Design for a transportable job organisation language

L. Moore

Department of Computer Science, Birkbeck College, University of London, Malet Street,

London WC1E 7HX

The design of a transportable JOB Organisation Language called JOBOL is presented ; the design
adheres to a set of desirable criteria which determine the scope of the language, its fundamental
entities and operations, and its programmmg structures. The semantics are described informally but
a formal definition of the syntax is given in an appendix. Illustrative examplw of JOBOL programs

are given.
(Received February 1977)

1. Introduction

The situation with regard to job control languages today is in
many ways analogous to that of programming languages
twenty years or so ago. Previously every machine had its own
programming language whilst nowadays one expects to find a
choice of several common high level languages available at any
medium sized computing installation. Prior to the development
of high level languages the concept of machine independent
programs could not be realised. Now, however, we find that
machine independent programs are not transportable per se,
since we need to transport not merely a program but rather a
job, of which the program forms a part (Barron and Jackson,
1972; Moore, 1975).

From the user’s point of view, even a machine independent
program is written for some particular virtual machine. Its
machine independence denotes independence of machine hard-
ware design and operating system, not independence of resource
environment in which the program is to run. This resource
environment is the virtual machine for which the program was
written, and it must be described either within (Frank, 1976;
Morris, 1974) or along with the program. Many programming
languages have no facilities for providing this information
within the program, hence the need for a language which will
cope with this job description area of job organisation
(Howarth, 1962). Moreover, a job may include more than one
program. It may be broken up into steps, which are to be
executed in a specified sequence, each step requiring modifica-
tion of the resource environment. These steps are concerned
with reorganisation of that environment, general management
of files and control of step sequence (CDC, 1969; ICL, 1973;
IBM, 1967). It is precisely these areas of information, with re-
gard to the description and control of a job, which fall within
the general area of job organisation.

The job organisation language, JOBOL, is designed to simplify
the problems of communication between the user on the one
hand (Palme, 1969), and any one of an undefined set of
operating systems on the other. Therefore, the scope of JOBOL
is restricted as follows:

(a) It is capable of being precompiled

(b) It avoids requiring facilities which cannot be provided
except by modifications of, additions to, or rewrites of the
operating system

(c) No consideration is given to interactive requirements as
such. This is partly a corollary of (a).

(d) It is capable of reasonably simple implementation in an
efficient way.

The question is often asked whether there should be a special

purpose language for job organisation? To this question there

have been a number of affirmative answers (Colin, 1971;

Barron and Jackson, 1972; Newman, 1973; 1975; 1976).

However, another seemingly diametrically opposed philosophy
should also be mentioned. The central idea of this philosophy
is that each of the basic operations of job control should be
available as (precompiled) procedures, and that these pro-
cedures may be activated by calls from programs written in anys
programming language whatsoever (Barron, 1974, Frank,m
1976; Morris, 1974). If this be so, it is argued, then there is no(IJ
need for a separate language especially concerned with Job‘“
organisation as such. 3

The type of solution produced by this philosophy does appeal:D
to be fundamentally different from the type of solution pro-2
posed by the author (Moore, 1975). However, this is scarcelym
surprising, since it is a solution to a different problem, namelyrl
the design of a new, complete computing system, not thc3
problem of transporting jobs from one computing system tOg
another. The apparent difference in view may therefore turms
out to be more superficial than fundamental. 0

It is asserted herewith that, although the scope of JOBOL (oro
any other job organisation language) should be restricted to the3
area of job organisation operations, the converse is false. The=
scope of job organisation operations is much wider than that of=-
job orgamsatlon programs. For example, consider the problemsg
involved in the design and writing of a program which is con-m
cerned with the management of a large data base contalmngg
many collections of files. The program maintains an mde&
hierarchy to facilitate read/write access to the files and 1%
provides facilities for addition, deletion and updating of files.5;
In choosing a language in which to write such a program, the“f
programmer would surely look for a high level general purpose;
language with wide ranging facilities, including, in partlcular;n
the ability to make calls of just those procedures (of job organ-
isation) already mentioned. Not JOBOL, nor indeed any’
other job organisation language would be adequate for such a?
program. It is not a job organisation program, and yet it i3
necessarily and intimately concerned with operations of joby
organisation.

It is therefore maintained that the philosophies of JOBOL and
of the procedural approach, far from being incompatible, are
highly complementary. It is consequently hoped that the
JOBOL proposals contribute positively to the problem of
determining the required procedures.

¥20

2. The main features of JOBOL

2.1 Basic entities

JOBOL is a relatively simple language whose scope has been
restricted deliberately to the sine qua non of job organisation;
this is considered to be a merit since it directs design attention
towards the central issues. The basic entities of the universe of
JOBOL are files and strings; however, there is a fundamental
difference in the way in which these two entities are treated. A
string is a vehicle merely for receiving certain pieces of non-

The Computer Journal Volume 22 Number 4

universal information from the user, and transmitting this
information (untouched by hand) to the operating system,
compiler, or any subsystem which requires it. The information
is called non-universal because its form is tailored to meet the
requirements of a particular system. If a JOBOL program were
transported from one computing system to a different one, then
all the strings which occur in the program would require careful
examination and probably alteration. A simple example of such
a string is the parameter list specifying compiler options when a
compiler is called. The JOBOL system does not manipulate
strings, it merely transmits them.

Files, on the other hand, are the one entity upon which the
JOBOL system does operate. From the JOBOL point of view,
a file is a logical unit of data used as an operand in a JOBOL
program. It may be stored internally on disc, magnetic tape, or
any other medium regarded as part of the computer memory.
A file of data may be input to a program or output from a
program or it may itself be a program. It is a logical unit, not a
physical unit. A file has an Identifier, a Contents (i.e. an
unstructured unit or chunk of data) and a Descriptor. The
Descriptor is a data structure containing all the available
information relating to the attributes of the file. This infor-
mation is required by the operating system so that it may access,
manipulate and dispose of the file.

From a mathematical/linguistic point of view, it should be
said in short that there is only one class of variable in JOBOL,
namely the file. In addition, there occur denotations for con-
stants, namely strings. When a job is to be transported from
one environment to another it is the constants which may
require change, being the machine dependent part of the
JOBOL program. These (string) constants embody, so to speak,
the initial conditions.

2.2 The user’s image of the JOBOL system

JOBOL presents a standard interface to the computer user
which is independent of the hardware and the operating system,
and may be thought of as a virtual computing system. This
system appears to the user as a collection of files together with a
File Manager. The File Manager keeps a Directory of files.
Existence (or non-existence) of a file is, by definition, equivalent
to the existence (or non-existence) of an entry for it in the
Directory. Each file entry in the Directory contains all the
information relevant to that file other than its actual contents,
but it includes, of course, a pointer or reference to such
contents. The aggregate of information included in a Directory
entry for a file is called the File Descriptor for that file.

The JOBOL system regards the contents of a file as the
concern strictly of the user. There are not many things a user
can do with a file contents. He can arrange for it to be executed
(run). This assumes that its contents are executable; another
way of saying this is that the contents provide a suitable data
stream for another file which is executing, namely the loader.

Any executing program may require two or more files as input
datastreams, and may create two or more files as output data-
streams. If it does it will contain denotations within it of the
datastreams required. The user will have to state, within his
JOBOL program, which JOBOL file is to be used for each of
the datastream denotations given within the executing pro-
gram. Such information is given as part of the JOBOL com-
mand, RUN.

Another user activity with files involves the logical copying of
the contents from one file to another, or from several files
(sequentially) to another (i.e. concatenation). This is known as
Contents Assignment.

The user has no direct access to the JOBOL File Director, but
he may, within his JOBOL program, write a Descriptor
Assignment which results in the File Manager making an
appropriate entry in the File Directory. For the convenience of

The Computer Journal Volume 22 Number 4

the user, the File Directory contains permanent entries for a
number of standard file descriptions, e.g. one for unit records,
one for nine-track magnetic tape, one for a file destined for the
lineprinter, etc. The user may use any of the appropriate
standard file names to obtain suitable file characteristics by
default. Alternatively, he may write a Descriptor Assignment in
his JOBOL program, which assigns to a file name of his choice
precisely those attributes which he requires.

The expression on the right hand side of a Descriptor Assign-
ment may be the name of an existing file; in such a case the
new file acquires the same attributes. Alternatively, the name
on the right hand side may be followed by a list of those
attributes which (exceptionally) are different; or it may be that
the name is omitted and simply replaced by a list of attributes
which are required for the new file. In addition to the temporary
Directory entries made by the File Manager, the user may
request the File Manager to SAVE entries made during the
running of a particular job, thereby creating one or more
permanent files. All files created during the running of a
particular job, which are not saved before the end of the jog
will be deleted from the Directory when the job ends; such
files are known as temporary files. Any file which outlives the
job during which it was created is called a permanent file.

2.3 Scope of the language
The scope of the language is restricted in such a way as
achieve:

(a) closeness of the programming instructions to the bas
operations executed by any operating system

(b) generality of instructions leading to a small number
powerful, simple and orthogonal programming concepts £

(c¢) independence of particular operating systems or computi g
system architectures

(d) well structured programs. The semantics of a JOBOE
program correspond to a simple composition of tlg
semantics of its units (Hoare, 1972)

(e) provision for the relegation of system dependent parts of
JOBOL program to the string constants of the program

®e//:sdgy wouy pep

odn noSywep

09/

C/Y/C&PPIH

(f) provision of defaults for as many parameters as possibleEg
the defaults are installation dependent. Transportability of
JOBOL programs is achieved by considering whether the
changes in defaults when going from one installation to
another change the virtual environment for which the pre?
gram has been written

(g) relative ease of implementation regardless of operating
system, by exclusion of facilities which cannot be prt?
compiled.

sonb

0z Iudv 6

3. The programmmg language structures of JOBOL
A JOBOL program is a sequence of statements delimited by g
start and a stop, the statements being separated by separator
symbols. Each JOBOL statement is one of the following basic
structures:

Procedure call

Assignment statement

Loop

Branch (Conditional statement)

Monitor.

3.1 Procedure calls
A procedure call invokes one of the standard procedures.

1. RUN

From a simplified viewpoint, this procedure loads an execut-
able object program, including any linking involved, and
executes it. This is what it looks like from the users’ point of

297

view irrespective of whether it is, in fact, doing this, or is
invoking a package of compiled or semicompiled modules, or
is calling an operating system macro (e.g. an IBM catalogued
procedure). The most frequent use of RUN will be to run either
a compiler or a program compiled by such a compiler.

The principal operand of RUN is the name of the file contain-
ing the program or the package which is to be executed. Any
executing program may input (or output) one or more linear
sequences of data values. Each of these linear sequences of data
values is called a datastream. Other operands of RUN set up a
correspondence between each datastream used within the pro-
gram and the JOBOL file to be used for input or output on
that datastream. Alternatively, RUN may be followed by an
installation-dependent parameter string.

2. SAVE

This extends the life of a file beyond the duration of the JOBOL
program within which the SAVE is invoked. Such a file is of
course a permanent file.

3. GET
This procedure obtains access to a permanent file.

4. MACRO

The MACRO call denotes a file whose contents is a sequence of
JOBOL statements; the semantics of a MACRO call are that
the call is replaced by the contents of the file.

5. RENAME

This replaces an existing file name by a different one. It is
necessary because many systems, packages or programs may
output to a file with a fixed name and this can cause difficulties
if the package is to be used more than once in a single JOBOL
program.

6. ERASE

This procedure destroys all directory entries relating to the file
to be erased, so that the JOBOL file management system no
longer has any record of it. Hence the file ceases to exist.

7. REWIND
This procedure resets the current position marker to the
beginning of the file to be rewound.

1. Alias Statement

A file name in JOBOL programs is a reference to a file contents
and to a file descriptor. The same file may be referenced at two
distinct levels:

(a) within a JOBOL program (by a file name)

(b) within the level of nomenclature recognised by the operating
system (by a system dependent string).

In order to specify, within a JOBOL program, that different
denotations at different levels indicate the same file, an alias
statement is made.

2. File descriptor assignment

A file descriptor is a data structure, associated with a file,
containing a number of fields each of which is referred to by a
TRIBNAME (file attribute name), and each file descriptor
field may be assigned a TRIBVAL (attribute value). A Des-
criptor Assignment is the assignment of a set of TRIBVALS to
the descriptor of the file denoted in the assignment statement.
The values assigned may be any of the following:

(a) a simple copy of an existing descriptor

(b) a set of values, explicitly listed

(c) a copy of an existing descriptor modified by a list of values
which are different.

3. Contents assignment

This reproduces the contents of an existing file as the contents
of a new file; alternatively it may assign to the new file the
concatenated contents of two or more files.

3.3 Loops

The loop in JOBOL provides a means of specifying repetition
of certain operations a predetermined number of times, possibly
using different files as operands in the course of the repetitions.
The files to be used are specified in one or more loop control
lists. Each control list uses a dummy variable (file identifier) as
control variable, and has a list of actual file identifiers to be
substituted, in turn, at each repetition. Therefore each control
list of the loop contains the same number of actual file identi-
fiers, and this is the number of times the loop will be performed.

3.4 Branches 9
The test on which branching occurs is the success or failure toE
match the contents of the specified file with the string supplledO
in a JOBOL conditional statement. This mechanism is very%
general and provides a means of intercommunication between*«
different jobstep programs via the JOBOL program. It does notB
require any particular facilities or properties of the operating=

system to enable it to be implemented, and this is why the®
mechanism has been chosen. Furthermore, it has the virtue®
that no new types of variable or expression need to be intro-o
duced into the language in order to express the condition.

‘dno-olwe

3.5 Monitor
This is the name given to a sequence of JOBOL statementsS
which are to be executed if and only if the operating system\
would (in the absence of a monitor) take over control andg
abort the JOBOL program. Prec1sely what conditions would\
lead to an abort of this kind is installation dependent. TheZ.
monitor facility makes it possible for the user to arrange, for—
example, to list files containing diagnostic information which heR
requires only in the event of an abort taking place.

€ve/96¢/v/ce

4. JOBOL meets its objectives
The question now arises—does the design of JOBOL meet theA
objectives outlined? In particular, can the language be com-cr
piled without modification of the operating system and if so doS
its contructs map into existing job control languages ? g

The JOBOL procedure calls SAVE, GET, MACRO, ERASE n
REWIND all correspond in an obvious way to operatlons3
existing in any system which has a file store. Of course the©
JOBOL implementation itself needs to do its own book-keeping%>
in relation to SAVE, GET, ERASE. The RENAME procedure.\)
corresponds entirely to such book—keepmg operations. g

The implementation of RUN is, of course, loader dependent.
Any executable file must be loaded by its intended loader. Such
information will be stored in the File Descriptor for the file, and
used by the JOBOL run time system routines.

JOBOL file descriptor assignments and alias assignment
statements are again entirely machine independent since they
amount to book-keeping. JOBOL Assignment Statements
amount to copying operations from one file to another and
depending on the attributes of the files involved, these may then
be from disc to disc, from disc to magnetic tape or the reverse,
from magnetic tape to magnetic tape, from input device to
internal file, from internal file to output device, etc. Every
operating system has facilities for carrying out these operations,
whether they be system utilities, macros, or simply independent
programs which have been added to the system. Appropriate
routines are called by the JOBOL run time system.

The Computer Journal Volume 22 Number 4

The loop construct in JOBOL presents no special mapping
difficulties since its specially restricted form ensures that every
loop maps into a predetermined finite number of sequential
statements.

4.1 The JOBOL run time system

A description of the implementation strategy for the JOBOL
compiler is not a part of this paper, but some aspects of it must
be mentioned in order to indicate how JOBOL language
structures such as the BRANCH are mapped into existing job
control languages.

The final output of the compiler consists of some form of
machine dependent job control statements, some of which
invoke the execution of members of the library of program
modules constituting the JOBOL run time system.

The implementation of the BRANCH on a machine whose
operating system does not specifically provide such a facility
can be effected by provision of appropriate programs in the
JOBOL run time system. In a run time system for a JOBOL
compiler running under OS/360 the program MATCH is such
a program. It compares the contents of a JOBOL file (called
file 1 in the example which follows) with the string constant
provided in the JOBOL conditional; it then sets the OS/360
condition code to a suitable non-zero value, n, unless the match
succeeds.

//BRANCH EXEC PGM = MATCH
//DD1 DD DSN = file1

//DD2 DD *

string constant

/I

Subsequent jobsteps to be executed are given a condition para-
meter as follows:

(a) if MATCH fails
//EXEC PGM =nextjobstep,
COND =(n, EQ, BRANCH 1)

(b) if MATCH succeeds
//[EXEC PGM =nextjobstep,
COND =(0, EQ, BRANCH 1).

In the run time system for a JOBOL compiler running under
GEORGE 3, it suffices to have a program (called TEST) which
reads the contents of the file specified in the JOBOL condition
and uses the DISPLAY facility of GEORGE 3 to send it to the
system monitoring file, e.g.

LOAD TEST

ASSIGN *EDfile1

ENTER

IF DISPLAY string constant ,GO TO 2

commands to be executed if string constant fails

to match contents of file1

GO TO 3
2 commands to be executed if match succeeds

3 first comma'nd following end of branch

A JOBOL compiler running under the CDC operating systems
SCOPE 3.4, SCOPE 2.0, or NOS/BE has a run time program,
MATCH, which compares the contents of two files and
generates a MODE error if no match is found. The following
CDC control cards may be used to implement BRANCH:

MATCH (file1, file2)

control cards to be executed if match succeeds

SYS (NIL)

control cards to be executed if match fails

SYS (ALL)

The Computer Journal Volume 22 Number 4

control cards following end of branch
Effect of MODE error: skip to next SYS card.

Effect of SYS (NIL): if no error then skip to next SYS
card.

if no error, ignore and continue;
if met while skipping, restart
processing. (ULCC, 1974)

The MONITOR construct is, as previously stated, operating
system dependent. It can be implemented only if the operating
system does provide facilities in certain circumstances for
return of control from the system to a program. If it does, then
these facilities may be utilised to implement MONITOR. If it
does not, then this is regarded as a limitation of the system and
not of JOBOL (just as lack of an online card punch would make
it impossible to implement a JOBOL program requiring
punched card output).

Effect of SYS (ALL):

5. Syntax and usage of JOBOL

5.1 The meta-language

The syntax of JOBOL is concisely defined in an extended BN
notation. The extensions used are as follows:

1. Non-terminal names are printed in lower case.

2. Square brackets denote a single, optional occurrence of thei
contents.

3. Curly brackets denote repetition, zero or more times, of theif
contents.

4. Terminal symbols do not appear in the syntax. Instead, thg
names of terminal symbols appear. They are denoted by
unbroken sequences of letters in upper case (of length one of
more). Multiple space is equivalent to single space, which
serves to terminate such a sequence, as it does in a natural
language.

The representations of all terminal symbols in the grammag
are provided in a separate table. See Appendix.

5. Individual statements (productions) of the grammar a
separated by semicolons.

6. The BNF symbol ‘::=’ is abbreviated to ‘=

peoefsdiyiol) papedimoq

o]
(oo

nb Aq £81LE1E/962/v/zT/SoNE/

5.2 Formal syntax of Jobol
See Appendix.

5.3 Transportability
In describing the effects of transporting a JOBOL job from on8
installation to another it is instructive to draw an analogy w1t@
the effect of transporting say an ALGOL (or FORTRAN};
program from one compiler to another. The meaning of such
an ALGOL program will be changed by two distinct factors:=

(a) Hardware configuration
(b) Compiler defaults

An example of (a) is wordlength, and hence the precision of
representation of floating point numbers. An example of (b)
is the convention used by the compiler for rounding (in the
course of evaluation of arithmetic expressions), e.g. truncation,
or rounding-up, or rounding-even. The result of these differ-
ences is that a numerical calculation may well produce as
many different answers as there are compilers on which it may
be run. If the problem is ill-conditioned, the answers might
vary by an order of magnitude. Of course, so that the program
be run at all, there may be certain minor (or major) alterations
necessary so as to conform with (for example) compiler
dependent standard functions which differ from one compiler to
another even in name.

When a JOBOL job is moved from one installation to another,
it will be necessary to change certain (installation or compiler

20z id

dependent) parameter strings; in addition, the same JOBOL
program may be expected to produce different results because
different default options are standard at different installations.
There are two kinds of JOBOL standards—universal standard
names, and installation dependent standard defaults.

1. Universal standard names
(a) Names for Standard Device types, e.g.

LP —line printer
TTY —teletype
CR —card reader

CPUNCH —cardpunch

PTR —papertape reader
PTPUNCH—papertape punch

MT7 —magnetic tape, seven-track
MT9 —magnetic tape, nine-track

(b) Names for high level language compilers, e.g.

ALGOL60 BASIC PASCAL
ALGOLG68 COBOL SIMULA
APL FORTRAN SNOBOL

A particular installation may have several compilers for a
language, but one of them will be the compiler provided as
the standard default (for the standard name of the language).
Any others will have different, local names.

(c) Standard external datastream names

Within any program or package which requires one or more
input datastreams and/or one or more output datastreams,
a different denotation may be used to indicate each data-
stream. The precise form and particular representation for
such a denotation varies from compiler to compiler, and
may or may not be known to the user. The executing pro-
gram may be a user’s own (FORTRAN) program, or it may
be a compiler. In either case there is some external data-
stream name which sometimes differs from, and sometimes
is the same as, the datastream denotation within the pro-
gram. For example, some FORTRAN compilers use the
external datastream name TAPES to refer to the datastream
denoted by ‘6’ within a FORTRAN program.

When the program being used requires more than one
datastream for input (or for output), the user may need to
know the external datastream names which the program
expects him to use. However, it often happens that only one
is required (e.g. source input to a compiler). JOBOL pro-
vides standard universal datastream names for use in such
circumstances by all programs at all installations. These
include:

INSTREAM, OUTSTREAM, CODESTREAM,

LIBSTREAM, LISTSTREAM, INFOSTREAM.
The first two of these are the JOBOL names for the data-
streams normally input to and output by any user program.
The third is the JOBOL name of the datastream used by a
compiler to output its object or target code. LIBSTREAM
is the JOBOL name for the program library required by a
program when the RUN command is being obeyed.
LISTSTREAM is the JOBOL name for the datastream used
by a compiler to list the source program which is input to it.
INFOSTREAM is the JOBOL name for the datastream
used by a compiler for the output of error diagnostics and
other information.

(d) Names for other standard files, e.g.

INPUT —a file associated with the standard input
device

OUPUT —a file associated with the standard output
device

RUNCODE—a file associated by default with the
CODESTREAM of a standard compiler or
package

UNITREC —e.g. card images

2. Installation dependent standard defaults
(a) Designation of a standard device type to be associated with
certain standard files, e.g. Output, and Runcode.

(b) Designation of a particular compiler as the standard com-

piler for each programming language.

(c) Assignment of a certain set of file attribute values (tribvals)
to the file descriptor of each standard file—see 5.4.

(d) Designation of certain strings or formats for strings which
are used as parameter strings by compilers or packages, or
used to provide scheduling, identification, resource alloca-
tion and accounting information following ‘JOB.

5.4 JOBOL File Descriptors
The information required by a file management system is
detailed, extensive and installation/environment dependent.
Not all of it will be required by simple systems. The data
structure we use to specify it will almost inevitably require?
modification to suit some sophistication which has been over-5 2
looked, or which has not yet been invented. This structure wem
call a FILE DESCRIPTOR. Its main fields are the FORMAT(D
field and CONTROL field. These may be subdivided as follows. =

Structure of a FILE DESCRIPTOR
FORMAT FIELDS

Possible fieldname Comment
BLOCK Block (or buffer) size in bytes.
BOBBIN Physical identification of a removable

unit of data storage (e.g. disc pack,
tape reel, cassette, floppy disc).
BPI Recording density in bits per inch.

BYTE Number of bits per byte.

CODE Code, e.g. BCD, ISO, BBCDIC, BIN,
etc.

DEVICE Actual hardware device type.

EOL Code value of End of Line Marker used.

FILEID Sequential identifying number (e.g. for
one of many files written upon one
magnetic tape).

LFV Line (Record) length fixed or variable.

LINE Maximum number of bytes per line.

ORG File organisation—random access,
sequential access, indexed sequential,
partitioned, etc.

PARITY Parity—odd, even or none.

STORE Main store required (in addressable
units, e.g. words or bytes).

TABS Tabulation settings, for use when file is

printed.

20z Iudy 61 uo ysenb Aq 98LQVQ/QGZ/V/ZZ/BD!UE/|u[LUOO/Lu00'an'O!LuepEOE//:sdnu LUO

CONTROL FIELDS

Control over one or more of the various types of access to a file
may often be required. Authorisation is usually recognised upon
production of some kind of password, jobnumber, account
code, etc. Any user who can name the appropriate password
automatically obtains the corresponding access.

Possible fieldname Comment

ADD Permission to extend by writing on the
end.

ALL Permission for all types of access.

ALTER Alteration of any field of the File
Descriptor including control
authorisation (passwords), name of file,
etc.

DATE Date (until which file is required to be

The Computer Journal Volume 22 Number 4

saved).

LABEL Standard label (if any).

ERASE Permission to erase the File Descriptor,
and hence lose the file.

WRITE Permission to overwrite.

MULTI Multiaccess permitted (concurrently) of
each of the following types of access.

READ Permission to read (i.e. copy).

RUN Permission to execute the file

contents.
We now give an example of a possible assignment (by an
installation) of file attributes of the standard file UNITREC,
expressed in the form of a Descriptor assignment:

'DESCR

UNITREC = 'TRIBS BLOCKSIZE = (960)
LFV = (F)
.BYTEWIDTH = (8)
,PARITY = (NONE)
,PAGELENGTH = (0)
LINEWIDTH = (80)
ALTER = (XYZBOSS)
.DATE = (1 JAN 80)
LABEL = (NONE)
.DEVICE = (DISC);

5.5 User files input as part of a JOB

A job may contain not only a program but also (say) two files of
data, each of the files being used by the program as a distinct
input datastream. Such a file, preceded by a header, of form

’FILE identifier newline
and terminated by an end of file mark, of form
‘EOF

may be inserted within a JOBOL program after all JOBOL
commands (¢f. CDC]Ob control)

When only one file is inserted in a job, the identifier may be
omitted from the header, in which case the standard file name
INPUT is assumed by default.

5.6 Examples of JOBOL programs
1. To copy from standard input device to standard output
device.

‘JOB (<installation dependent parameters >)
‘CONTS OUTPUT = INPUT

'FILE

< source to be copied >

‘EOF

'EQJ

2. To copy from standard input device to magnetic tape.

‘JOB (<installation dependent parameters >)

‘DESCR MYTAPE3 = 'LIKEMT9C '‘BUT BOBBIN =
G), ‘FILEID = (3);

'‘CONTS MYTAPE3 = INPUT

‘FILE

< source to be copied >

'EOF

‘EQJ

3. To compile an ALGOL program from cards and run it with
card data (at an installation using card reader as a standard
input device).

‘JOB (<installation dependent parameters >)
'RUN ALGOL60 ‘'WITH INSTREAM = PROG;
‘RUN RUNCODE ‘WITH INSTREAM = DATA
‘FILE PROG

< cards containing ALGOL 60 program >

‘EOF -

‘FILE DATA

< cards containing data for ALGOL 60 program >
‘EOF

‘EQJ

The Computer Journal Volume 22 Number 4

4. To copy cards to output, where card code is BCD and local
standard code is not BCD.

‘JOB (<installation dependent parameters >)

‘DESCR CARDS = "LIKEINPUT'BUT CODE = (BCD);
‘CONTS OUTPUT = CARDS

‘FILE CARDS

< cards to be copied >

‘EOF

‘EOJ

When JOB (1) is moved from installation, say, A, where the
standard output device is a line printer, to installation B,
where the standard output device is a paper tape punch, it will
run successfully. However, at A the output will be printed on
lineprinter paper, while at B, it will be punched on papertape.

When JOB (2) is moved, the physical identification (of the
magnetic tape spool) which follows ‘BOBBIN =’ might have to
be changed, or might remain the same, depending upon locai
installation requirements.

In the case of JOB (3), the ALGOL 60 compiler default
options might be different at installations A and B, and t
result of moving the job as it stands would be to receive su
different options. If this is not what the user desires, he wo
need to insert an installation and compiler dependent strm&
immediately following 'RUN ALGOLG60, e.g.

‘RUN ALGOL60 (M)

where, for a particular compiler, M asks for a symbolic prograia
map.

Biny wouy

5. To compile an ALGOL 60 program from cards and make t
compiled version a permanent file called MYPROG.

‘JOB (<installation dependent parameters >)

‘RUN ALGOL60 ‘WITH CODESTREAM = MYPROG

‘'SAVE MYPROG

‘FILE MYPROG

< cards containing Algol source program >

'EOF

‘EOQJ

6. To run some complled program stored in a permanent ﬁE

called MYPROG, using two independent sets of data, onm
on cards and one on a permanent file called MYDATA;

storing the output in two permanent files, RESULTS1 an8
RESULTS2.

‘JOB (<installation dependent parameters >)

IpE/|ulwoo/wod dno-olwEese)/:

0

‘GET MYDATA;
‘GET MYPROG;
‘FOR IN = INPUT , MY DATA
‘AND OUT = RESULTS1 , RESULTS2

‘DO 'RUN MYPROG
‘WITH INSTREAM = IN
,OUTSTREAM = OUT
‘REPEAT;
'SAVE RESULTS1, RESULTS2
‘FILE
< cards containing data >
'EOF
‘EQJ

20z Idy 61 uo 3senb Aq £8LEves

7. To run a program called WAGEROLL, conditional upon

the data having been updated, the updating being signified
by the date having been written, in a predetermined format,
to a file kept for this very purpose, called WAGEDATE.

*JCB (<installation dependent string>)
‘"GET WAGEDATE;
‘IFWAGEDATE 'SAYS (26/10/84)
‘THEN ‘GET WAGEROLL;

‘RUN WAGEROLL
“FI
‘EOJ

8. To compile an ALGOL 60 program on cards, producing a

listing only if the compilation is unsuccessful.

301

‘JOB (<installation dependent string >
‘MONITOR
‘CONTS OUTPUT = LISTSTREAM, INFOSTREAM
‘STOP

‘RUN ALGOL60

‘FILE

< cards containing ALGOL 60 program >

'EOF

'EQJ

Acknowledgements

The author would like to thank various colleagues for many
critical and fruitful discussions, but in particular Mr E. Nixon
of the Department of Statistics and Computer Science,
University College London, and Dr G. Loizou of the Depart-
ment of Computer Science, Birbeck College, University of
London.

Appendix
1. The Syntax of JOBOL

= JOB PSTRING [monitor]sequence {file}
JOBEND;
sequence = [statement {SEMICOLON statement}];
monitor = MONITOR sequence STOP;
file = FILE [FILEID] NEWLINE
{file + FILECONTENTS } ENDOFFILE;
statement = DESCR FILEID {COMMA FILEID } ASSIGNOP
descrexpression
CONTS FILEID ASSIGNOP FILEID
{COMMA FILEID }
ALIAS FILEID ASSIGNOP PSTRING likepart
RUN FILEID [rundetails]
REWIND FILEID {COMMAFILEID }
GET FILEID [WITH passkeylist]
SAVE FILEID {COMMAFILEID }
MACRO FILEID
RENAMEFILEID AS FILEID
ERASE FILEID {COMMAFILEID }
IF conditional {ELSEIF conditional }
[ELSETHEN sequence] FI
FOR controlsequence {AND controlsequence }
DO sequence REPEAT;
descrexpression
= ON BOBBINTYPE BOBBINNAME {likepart]
[BUT triblist]
| likepart [BUT triblist]
| TRIBS triblist;

program

likepart = [LIKEFILEID];

triblist = TRIBNAME ASSIGNTOP TRIBVAL
{COMMATRIBNAME ASSIGNOP TRIBVAL};

References ’

BARRON, D. W. and JAcksoN, 1. R. (1972). The evolution of Job Control languages, Software Practice and Experience, Vol. 2 No. 2, pp. 143-

164.

rundetails
= PSTRING
| WITH runpardef {COMMA runpardef };
runpardef = STANDARDSTREAMNAME ASSIGNOPFILEID
| NONSTANDARDSTREAMNAME ASSIGNOP
FILEID
| STANDARDOPTION ASSIGNOP PSTRING ;
passkeylist
= passkey {COMMA passkey };
passkey = KEYWORD ASSIGNOP PASSWORD ;
conditional
= FILEID SAYS PSTRING THEN sequence;
controlsequence
= CONTROLFILEID ASSIGNOP FILEID
{COMMAFILEID };

2. Representation of terminal symbols

PSTRING (any string of characters with
balanced parentheses)
FILEID LETTER {LETTERORDIGIT}
ALIAS ‘ALIAS IF ‘IF
AND ‘AND JOB 'JOB
AS ‘AS JOBEND 'EOQJ
ASSIGNOP = LIKE ‘LIKE
BUT ‘BUT MACRO ‘MACRO
COMMA MONITOR ‘MONITOR
CONTS ‘CONTS ON ‘ON
DESCR ‘DESCR RENAME 'RENAME
DO ‘DO REPEAT ‘REPEAT
ELSETHEN 'ELSETHEN REWIND ‘REWIND
ELSEIF 'ELSEIF RUN ‘RUN
ENDOFFILE newline '/EOF SAVE ‘SAVE
ERASE '"ERASE SAYS 'SAYS
FI “FI SEMICOLON ;
FOR ‘FOR STOP ‘STOP
GET ‘GET THEN ‘THEN
FILE ‘FILE TRIBS ‘TRIBS
WITH ‘WITH

Each of the following may be represented by one of its own set
of known identifiers (with the same representation rule as
FILEID):
BOBBINTYPE KEYWORD STANDARDOPTION
STANDARDSTREAMNAME TRIBNAME.
Each of the following may be represented by any identifier
(with the same representation rule as FILEID):
PASSWORD CONTROLFILEID.

Each of the following may be represented by a PSTRING:
BOBBINNAME NONSTANDARDSTREAMNAME
TRIBVAL.

FILECONTENTS is represented by any string not including

ENDOFFILE.

BARRON, D. W. (1974). Job Control Languages and Job Control Programs, The Computer Journal, Vol. 17 No. 3, pp. 282-286.

CoLN, A. J. T. (1971). Introduction to Operating Systems, Macdonald, London.

CoNTROL DATA CORPORATION (1969). Scope 3 Reference Manual, (CDC Literature Catalogue number 60189400), Palo Alto.

FRANK, G. R. (1976). Job Control in the MUS Operating system, The Computer Journal, Vol. 19 No. 2, pp. 139-144.

GouLp, 1. H. (1971). IFIP Guide to Concepts and Terms in Data Processing, North-Holland.

Hoareg, C. A. R. (1972). Structured Programming, pp. 83-174, ‘Notes on data structuring.” Academic Press, New York.

HowArTH, D. J., PAYNE, R. B. and SUMMER, F. H. (1962). The Manchester University Atlas Operating System, Part II: Users Description,

The Computer Journal, Vol. 4, pp. 226-229.

ICL (1973). Operating Systems George 3 and 4, Technical publication No. 4345, International Computers Ltd, London.
INTERNATIONAL BUSINESS MACHINES (1967). IBM System/360 Operating System Job Control Language, (IBM systems reference library S360-48,

C28-6539-4), White Plains.

MOORE, L. (1975). The Feasibility of a Transportable Job Organisation Language, M.Phil Thesis, University of London.

Morris, D. (1974). Job Control Languages, Past, Present and Future, Job Control Languages (Editor D. Simpson), NCC publications.
NEWMAN, 1. A. (1973). The Unique Command Language—Portable Job Control, Proceedings of Datafair 73, pp. 353-357.

NEwMaN, 1. A. (1975). Machine independent command language, Computer Bulletin, Series 2 No. 4, pp. 14-15.

NEewMaN, 1. A. (1976). Machine independent command language, Computer Bulletin, Series 2 No. 9, pp. 18-19.

PALME, J. (1969). What is a Good Programming Language ? FOA P Rappert C 8231-64 (11). Research Institute of Nat. Defense, Operations

Research Center, Stockholm.

UNIVERSITY OF LONDON COMPUTER CENTRE. (1974). Taking Alternate paths through Control Cards: SYS. Bulletin B2.3/1.

302

The Computer Journal Volume 22 Number 4

202 udy 61 U0 189n6 AQ £81E7E/962/7/22/310M4e/|uf00/W0d"dNO"oILSPEDE//:SARY W) PAPEO|UMOQ

