A plotter sequencing system

T. Leipéla and O. Nevalainen

Department of Computer Science, University of Turku, 20500 Turku 50, Finland

Plotting time depends on the sequence of plotter operations. The system described in this paper
selects a sequence in which the movements made while the pen is up are reduced. The separate lines
forming a picture are temporarily stored in an internal memory area, from which the line nearest
the present location of the pen is plotted next and replaced by a new one. The performance of the

sequencer was experimentally tested.

(Received March 1978; revised October 1978)

1. Introduction

Digital incremental drum plotters are widely used graphic
output devices. Because of the unrestricted length of the paper
on the spool, they make possible the continuous processing of
successive plotting tasks, without manual intervention by the
operator. This is a desirable feature for a computer installation
which performs daily a large number of scientific application
programs of varying size and at unplanned arrival times, e.g.
university computer centres with multiprocessing. When the
workload of the plotter increases, it becomes essential to study
the efficiency of plotting operations. If the operation of an
output device like the plotter can be improved, a better through-
put can be obtained and it becomes possible to manage with a
slower and cheaper device.

A plotter sequencing system is described in the present paper.
The system works in a multiprocessing environment and has
been developed according to preliminary plans drawn up by
Nevalainen and Vesterinen (1978) for a single-user operating
system.

We consider the case where the picture comprises a set of
separate lines, which are described, on the level of a general
purpose programming language (in the following, FORTRAN),
by straight line segments, represented by their base points
(Fig. 1). These are specified by the user. The straight lines
between the base points can be plotted by standard plotter
routines in which the algorithms of Bresenham (1965) and
Freeman (1969) are used to control the movements of the pen.
In this paper, however, we do not need to know how the
straight lines are actually plotted.

The time used for the plotting operation consists of two
components, namely the time used for plotting the actual lines
and the total time used for transfers from a finished line to a
new one. The pen and the drum are moved similarly in both
cases, but in the first case the pen is down and in the second
case it is up. Movements of the second kind are called wasted
movements, and their total length can be shortened by selecting
a favourable sequence of lines. On the other hand, the time
used for the actual plotting of the lines is independent of the
drawing sequence.

If the pen must finally be returned to its initial point, the
problem of minimising the wasted movement can be formulated
as the so-called tube passing problem discussed by Liesegang
(1976). In this problem we have a number of separate ‘tubes’
(lines in our case) and we must choose a route that passes
through each tube in such a way that the total length of the
route is minimal. Liesegang gives a branch and bound
algorithm for the exact solution of the problem. The execution
time, however, depends exponentially on the number of tubes.
Thus the exact algorithm cannot be used in plotter sequencing,
where the number of lines can be very large and the sequencing
time is limited.

Closely related to the plotter sequencing problem is the

The Computer Journal Volume 22 Number 4

stacker-crane problem of Frederickson et al (1978), where the
movements of the crane, corresponding to the movements of
the pen, must be performed in a predetermined direction. In
this problem we have a crane which carries goods between
fixed points. After unloading, the following loading point &
selected in such a way that the total route taken by the cram
is minimal. Thus the plotter sequencing problem could Be
called an undirected stacker-crane problem. A number @T
variations of the basic problem have been analysed by
Frederickson et al (closed tour, fixed initial point, etc.). All
these problems are shown to be ‘NP-hard’, i.e. no algorlthg
working in polynomial time is known for them and it is most
unlikely that one exists (see Reingold, et al, 1977). Analg-
gously, the plotter sequencing problem can be shown to %e
NP-hard and we face a difficulty that is common in systenis
programming: to find the exact optimum we need more
resources than when plotting without any sequencing.
therefore restrict ourselves to the use of an approxima
algorithm that is fast enough, simple to implement and
means of which we can expect to obtain a reduced plottng
time.

An additional difficulty arises from the fact that no restné-
tions are assumed for the number of lines in the pictures to be
plotted. This causes problems in the management of internal
storage (at least in computer systems with no virtual memofy
facilities). We require that the sequencer should operate in
random access storage of limited size. This leads to a solutldﬁ
in which only a part of the whole picture is stored at any glv@
moment and the sequencing is performed for a dynamlcal!y
varying subproblem

Two sequencing rules, the so-called k-change rule in whlﬁl
the drawing sequence is locally perturbed in order to find 2
sub-optimal solution and the so-called nearest neighbour rule
which simply selects the nearest continuation point to the pe
were tested in the paper by Nevalainen and Vesterinen (1978)
mentioned above. The whole picture was processed at the samgz
time and a simple random model of the picture was used. The
results when the latter rule was applied (in the context of
scheduling problems also called the next best rule) were so
much better that it was selected as the sequencing rule also for
the generalised case, where only a part of the picture is con-
sidered at each moment.

2. The structure of the sequencer

In a FORTRAN environment, for example, an applications
programmer can use a standard plotter subroutine, with
which it is possible to raise or lower the pen and/or move it to a
new location (¢f. DEC-10 routine PLOT). These operations
are then performed exactly in the same order as the sub-
routine is called. (Consecutive subroutine calls are hence used
either to draw a line (pen down) or to move the pen to the
beginning of a new line (pen up).)

313

(zzlu)

(z .ul)

Fig. 1 A picture consisting of three lines:
line 1: (x1, y1) (x2,52) ... (Xn, Yn)
line 2: (1, v1) (u2, v2) . . . (Um , Vm)
line 3: (z1, w1) (z2, w2) .. . (21, w1) .

A program with plotting

‘Hove the pen s
Tt beom |

Plotting sequencer
(OPLOT)

‘Draw the next line-
segment (CALL PLOT)

: -
Hove the pen
(CALL OPLOT)

Standard system ‘(’
routine (PLOT)

Write the control
characters

/

Plotter-Spool
System

Plotter
Spool

File

Program run-time

A separate spooling-
phase, after termination
of the application

.y

Fig. 2 The principle of sequenced plotting

The sequencing is accomplished by making a revised version,
called OPLOT, of the above subroutine. OPLOT optimises
the plotting sequence locally and its use is ‘invisible’ to the
programmer, who can simply replace the old subroutine calls
(PLOT) by equivalent sequencer calls (OPLOT). The task of
the sequencer is to act as a buffer between the application and
the plotter-spool system (see Fig. 2).

The locally best line that is plotted next is chosen by the
nearest neighbour rule, looking ahead N lines:

Let S be a set consisting of N lines. Select from among the
2N end-points of the lines the one nearest to the present
location of the pen. Draw the line, update the location of
the pen and delete the line from S. Bring a new line into S
and repeat the procedure until the picture is complete.

314

The parameter N is called the degree of the heuristic.

In the case of a drum plotter like CALCOMP 565 there are
two independent power drives, one for the pen and the other
for the drum. The drives can cause simultaneous movements in
both x- and y-directions. Thus we measure the distances
between points (x, , y,) and (x, , y,) by the L, metric

d{(xy,y1),(x2,y2)} =max{|x — x|, |y — 21} .
A simplified flowchart for the sequencer is shown in Fig. 3.
Two different stages can be distinguished in it: (@) the con-
struction and management of lines and () the selection of the
next line and its ‘drawing’, by calling the standard non-
sequenced plotter routine (PLOT). The operation of the
sequencer is connected with the control of the upper/lower
level of the pen: raising the pen terminates a line and lowering
the pen triggers the selection of the nearest line and its drawing.
A number of special cases, like the handling of lines with a
large number of base points and the termination of the drawing
task, are not shown in Fig. 3. (The lines have a variable
number of base points. To simplify the management of the
working storage, a fixed-length data segment is reserved for
each line. If, however, the data segment is too short for
storing the base points of a particular line, the line is divided
into two or more parts.)

3. Effect of the sequencer
The performance of the sequencer can be evaluated in the
following ways.

Mathematical modelling

A mathematical model is built up to describe the drawing tasks.
This model in its turn may be statistical (e.g. the distribution of
the end points of the lines in the plane are given) or deter-
ministic (e.g. the locations of the end points are given). The
effect of the sequencer is then tested by this model. Two factors
must be analysed: the total length of the wasted movements as a
function of the parameters of the sequencer and the processing
time of the sequencing algorithm. The first gives the gain in
drawing time and the second gives the increase in processing
costs.

The advantage of mathematical modelling is that general
results can be achieved, in which the effect of certain para-
meters (e.g. the degree of the heuristic) can sometimes be
stated clearly. However, this approach involves considerable
difficulties, especially in the construction of a realistic model
and in the estimation of the wasted movements. In addition,
when searching for the optimum processing we must take into
account the properties of the particular operating system and
the workload of the computer. This difficulty is present also in
experimental testing.

In the case where the end-points of the lines are independently
and uniformly distributed over the whole drawing area, we can
achieve analytical results (see Kuokkanen, Leipdld and
Nevalainen, 1977).

Experiments

Real or simulated drawing tasks are used and the CPU time
and peripheral device times are measured. The experiments
are easy to perform but general conclusions cannot easily be
drawn.

3.1 Experiments with random pictures

A set of experiments was performed with artificial pictures.
Each picture consisted of random line segments. More exactly,
the end-points of the line segments were uniformly and
independently distributed in a square of 5 x 5 inches in area.
The aim was to determine the effect of the degree of the
heuristic (N) on the plotting and CPU time for a DEC-10 with

The Computer Journal Volume 22 Number 4

202 udy 61 U0 189n6 AQ £9ZEVE/E L E/F/2Z/10M4e/|UlL00/WO0d"dNO" oIS PEDE//:SARY W) PAPEOUMOQ

a CALCOMP 565 plotter.

Fig. 4 shows the total plotting time (7)) as a function of N.
Five different sets of 100 random lines were generated. The
points in Fig. 4 are the averages of the observed plotting times.
The same sets of lines were used for each given N-value. It will
be observed that for N < 15 an increase of N causes consider-
able reduction of the plotting time. The effect of sequencing is
negligible for larger N-values.

For a larger number of lines or a larger square, Fig. 4 can be
used by multiplying the T,-axis by a scaling factor. As can be
seen from Fig. 2, the CPU time is needed in the processing of
three different algorithms: the program that generates the line
segments, the plotting sequencer (OPLOT) and the standard
plotter routine (PLOT) that writes the control characters for the
plotter. In Fig. 5 the components of the CPU time are shown
as a function of N for 100 and 200 line segments. If we sub-
tract from the total CPU time the time used for PLOT-calls we
get a linear dependence on N. At first sight the effect of the
sequencer on the processing time is surprising; there is a
decrease in the time observed for small values of N. This is
because the sequencer reduces the total number of control
characters formed by PLOT.

The above results are very similar to those obtained by the
mathematical model.

3.2 Experiments with non-random pictures

A set of experiments was performed by using the sequencer
with the hidden line plotting systems of Watkins (1974) and
Williamson (1972). With the algorithm of Watkins we used
three different test surfaces. Although the successive contours
were plotted in reverse order without our system, we could

still reduce the total plotting time by eliminating the move-
ments of the pen along the contours of the invisible parts of
the pictures. The saving in the plotting time varied between 119,
and 30%. The effect of the sequencing was observed also with a
plotter spool file of reduced size. The reduction varied between
10% and 39%. Still better results were achieved when using the
algorithm of Williamson. For three test surfaces the maximal
saving was 44% in plotting time and 45%; in file size.

The plotting time observed includes some idle periods in the
plotting. This is due to interruptions in the output process
caused by the operating system. The workload of the system is
thought to be about the same in the different tests, all pictures
being plotted successively. We therefore suppose that the times
are comparable. (The results of Section 3.1 were run during a
low workload period of the computer so that the operation of
the plotter was uninterrupted.) The reduction of the plotter
spool file is a more accurate measure and the same trend can be
seen in time and space savings.

The effect of the degree of the heuristic was also tested with
the algorithm of Watkins, see (Kuokkanen, et al., 1977a). As
in the case of random pictures, the selection N ~ 10 seemed tog
give good results. The fastest plotting was observed when thes
lines of the picture used 1-2 data segments each. If the length ot§
the data segments is increased at the expense of their numberZ-
the resulting low degree of the heuristic causes poor results. It i
not advantageous to select a data segment such that many off
the lines must be split into two parts, because the two parts arez
most probably plotted successively anyway. In the extremé;
case each data segment consists of only two points and asy
much as 2n-2 points of the data area are needed to store &
line of n points. g

‘ Entry)

Check the
pen status

|

pen remains pen remains pen is pen is
up Lowered raised lowered
Add a new “Close” the Are there any] No Determine the%
base point current Lline| free data line nearest P
(Return) to the segments lefd to the o
current line for lines? current posi=f
tion of the §
o
pen and plot ©
() () Yes it. B
Return Return Set free the
data segment
of the drawn
line.
Create the

nb Aq €9Z€V€/€LE/V/ZZ/GIO!UE/IU[LUOO/LUOO'an'L!LU

next lLine by
storing its
first point.

(Return)

Fig. 3 Flowchart for the plotting sequencer. CALL OPLOT (IC, X, Y), where (X, Y) is the new point and IC gives the control of

the pen: IC = 0/1/2/—1 means ‘state unchanged’/‘raise’/‘lower’/‘last sequencer call’

The Computer Journal

Volume 22 Number 4

315

length of the wasted movement is
- SV, K) ~ VRIKVN + N2 M
when the degree of the heuristic is N.

As an average lower bound of the wasted movements we can
use 5,(K) = Kd_; (K), where d_; (K) is the expected minimum
distance between the end-point of one line and all end-points of
the other K-1 lines. Then we can obtain that §,(K) ~ §(XK, K)/2.
Thus, in the best case, where N = K, the average wasted move-
ment is about twice the average lower bound. On the other
hand, the ratio of s(N, K) to the optimal solution is not
100 } bounded. It has been shown by Rosenkrantz, et al. (1977) that

for K-city travelling salesman problems the nearest neighbour
rule guarantees a solution that is at most 0-5 - log,K times the
optimum, if the distances satisfy the triangle inequality. In the
case of the plotter sequencing problem the triangle inequality
t + + is not satisfied between the lines.
10 50 100 N An important observation can be made if s(V, K) is com-

Fig. 4. The total plotting time (T}) as a function of the degree of the pared with the non-sequenced case. Then the total length of the

heuristic (N), when 100 random lines are drawn in square Wasted movement is on the average 5,(K) = bK, where b is the
5 x 5 inches in area mean distance between the end-points of the lines. The length

of the wasted movement thus increases linearly with K.
(se) Formula (1) shows that also (N , K) increases linearly with X
but at a much slower rate. In the best case where N = K, we
A2 obtain a square root increase rate 5(K, K) = (R/2)°5K°5. The
execution time is then O(K?2), whereas for a fixed N we have an
0(1) algorithm.
One way of improving the sequencing mlght be to modify the
‘large-arc’ algorithm of Frederickson et al. (1978) so that it
works also for undirected arcs. This algorithm guarantees a
solution that is at most three times the optimum, but its
PR 8.2 processing time is of the order O(K?) and it cannot be adapted
to dynamic situations. In static situations, where we can store |
the whole picture simultaneously, it could also be possible to
modify the O(K?) travelling salesman algorithms of Rosen-
krantz, et al. (1977) to produce better plotting sequences.

150 &

50

A

5. Summary

The paper described a stepwise plotter sequencer for reducing

the time needed for the wasted movements made by the pen.
)) Only a part of the picture was considered at each moment. This

t ! ' made possible the processing of pictures of unlimited com-

0 % 0w plexity. The effect of the sequencer was experimentally tested in &

Fig.5 CPU time as a function of the degree of the heuristic. Legend: the cases of both random and non-random pictures. The 7
A: total observed time, B: time without PLOT. -calls: sequencer was capable of reducing both the actual plotting 5

LQ/V/ZZ/BD!J,JE/|U[LUOO/LUOO'an O!LUQpEOE//ZSdnL] woJ} pspeojumoq

1: 100 random lines, 2: 200 random lines time (Fig. 4) and the CPU time (Fig. 5), if the degree of theg
< heuristic, i.e. the number of lines to be considered at a time, is <
4. On the performance of the nearest neighbour rule " about 10-15. 3

Let us suppose that the end-points of the K line segments are The sequencer is available as a FORTRAN subroutine in the o
uniformly distributed in a picture of area R. Leipéld (1978) = DECUS-Library of programs (Kuokkanen and Nevalainen,
has shown that for the nearest neighbour rule the expected 1977b).

References

BRESENHAM, J. E. (1965). Algorithm for computer control of a digital plotter, IBM Syst. J., Vol. 4, pp. 25-30.

FREDERICKSON, G. N., HECHT, M. S. and KM, C. E. (1978). Approximation Algorithms for Some Routing Problems, SIAM J. Comput., Vol.
7, pp. 178-193.

FreEMAN, H. (1969). A Review of Relevant Problems in the Processing of Line-Drawing Data, in Automatic Interpretation and Classification
of Images, ed. by A. Grasselli, Academic Press, New York, pp. 155-174.

KUOKKANEN, L., LEIPALA, T. and NEVALAINEN, O. (1977a). Implementation and analysis of a plotter sequencing system, Report B9, Depart-
ment of Computer Science, University of Turku, Turku, Finland.

KUOKKANEN, L. and NEVALAINEN, O. (1977b). Revised Plotter Subroutines for DEC-10, DECUS Program Library No. 10-292.

LerpaLa, T. (1978). The probabilistic analysis of the nearest neighbour algorithm in plotter sequencing and stacker-crane problems, Report
B16, Department of Computer Science, University of Turku, Turku, Finland.

LIESEGANG, D. G. (1976). The Tube-Passing Problem and the Travelling Salesman Problem, to be published by North-Holland in Proceedings
of the IX International Symposium on Mathematical Programming.

NEVALAINEN, O and VESTERINEN, M. (1978). Solving the Order of Line Drawing, Angew. Inf., 1/78, pp. 15-19.

REINGOLD, E. M., NIEVERGELT, J. and DEo, N. (1977). Combinatorial Algorithms: Theory and Practice, Prentice-Hall, Englewood Cliffs, N.J.

ROSENKRANTZ, D. J., STEARNS, R. E. and Lewis II, P. M. (1977). Approximate Algorithms for the Traveling Salesman Problem, SIAM J.
Comput., Vol. 6, pp. 563-581.

WATKINS, S. L. (1974). Masked Three-Dimensional Plot Program with Rotations, CACM, Vol. 17, pp. 520-523.

WILLIAMSON, H. (1972). Hidden-Line Plotting Program, CACM, Vol. 15, pp. 100-103.

VZOZ ludy 6L U

316 The Computer Journal Volume 22 Number 4

