior to each iteration the co-ordinates
of these points, xi; (where i = 1,...N;j=1,...N + 1), and the
corresponding function values, fi, are held in store. For each point Jj
of the simplex a WEIGHT, wy, is computed by solving (by Gauss
elimination) the set of N' + 1 linear equations Zw; = 1; Zwyfi; = 0,

J J
i =1,...N.Theco-ordinates X; = Z'wjxy; of the weighted centroid,

X, of the simplex are then determine{i, and each of the N functions
is evaluated at X. If, at X, the magnitude of every function is less
than ACC, a user-supplied measure of the required accuracy, then
the procedure terminates. Otherwise one of the simplex points is
discarded, its place being taken by X, and the modified simplex
which results forms the basis of the next iteration. The discard point
is chosen to be L, that point of the simplex with the least positive
(most negative) weight, unless L happens to be the X point of the
previous iteration in which case the discard point is chosen randomly
from the simplex but excluding the point M, that point with the
most positive weight (Price, 1979 for full explanation). The procedure
is initialised by generating a simplex of N + 1 points randomly
positioned within a hypercube of linear dimension z (the zone size)
the hypercube being centred on the initial approximation supplied
by the user. The choice of z is not critical, but ideally the hypercube
should be large enough to embrace the exact solution sought yet
small enough to exclude other possible solutions to the given system
of equations.

The procedure has been programmed in ANSI FORTRAN so as to
be generally applicable and to require the minimum of user coding
to run a specific problem. All arrays used by the program are
declared in the main program so that the user has only to change
the DIMENSION statement to adapt the program for use with any
particular maximum value of N. The user must supply a subroutine
FUNCT(X, F, N) which calculates the values of his set of functions
F, corresponding to the variables X, where X and F are both of
dimension N. He must also supply, as data, the value of N, the
co-ordinates of the initial approximation, the zone size z, and the
required accuracy ACC. The user must code a random number
generator appropriate to his computer—RANF is a standard
function on the Cyber 72 used by the authors.

As an example of the operation of the program a printout is
supplied for a run relating to the specific two-variable problem in
which the functions are

F1 = 2x13 xa — x28
F2 = 6x1 — x22 + x2

The pair of equations F1 = 0 and F2 = 0 have three solutions, the
approximate locations at (0,0), (1.5, 3.5) and (1.5, —2.5) having
been obtained by a global search procedure. The WS procedure
was used to obtain a refinement of the solution for which the initial
approximation is x1 = 1.5, x2 = 3.5. A zone size z = 1 was chosen
so as to exclude the neighbourhoods of the other two solution
points. The precision was specified by ACC = 10-8. The WS
procedure achieves the exact solution at (2,4) in six iterations, the
same number as is required by the NR procedure from the same
starting point and with the same precision.

Reference 'g
PRICE, W. L. (1979). A Weighted Simplex Procedure for the Solutign
of Simultaneous Nonlinear Equations, JIMA, Vol. 24 no.dl,
pp. 1-8).

WEIGHTED SIMPLEX PROGRAM
WRITTEN BY W.L.PRICE
TRANSLATED INTO FORTRAN EY M.DOWSON

[eNoXoNoXel

DIMENSION V(3,4),U(3,4),X(2),F(2)
DIMENSIONS AKE SET AS FOLLOWS
V(N+1,2N) ,U(N+1,N+2) ,X(N) ,F(N)

WHERE N=NO. OF VARIABLES AND FUNCTIONS

SET I/0 STHEAMS

cCOO00O0O0

IN=1
I0UT=2

INPUT N AND STARTING VALUES OF VARIABLES X(N)

aoc

READ(IN,1000)N
READ(IN,1001)(X(I),1=1,N)
NP1=N+1

NP2=N+2

N2=N¥2

CALCULATE FUNCTION VALUES AND PRINT THEM

oo

CALL FUNCT(X,F,N)
WRITE(IOUT,2000)
WRITE(IOUT,2001)(I,X(I),I,F(I),I=1,N)

INPUT ZONE SIZE AND ACCURACY REQUIKED

a0

READ(IN,1001)Z,ACC
WRITE(10UT,2002)Z,ACC

e Ne]

CALL SIMPLEX KCUTINE
CALL WSMPLX(X,F,N,V,U,NP1,NP2,N2,Z,ACC)

GUTPUT SGLUTION VALUES

20z udy 61 U 1s8n6 Aq Z£880H/Z8Z/E/2Z/FI0IME/UlWO0o W0 dNo"oILBPED.//:SARY WOy pap

Qoo

wKITE(IOUT,2003)
WR1TE(IOULT,2001)(I,X(1),I,F(1),I=1,N)
STOP

1000 FOKMAT(12)
1001 FOKMAT(8E10.3) _
2000 FORMAT(25h1wWEIGHTED SIMPLEX PKOGRAM///16H STAKTING VALUES//
1 5X,9HVARIABLES, 16X, 9hFUNCTIUNS/)
2001 FORMAT(3K X(,12,4K) = ,1PE10.3,10X,2HF(,12,4H) = ,1PE10.3)
2002 FORMAT(//13h ZONE S1ZE = ,1PE10.3/21H ACCUKACY KEQUIKED = ,
1 1PE10.3)
2003 FORMAT(//16h SOLUTION VALULS//5X,9hVARIABLES,15X,9HFUNCTIONS/)
END
SUBROUTINE WSMPLX(X,F,N,V,U,NP1,NP2,N2,Z,ACC)

WEIGHTED SIMPLEX SUERGUTINE

WRITIEN BY W.L.PRICE

TRANSLATED INTO FORTRAN BY M.DOWSON
x=ARRAY OF VARIAELES. OK ENTRY = STARTING VALUES
ON EXIT = SOLUTION VALUES
F=ARKAY CF FUNCTION VALUES CORRESPONDING TO X
N=NUMBER OF FUNCTIONS AND VARIABLES

s NoNoNoNoNeNeNoNel

The Computer Journal Volume 22 Number 3

oocococo

[eNeoNel

aaco

2

o

30
40

[oNeoNe)

50

60

(ol

70

80

90

caoco

oOcoO

1

o

n
o

30

Qo

V AND U ARE ARKAYS USED BY WSMPLX
NP 1=N+1

NP2=N+2

N2=N¥2

Z=ZONE SIZE

ACC=KEQUIRED ACCURACY

DiMENSION V(NP1,52),U(NP1,NP2),X(N),F(N)
FNP1=FLCAT(NP1)

GENLKATE INITIAL SIMPLEX

CALL FUMNCTI(X,F,N)

DO 10 K=1,N

KN=K+N

V(1,k)=X(K)

V(1,kN)=F(K)

CONTINUE

DG 40 J=1,N

JP1=J+1

UG 20 K=1,N
X(K)=V(1,K)+2*(0.5-KANF(0.0))

RANF IS KENLOM hNUMEEK GEWEhATGR WITH DUMMY AKRGUMENT
RETUKNING UNIrGRMLY P1s1hIfUTLL VALUES In KANGE 0.0 TO 1.0

V(JE1,K)=X(K)
CORTINULE

CALL FUNCI(X,F,z)
DO 30 K=1,N
KPN=K+N
V(JP1,KEN)=F(K)
CONTINUE
CONTINUE

1D=1

COMPUTE WEIGHTED CENTROID, X

CALL WEIGHT(V,U,L,t,N,LP1,NP2,K2)
DC 60 K=1,N

X(K)=0.0

LG 60 J=1,NP1

X(K)= X(K)+U(J NPZ)¥V(J,K)

COMI IKUE

EVALUATE AT X AND TiST #CGk CONVERGENCE

CALL FUNCT(X,k,N)

DO 70 K=1,N

1F (ABS(F(K)).GI.ACC) GO 1C 80
CONTIKUE

EXIT IF CONVenGED

KETURN

ChOGSE D1SCARD POINT

IF (L.NE.1L) GO TO 90
L=1+INT(FNP1*KANF (0.0))
IL=L

REPLACE DISCARD POINT bY X

DO 100 K=1,N

KPN=K+N

V(ID,k)=Xx(K)

V(IL,KPN)=F(K)

CONTINUE

GoTC 50

END

SUERGUTINE WELIGHT(V,U,L,M,N,NP1,NPZ,N2)

CUNPUTE WEIGHIS ANL FIND MUST POSITIVE WEIGHT, M
ANL LEAST POSIT1VE WEIGHT, L

LIMENSICN V(NP1,N2),U(NP1,NP2)
INITIALISE U ARKAY

DO 10 K=1,NP2
u(1,k)=1.0
COWTINUE

DO 20 k=2,NP1
u(K,lP2)=0.0
CONT1NUE

DO 30 J=1,N
JP1=J+1
JPN=J+N

LO 30 K=1,NP1
U(JP1,K)=V(K,JEN)
CONT1NUE

COMPUTE WE1GhTS

The Computer Journal Volume 22 Number 3

oo

DG 70 I=1,N
1P1=I+1 -
KKK=NP1+IP1
DG 50 Kk=IP1,NP1
K=KKK-KK
IF (ALS(U(K,1)).LE.ABS(U(K-1,1))) GG TO 50
DO 40 J=1,NP2
b=U(K,dJ)
U(K,Jd)=U(K-1,J)
U(K-1,J)=E
40 CONTINOL
50 CONTINUE
DO 60 K=I,N
KP1zK+1 .
DO 60 J=I,NP1
JP1=J+1
U(KP1,JP1)=U(KP1,JP1)-U(I,JP1)¥U(KP1,I)/U(I,I)
60 CONTINUE
70 CONTINUE
U(NP1,NP2)=U(NP1,NP2)/U(NP1,NP1)
L=NP1
M=NPT
DO*90 KK=1,N.
K=NP1-Kk
E=0.0
KP1=K+1
DO 80 J=KP1,NPY

E=B+U(K,J)*U(J,NF2) E?

80 CONTINUE 2
U(K,NP2)=(U(K,NP2)-E)/U(K,K) >

a

FIND M AND L)

o

IF (U(K,NP2).LT.U(L,NP2)) LzK 3

IF (U(K,NP2).GT.U(M,NP2)) M=K 3

90 CONTINUE =
RETURN]

END 2
SUBROUTINE FUNCT(X,F,N))
DIMENSION X(N),F(N) 2
F(1)=2.0%X(1)#¥3¥X(2)-X(2)**3 @
F(2)=6.0%X(1)-X(2)**2+X(2) 3.
RETURN 5]

END 2

©

Q

o

3

Algorithm 108 8
EFFICIENT SOLUTION OF TRIDIAGONAL LINEAR SYSTEMSS.
Ole Dsterby =

Computer Science Department =

Aarhus University o

N

N

Author’s Note @
The solution of a tridiagonal system of linear equations of the form%

5

b1 c2 X1 d1 &

v &

az b2 c3 X2 ds @
= 1

Dz

. «Q

C

@

an bn Xn dn g

=

is carried out efficiently by means of Gaussian elimination. In the©
following we assume that pivoting is not necessary. The idea behind >
the algorithm is not new (Sprague, 1960; Leavenworth, 1960), but—'
we have supplied the procedure for easy refcrence

The operation count is: 2n — 1 divisions, 3n — 3 multlphcatlonsh
and 3n — 3 additions. The only new feature in our procedure is a
slightly more efficient use of simply subscripted variables. The
number of such references is 10n — 5 compared to 13n — 9 in
Leavenworth (1960) and Sprague (1960). The solution is returned
in array D and array B is destroyed.

The reason for this very detailed operation count is that on most
computers division is slower than multiplication, and floating point
addition is not so. much faster that it makes the time insignificant.
Subscripted variables are counted not only because of the subscript
handling but also because they imply memory references. In contrast,
the simple variables can (and should, if possible) stay in fast
registers, of which most modern computers have sufficiently
many.

If several systems with the same coefficient matrix are to be solved
subsequently, we can store the intermediate results from the LU-
decomposition in array A4 for later use when the right hand sides
become available. The operation count for subsequent systems

becomes: n divisions, 2n — 2 multiplications, and 2n — 2 additions
together with 7n — 3 references to subscripted variables.

If |bi] = |ai| + |ce+1| then the coefficient matrix is diagonally
dominant and we can expect no difficulties with growth of round-off
errors. Otherwise we may have to use pivoting, and our procedure
does not apply any longer.

If the matrix is symmetric (a; = c;) we can save one array (n — 1
locations), say the array C, but there is no gain in the operation
count. A traditional Cholesky factorisation is not competitive
because of the n square roots, and a factorisation of the form 4=
LDLT has exactly the same operation count as Gaussian elimination.

Another important special case is when the bands are constant:

ai=a,bi =b,ci = c.

If the matrix is not symmetric the operation count 1s not reduced
although the number of references to subscripted variables drops to
6n — 1. We must keep the B array as work space (as well as the 4
array if we have several systems). If the matrix is also symmetric,
however, a faster algorithm can be obtained by eliminating from
both ends simultaneously (Andres et al., 1974). This algorithm can
be generalised such that it does not require symmetry nor constant
bands but only that

bi=bn-t+1,8i+1=Cn—t+1,Ct+1=Qn—t +1,
i=12,...,n<+2,
We give the general algorithm in Section 5 as ALGOL procedure
COUPLED. The operation count is approximately 1.5n divisions,
2.5n multiplications, 2.5n additions and 7.5n references to sub-
scripted variables. Space can be saved by declaring 4, B, C
l:n+2+1]
Returning to the symmetric, constant-band case

bi=b,ai=ci=a

we observe no further reduction in the operation count but there
are now 5n references to subscripted variables. If several systems
are to be solved the operation counts become almost identical for
the coupled algorithm and the ordinary Gauss method. The only
advantages with the more complicated coupled algorithm are its
5n references to subscripted variables (versus 6n) and the saving of
space (1.5n locations).

2. A boundary value problem for an ordinary differential equation
The solution of

- g (p(x) %) =f@,0<x<1 @

with suitable boundary conditions can be approximated by using
central differences for the discretisation. If the mesh size is allowed
to vary in [0, 1], such that we seek the solution in the points {x;}
with

O=xo<x1<x2<...<Xn+1=1,

hi=xi—xi-1,i=1,2,..,n+ 1,
and
fi = fCa), yi = y(x1), pr = p(x)
then a discretisation of (2) is
2 Yi+1— W yi—yi-1
hiv1+ b hi +1 .pH*__ht—. _*)_ﬁ’

i=12..,n 3
and the equations for y; become

Di+ 3 Pi+3 Di-y Pi -4
—y . + yi - + - Yi—1-
1+ 1 P i (ht+1 h;) Yi-1 h
h + h
=f,,”—12_‘,i=1,2,...,n
which is of the form
Yi+1 Yi yii yi-a
e L Lk R ")
hi 41 hi 1 h; h; i
with
. h + h
hi= =ﬁ.L,i=l,2,...,ﬂ-
pi - 3 2

In the special case when p(x) is constant, it might be preferable to
define

h + h
B =handd}=fi. —— = ,i=1,2,...,n,
2.p
again leading to (4).
The resulting linear system is thus of the form (1) with
ag=ci= —1/h;, by = d,i=12,...,n,
except for d1 and d» which are
dy = di + yo/h;and dn = dy + yn +1/hy 44
using the boundary conditions. If conditions other than Dirichlet-
type are imposed, one or two extra equations of the same general
type are added.

For this special system the algorithm by Rose (1969) is more
efficient than ordinary Gaussian elimination in requiring only 1
division, 2n multiplications and 4n — 2 additions in addition to
7n + 1 references to subscripted variables. Also setting up the
equations is easier since the basic values in Rose’s method are the
step-sizes A} (and not ai, bs, and ¢;). So for this kind of problem
Rose’s method is truly superior and we have supplied itasan ALGOL
procedure. The parameters are the A;, H[1:n + 1], and the righthand
sides D[1:n]; the latter are destroyed and the solution is returned
in D.

If several systems with the same hj are to be solved, we ca@

—ai—ci+1,di =

compute and store the values #; = Z h once (an array of g
1

locations is needed as work space); and then compute the solutiof:
when the rlghthand sides become available. But only n additions’
can be saved in this way, so the operation count for the subsequent
systems becomes: 1 division, 27 multiplications and 3n — 2 addmong
together with 7n references to subscripted variables.

If the hi* are constant throughout the interval we do not need thg
array H, and the number of references to subscripted varlableg
drops to 5n + 1, but the operation count is unchanged.

3. The one-dimensional heat equation
Tridiagonal systems also occur in the numerical solution of the h
equation

4 (x,1) Ou au—f(1),0<sx<1,0<¢
agx, .a—x _E_ X)), Us X< 1,Ux

with suitable initial and boundary conditions. When using either the:
backward difference or the Crank-Nicolson method for discretisas
tion, the resulting linear system is of the form (1). If in partlculaij
g is constant we have for Crank-Nicolson:

1o E/|U[LUOO/LUO§an'O!LU

5) 2h2
+ €;€ iz
where h and k are the stepsizes in the x- and #-direction, respectivelyt
Rose’s method cannot be applied to this system, and attempts t5
generalise it have proved unsuccessful with respect to provndmg
efficient algorithms (Evans, 1972; 1977).

But Gaussian elimination can be used and in this partlcula?—
example we can make use of the fact that the band-elements aré
constant and the off-diagonal elements are — 1. The operation count
is: 2n — 1 divisions, n — 1 multiplications and 3n — 3 addmong
plus 6n — 1 references to subscripted variables.

The coupled algorithm is even more efficient in this case since aIB
the multiplications involving the ¢’s can now be saved so that we:
end up with only 1.5n divisions, » multiplications, 2.5» additions
plus 5n references to subscripted variables, a result which is better
than the one given by Andres et al., (1974).

When advancing the solution one time-step we have another
system of linear equations with the same coefficient matrix, so it is
a good idea to store the LU decomposition, i.e. in addition to the
workspace array B[1:n] we need A[2:n] to store the subdiagonal
elements. The operation count for the subsequent systems is:
n divisions, n — 1 multiplications and 2n — 2 additions plus 6n — 2
references to subscripted variables, (or 5z for the coupled algorithm).

In the future we shall not expect substantial improvements on the
operation counts, but we can achieve significantly better computa-
tion times by introducing parallel operations (Stone, 1973).

ag=ci= —1;b =

80¥/28c/¢/

4. Computed diagonal elements
For the linear system of Section 3 we have that ¢ > 0 imply diagonal
dominance such that we have no problem with ill-condition or

The Computer Journal Volume 22 Number 3

growth of round-off errors. In fact it is easily seen that the computed
diagonal elements, b; (i = 1,2, . . ., n or for the coupled algorithm:

i=1,2,...,n <+ 2) will form a monotone (decreasing) sequence,
converging (as nand i — o) towards

A € —_—

b=1+5+ Je + €2/4.

5. ALGOL procedures
procedure TRIDIAG (n, A, B, C, D);
value n; integer n; array A4, B, C, D;
begin integer i; real bi, di, z;
bi := B[1];di := D[1];
for i := 2 step 1 until n do
begin z := A[i]/bi;
bi := B[i] := B[i] — C[i] x z;
di := D[i]: = D[i]— di x z
end;
di := D[n] := D[n)/B[n];
fori:=n — 1step — 1 until 1 do
di .= D[i] := (D[i] — C[i + 1] x di)/B[i]
end TRIDIAG;
procedure COUPLED (n, A, B, C, D);
value n; integer n; array 4, B, C, D;
begin integer i, j, m; real bi, di, dj, z; boolean odd;
m:=n-+2;0dd:=m+ m< n;
bi := B[1];di := D[1]; dj := D[n];
for i := 2 step 1 until m do
begin z := A[i]/bi;
bi := B[i] := B[i] — C[i] x z;
di := D[i] := D[i] — di x z;
ji=n—1i+1;
dj := DIj]:= Dljl— dj x z
end;
i:=m+ 1; z := A[il/bi;
if odd then bi := BI[il;
bi := bi — C[i] x z;di := D[i] — di x z;
if odd then
begin bi := bi — C[i] x z;di := di — dj x zend;
di := DI[i] := di/bi; bi := B[m];
ifoddthendj := Dln — m + 1] := (dj — C[i] x di)/bi
else dj := di;

The Computer Journal Volume 22 Number 3

di := D[m] := (D[m] — C[i] x di)/bi;
fori:= m — 1step — 1 until 1 do
begin bi := B[i];
di := DI[i] := (D[i] — C[i + 1] x di)/bi;
Ji=n—i+1;
dj := DI[j]l := (D[j] — C[i + 1] x dj)/bi
end
end COUPLED;
procedure ROSE (n, H, D);
value n; integer n; array H, D;
begin integer i; real s, ¢;
t:= H[1];s := D[1] x ¢;
for i := 2 step 1 until n do
begin ¢ := H[i] + ¢;
s:=D[i] xt+ s
end;
t:=Hn+ 11+ t;5s := —s/t;
fori := nstep —1 until 1 do
s:= D[i]:= D[i] + s;
s:= D[1] := D[1] x H[1];
for i := 2 step 1 until ndo

s:= D[i] := D[i] x H[i] + s g
end ROSE; 5
o]

Q

References &

ANDREs, T., HoskiNs, W. D., and McMAasTer, G. E. (1974)3
Algorithm 84. A coupled algorithm for the solution of certairfy
tridiagonal systems of linear equations, The Computer Journal=
vol. 17, pp. 378-379. S

Evans, D. J. (1972). An algorithm for the solution of certairi§
tridiagonal systems of linear equations, The Computer Journal3
vol. 15, pp. 356-359.

Evans, D. J. (1977). On the use of fast methods for solving boundary2.
value problems, The Computer Journal, vol. 20, pp. 181-184.

LEAVENWORTH, B. (1960), Algorithm 24, CACM, vol. 3, p. 602. ?

Rose, D. J. (1969). An algorithm for solving a special class of3
tridiagonal systems of linear equations, CACM, vol. 12, pp.(%
234-236. S

SPRAGUE, C. F. I11. (1960). Algorithm 17, CACM, vol. 3, p. 508. =1

STONE, H. S. (1973). An efficient parallel algorithm for the solutioxg
of a tridiagonal linear system of equations, JACM, vol. 2
pp. 27-38.

ap

o)

dno-

O

20z Iudy 61 uo 3senb Aq z£880v/28z/c/ze/o

