A program to calculate the GAMM measure

B. A. Wichmann and J. Du Croz*

Computing Services Unit, National Physical Laboratory, Teddington, Middlesex TW11 OLW

A FORTRAN program is given whose execution time is proportional to the GAMM measure
of computer performance. An error analysis is given of the floating point calculation in the
program. This analysis permits the program to be used as a confidence check on the accuracy of

the floating point facilities of the computer.
(Received December 1978)

Introduction

The GAMM measure of performance is often quoted by
manufacturers, mainly in Europe, to indicate the speed of a
machine on scientific calculations. The measure is a weighted
average of the time taken in five simple numerical loops. For
any particular computer, the loops are traditionally program-
med in assembly code and timed by hand using the manu-
facturer’s machine manual. Sometimes the timing is checked by
running the program, particularly with the faster machines
where it is not easy to time programs by hand because of
instruction look-ahead and slaving.

It is clearly more satisfactory if the programming can be done
in a high level language because this will take into account the
efficiency of the compiler, which is important now that
scientific programming is rarely performed in assembly
language. The note describes a program to calculate the GAMM
loops using FORTRAN (although recoding in any other
language with floating point operations would be simple).

Definition
The five loops are:
1. Addition of two vectors of order 30.

2. Element by element multiplication of two vectors of order
30.

3. Evaluation of a polynomial of order 10 by Horner’s method.

4. Selection of the maximum component of a vector of order
10.

5. Computation of a square root by Newton’s method with
five iterations.

If the times for the complete loops are T; microseconds, then

the GAMM measure is defined by

GAMM = (T,/(1*30) + T,/(2*30) + T,/(2*10) + T,/(2*10)
+ Ts/(3*5))/5

The second factor in each divisor is the number of repetitions of

the statements in each loop. If the initialisation (and termina-

tion code) of the loops is ignored and if ¢; is the time for the

code within each loop, the figure becomes

GAMM = (t; + t,/2 + t3/2 + t4/2 + t5/3)/5

There does not appear to be any justification for the particular

weights chosen. The definition is repeated here because the

original (Heinhold and Bauer, 1962) does not seem to be easily

obtainable.

Construction of the program

The usual method of calculating the GAMM figure requires
the timing of five loops which only take a few microseconds. It
is impossible to perform this timing in a machine independent
manner and, in any case, reliable timing of such short intervals
is difficult on many machines (Gentleman and Wichmann,

*Numerical Algorithms Group, Oxford

The Computer Journal Volume 22 Number 4

1973). Hence the method adopted here is to use the total pro-
gram times only. To do this, each of the five loops is repeated a
number of times to give the correct proportion. Using the first
formula above 300 GAMM units is 2*T; +T, +3*T5 +3*T, +
4*T,. Hence the program requlres 131loops: 2 additions, 1 multl-
plication, 3 polynomials, 3 maxima and 4 square roots. The 132
loops are nested within an outer loop to give a program whoseg
execution time can easily be varied to suit the timing capabilities?
of any particular machine. This outer loop is repeated N timesS&.
Having determined the overall structure of the program, it 18
necessary to complete the details to meet a further constramt
The program must not be capable of being optimised unduly b}g
a good compiler such as the IBM FORTRAN H (OPT = 2)2
For instance, if an optimising compiler could detect that a;
complete loop could be omitted, then the program would nots
time the necessary loops. Legitimate optimisation includes
good use of registers, using special loop control instructions2
removing array address calculation out of the loop or even;
‘flattening’ the loop by repeating copies of the loop code. To3
ensure that each loop is indeed compiled, all computed values;
should be used by the program. This requirement is not easil)g.
met since the program must not either overflow or underflows
(even on machines with 16 bit integers or a small exponent in5
floating pomt) The method used is to perform exactly the samq%
computation in each cycle of the 13 loops by permuting the?
values of the three arrays. Each cycle contributes to anw
accumulated sum and hence cannot be optimised out. At su(\‘
points within the cycle, a value ¥ (or ROOT) is calculated. Thq%
statement

Aa 112

ACCl = ACC1 + Y*DIVN

is then executed where DIVN = 1-0/FLOAT(N). At the end o@
the loop, ACCl1 is added to the current value of ACC. The final?
accumulated value of ACC is printed at the end of the programs
(together with the number of repetitions of the main cycle) tog
ensure that the program was executed successfully. >

To use the program to measure the GAMM figure for a—-
particular computer, one of two methods can be used. Flrstly,m
the number of repetitions of the outer loop can be set to a large™
value so that the time for the initialisation code and printing
the results can be ignored. Alternatively, the program can be
run with just one cycle to determine the overhead and this time
subtracted from the time for a large number of cycles. This
method is to be preferred since with many computers it is not
clear how much of the loading overhead is added to the
processor time given by the operating system. The method can
also be used with load and go systems such as WATFOR,
where the overhead would include compiling.

The program passes Fosdick’s data flow analysis test (a static
test that variables are initialised and values used) (Osterweil and
Fosdick, 1976) with the exception of the array elements C.
Hence all the elements of the arrays A and B and all the simple

317

variables are both initialised and used after being computed.
This demonstrates that optimisation of the program by a good
compiler is unlikely to produce code which does not follow the
FORTRAN source text. The data flow analysis was checked
with a facility in the BABEL compiler at NPL (Scowen, 1969).

Differences from the GAMM definition

The program has three differences from the GAMM definition

as follows:

1. The time to set up the loops is counted as well as the loops
themselves.

2. Initialisation of simple variables, accumulation of the final
result and a main loop are added to make a complete
program.

3. One loop subtracts two vectors instead of adding them.
(This is to ensure that every loop performs the same
calculation.)

The following choices are made which are not defined in the
GAMM measure:

1. The loop control code for the thirteen loops are chosen to
reflect the statistics of ALGOL 60 programs (Wichmann,
1973, page 98). This includes stepping backwards through
one array, a process which cannot be handled directly by a
FORTRAN DO loop.

2. In finding the maximum element of ten in a vector, the data
values are such that four assignments to the maximum are
necessary.

The additional computation and loop initialisation give a

GAMM figure about 5% higher than the true formula (on

KDF9).

Results from KDF9
The GAMM figure results obtained from versions of this
program on KDF9 are as follows:

Language Type of compiler GAMM figure

Assembler optimal coding 30-4

ALGOL 60 Good optimising compiler 41

BABEL (fast option) Good non-optimising 105
compiler

FORTRAN Compiler with bound 276
checking

ALGOL 60 Interpretive system 4616

Since KDF9 has about a 7 microsecond average instruction
time, the GAMM figure varies from about 4 to 40 machine
instructions for a true compiler. An interpreter can take much
longer corresponding to about 700 machine instructions. The
GAMM figure from BASIC will typically be this long.

Slmple error analysis

It is hoped that the GAMM program may be run on a wide
variety of machines. Since the final number printed by the
program is subject to considerable rounding error, an error
analysis is provided here to allow the program to be used as a
confidence check on the floating point hardware.

The two numbers printed by the program are the number of
loop repetitions (V) and then ACC.

It is easy to see that in the six places where ACCI1 is accumu-
lated, the value to be added is identical for each loop. The
values are the currently computed value of ¥, ROOT, ROOT,
ROOT, Y, and ROOT added after the statements numbered 3,
5,8, 11, 12 and 14 respectively. The six values are (for N = 1)

X1 = 1-18967 4523
X2 = 4-58258 19709 72577 87482 60582 68143 87174 14293
X3 = 104822 01257 84655 97785 78545 20972 84151 82396

318

X4 = 5-56786 43331 01262 00469 24209 77173 90268 22309
X5 = 1-02846 6483
X6 = 3-31662 48052 31568 85947 16804 46747 11540 44996

and their sum is:

TRUEACC = 16:73343 22410 90064 71684 80142 13037 73134
63994 .

In the program, each of the Xi is multiplied by DIVN (= about
1/N) before being added to ACC1. Hence the value finally
accumulated (ACC) is always about TRUEACC, since it is the
sum of N terms of size about TRUEACC/N.

The second, fourth and sixth numbers arise from Newton’s
algorithm but convergence to the square root is not obtained
for machines with a sufficiently long mantissa. The error in
calculating the six numbers is of the same order as the machine
accuracy since the error depends only upon the last floating
point operations. This is due to the inherent stability of Hor-
ner’s method and Newton’s algorithm. We shall see that the
likely rounding error in ACC is of order N and arises from the
accumulation.

For the first few passes of the main loops, the contribution to9
the error is small. However, consider the case whens
8 < ACC < 16 (assuming a binary exponent with floating$
point). This condition will be satisfied for nearly half the values(p
for REP. In adding ACC1 to ACC, the product must be shlfted—h
down before adding. Moreover, for these values of REP, theS
value lost at the bottom is the same, since ACC1 is identical andZ
the shift is by the same amount. The same reasoning appliesz
with the other ranges for ACC, the only cases being excludeds
are when ACC changes its exponent (of order log (N)).

To obtain a crude estimate of the error distribution, ones
proceeds as follows. For any particular value of N (and3
particular machine characteristics) the value of ACC printed iss
completely determined. This value can deviate from TRUEACCE
by quite a small amount even for large N, but the expectedO
deviation is proportlonal to N. If the expected absolute value of3
the error arlsmg from one cycle with ACC over 8 is A, thenj_
when ACC is half this, the shift before addition is one less an(ﬂ
the number of cycles is half so that the total error is four timess-

Silioped

smaller. Hence we have g
~
Range of Number of Error inone Total errorin this%
ACC loops loop range Q
16to 16:73 “13*N/1673 A “13*N*A/16:73 %
8to 16 8*N/16:73 AJ2 4*N*A/1673
4t08 4*N/1673 A/4 N*A/16:73 Z
Hence the total error from all the ranges is §
N*A*(73 +4 + 1 + 1/4...)/1673 ©

= 6067*N *A/1673 = 3626*N *Ao
This analysis shows that the error is proportional to N. TOo
obtain the actual distribution requlres more care since th&
assumption made above that the various contributions could be
summed together is not valid.

Error analysis and distribution
Consider the problem of computing N* X be repeated addition,
ie.:
:= 00;
fOl'l = 1 step 1 until N do
S:=8+ X;

Assume that the computer uses a standard floating point
representation, with base ‘b’ and ‘¢’ b-ary digits in the mantissa.
Let X lie in the range [b](g — 1), b1q) and let the b-ary digits in
the mantissa of X be:

X1X3X3...%, 0< x; <b.

The Computer Journal Volume 22 Number 4

At a typical stage in the computation, suppose S lies in the
range [b1(q + i — 1), bf(g + i)): then the mantissa of X must be
shifted i digits to the right, so provided S + X < b{(q + i), the
rounding error with truncation is simply

D= % _it1Xe—i42--- % *bNg — t +1)
Let ACC be the final computed result: ACC is about N*X, and
suppose ACC lies in the range (b1(r — 1), b1r). Then, since the
number of values of X contributing to ACC while S lies between
bt(g+i—1) and b1(q +i) is about (b1(g +i) —bT(g +i—1)/ X, the
total error due to truncation is (to a close approximation):
(ACC — bi(r — 1)) * D,_, /X

+ "};'(br(q i) — bi(g +i — D)*DyX
= b}(—1)*N/ACC
'il"x,-m*m(q +i— I*ACC — bi(g + i — 1))
i=

If we can assume that the low order digits of X are uniformly
distributed over the range [0, b — 1], then each has a mean of
(b — 1)/2, and so the mean total rounding error is:
b(—=)*(— 1)*N/(2*ACC) (ACC*(b1(r — 1) + bT(r — 2)

+..b1g) — B1Q*r — 2) + b1(2*r — 4 + .. + b1(29))
if one assumes that b1(r — q) is negligible, then this can be
approximated by

b1(r — t)*(ACC — b1r/(b + 1))*N/(2*ACC) .
Moreover, each digit has a variance of (612 — 1)/12, and if we
assume that the digits are independently distributed, we can
sum the variances, and so the variance of the total rounding
error can be calculated, and is approximately (again neglecting
terms of order b1(r — q)):
((B1(r — t)*N/2*ACC)12*(b12 — 1)/3*(ACCT2/(b12 — 1)
—2*ACC*b1r/(b13 — 1) + b1(2*r)/(b14 — 1))

The calculation of the error with rounding is more difficult.
The rounding error on each addition is:

D; — A*bY(g — t +1),
where the D, is defined as for truncation, and
A, =0if D; < -5*b1(g — t + i)
A, =1if D; > 5*b(q — t + i)
(assuming the usual method of rounding, where 1/2 is always

rounded up). The total rounding error. is therefore:
bi(—1)*N/ACC({

:gxz-m*bT(q +i— 1)*(ACC — bl(g + i — 1))

S8 UG + 7N +) — Bl + = 1)

— A,_*br*(ACC — b1(r — 1))
Ifb =2, A; = x,_;,, this expression simplifies to:
@1(—=1)*N/ACC) {

r—q—

s ies*21(@ + i — D*ACC — 3%21(g + i — 1))}
=1

+ Xeopaqer*210 — D*QIC = 1) — ACQ))
The mean total rounding error is now exactly
b1(—1)*b1q*(b1q — ACC)*N/2*ACC, i.e. of order bf(g —r).
To calculate the variance, we cannot assume that the A, are
independent of the x;; however if the base b is even, the 4;
depends only on x,_;,, and the variance of each term of the
form x,_;,*H; — A;*G;is:

12 — D*H12/12 — b/A*H*G; + 1/4*G12

Hence we find that the variance with rounding is less than the
variance under truncation by:

(B1(r — P)*N/2*ACO12*(b — D)*b1(r — D*(ACC/(b13 — 1)

i

The Computer Journal Volume 22 Number 4

15+
16+
17+
18+

19+ S
20+ __S-_-T= .
21+/

Fig. 1 Graph of error distribution for base 2 arithmetic
Value plotted is (TRUEACC — ACC)*21¢*1-81/N.

R = Rounding, theoretical

O = Rounding, observed (KDF9)

T = Truncation, theoretical

S = Truncation, observed (CDC 7600).

— btr/(b74 — 1))

approximately, and this is always positive

ACC > b1(r — 1).

Observed and calculated distribution function

A program has been written to calculate the distribution of the
errors with truncation. The program calculates the first few
terms of the error assuming N is large. The tfuncation error
simplifies to

bI(—t)*N*b1r/ACC x {—ﬁi x*b}i*(ACC — bti)}

where the x' are independently distributed digits to base b.

Similarly the formula for the mean becomes

b (—t)*N*b1r*(ACC — b1r/(b + 1))/2*ACC.
and the formula for the standard deviation becomes
bI(—t)*N*btr*sqrt((b12 — 1)*(ACCT2/(d12 — 1) —2*ACC*
b1r/(b13 — 1)bT(2*r)/(b14 — 1))/3)/2*ACC

Three runs were done with the program taking 4096 values in
each case. This is 12 terms for base 2, 4 terms for base 8 and 3
terms for base 16. A histogram was produced for each case by
dividing the maximum range into 21 parts (to give a symmetric
output). A little care is necessary to ensure that the histogram
handles the end points correctly. This was done by reducing the
interval by a small amount, which resulted in very small
deviations from the expected symmetry. The output is illustra-
ted in the graphs given for each base (Figs. 1, 2 and 3)

Another program has been written to examine experimentally
the distribution of the rounding error. The program can run
quickly if the redundant calculation is removed from the loop
(i.e. the repeated calculation of ACC1). Runs have been made
for 4096 different consecutive values of N with base 2 truncation
(CDC 7600), base 2 rounding (KDF9), base 8 truncation and

319

since

Z udy 61 U0 3s8NB AQ //ZE¥E/. LE/PIZZ/RI0ME/UlWOD/W0d dNo"olwapeoe)/:SAyY WO} POPEOJUMOQ

o
N
=

17+ e.---S T

18+ SeotTT T 1
o ___,'1‘5/
20*_‘____—,._.§-_'_’_:__—_T_ . .
21+

Fig. 2 Graph of error distribution for base 8 arithmetic
Value plotted is (TRUEACC — ACC)*8}¢*-571/N.

R = Rounding, theoretical

O = Rounding, observed (B5500, single precision)

T = Truncation, theoretical

S = Truncation, observed (B5500, double precision)

rounding (B5500) and base 16 truncation (370). These results
also appear on the graphs. Standard FORTRAN programs
are available from NPL to produce these graphs for both
single and double precision. A charge is made for these
programs.

The visual agreement between the actual and theoretical
distributions is seen to be good although a chi-squared test
fails. This is thought to be due to the correlation in the low
order digits for ACCl for consecutive N. The binomial
expansion for N + 1 in terms of that for N will converge in 4 or
5 terms on most machines.

It can be seen that the distributions are by no means normal,
and indeed some are almost rectangular. Hence the maximum
range for the distribution gives a very good acceptance test;
results obtained outside this are extremely likely to indicate an
error (hardware or software). The different shape is caused by
the different magnitude of the first term—which is in turn due
to where 16:7 (TRUEACC) is placed relative to the powers of
b.

A similar program was written to calculate the distribution
with rounding. The output from these calculations is incorpor-
ated in the graphs for each base.

Use of the program as a confidence check
The error analysis above allows the program to be used as a
confidence check. For any value of N, the deviation between
the computed value of ACC and its true value will vary in a
random manner. Hence any one computer run with a large
value of N (>200) cannot reveal much about the machine
accuracy. A single run could suggest an error in either software
or hardware only if the deviation is much greater than the
expected amount.

To check a single value one needs to know the machine

characteristics. The three important factors are rounding/
truncation, the mantissa length (¢) and the base of the exponent
(b). Some typical machine characteristics are:

Machine Options t b Round|/truncate
IBM 370 Single 6 16 truncate
Double 14 16 truncate
CDC7600 Single,round 47 2 round
Single, truncate 48 2 truncate
Double 96 2 truncate
ICL1906A Single 37 2 round
Double 74 2 round
KDF9 Single 39 2 round
Double 78 2 truncate
B5500 Single 13 8 round
Double 26 8 truncate

To perform the check one proceeds as follows:

The quantity B = (TRUEACC — ACC)*b1t/N is calculated.
This is an estimate of the error which is independent of the
machine accuracy and the value of N used.

The value of B must now be compared with the relevant S
graphs Each graph uses a different scale to accommodate the
varying spread. If a value falls outside the bounds shown on the ﬂ>
graph by more than one unit, there is strong reason to believe =
an error in the floating point hardware or software.

If the above check indicates a strong possibility of an error, = =3
then the program should be rerun with N = 1. Any largc 2
deviation for N = 1 is clearly serious, but a small variation may & 3
occur in the lowest digits merely due to the accuracy of the Q
FORTRAN output package.

An important cross-check that should be performed whenever o o
possible is to run the program with different compiling optxons 5

moQ

eo

wo.

olws

Value Frequency (per cent)
+ 1 2 3 y 5 6 7 8 9 1
-12+

-114R
~
o el
-8+
T+ :
-6+ \R
-5+
“4s T~
-3+ . \R

-2+

-14-&)
T
~$\T g

2+ \s\'r R

3+ s\'r‘-s_ gl

be \TSS/R‘/

5+ . . C o RTTR .

6+ R Ss

T+ _—R &2,

8+ R N

9+R-/

10+ 4.

11+ s

12+ S~ _T

13+ oS —

144 s T

15+ __.:ST

16+ .s/T/

17+ _ --ST

18+ S--~ __T

t9e -1

20+'/1\./ .

21+

Fig. 3 Graph of error distribution for base 16 arithmetic
Value plotted is (TRUEACC — ACC)*161¢*-820/N.

R = Rounding, theoretical

T = Truncation, theoretical

S = Truncation, observed (IBM 370/168, single precision)

" p20z 14dy 61 U0 1senb AQq 1/Z€¥E/. L€ /b/ZZ/OI0IME/UTL0O W00’

The Computer Journal Volume 22 Number 4

(diagnostics, etc.). Such options should make no difference at
all to the output printed. The same is true of versions of the
program coded in different languages but run on the same
underlying hardware. If different results are obtained, a check
with N = 1 should be made and the relevant manuals consulted
to see if any deviations have a simple explanation. A diagnostic
FORTRAN compiler could calculate all real expressions to
double precision which would clearly give marginally more
accurate results. If the results are very accurate (say always on
the zero position on the graph), then it is possible that ‘#’ has
been given the wrong value or that the precision is more
accurate than the manual states.

If a fault cannot be located but this program gives results
repeatedly outside the bounds shown on the graph, the vendor
of the compiler and hardware should be consulted. The com-
puter runs should be supplied together with a copy of this
report.

Acknowledgements

We are grateful to Dr L. Thomas of the Burroughs Corporation
for performing the calculation of ACC to 40 digits on a B1700.
Dr M. G. Cox from NPL provided considerable assistance
with the error analysis. Many helpful comments were made on
a draft of this paper by Dr B. Smith of the Argonne Laboratory.
Mr C. Harman produced the FORTRAN program which was
used to give the histograms (Figs. 1, 2, 3). Mr R. Harvey of the
Post Office was kind enough to run the programs on the B5500
and 370/168 to give the distributions for an octal and hexa-
decimal machine.

Appendix 1 Program listing

The single or double precision version of this program can be
constructed from the other version by means of the following
editing interchanges:

single precision double precision

REAL DOUBLE PRECISION
E+0 D+0

E30-22 D40-30

Also, to give a comparable length of time, the initial assignment
should be changed to N = 3500 for the double precision ver-
sion. The initial comments should also be altered. Both pro-
grams can be provided on paper tape.
C GAMM IN FORTRAN - SINGLE PRECISION VERSION, MARK 3
C NATIONAL PHYSICAL LABORATORY BENCHMARK GAMM F
C THIS PROGRAM HAS A SINGLE PARAMETER N
C OUTPUT IS BY ONE WRITE STATEMENT TO DEVICE 6
C SET N = 10000 FOR ABOUT ONE MINUTE ON MACHINE LIKE 360/65
INTEGER FIVE, I, J, N, REP, TEN, THIRTY
REAL ACC, ACC1, DIVN, RN, ROOT, X, Y
REAL A(30), B(30), C(30)
N = 10000
FIVE = 5
TEN = 10
THIRTY = 30
RN = N
DIVN = 1.0E+0 / RN
X = .1E+0
ACC = 0.0E+0
c INITIALISE A AND B
Y = 1.0E+0
DO 1 I= 1, 30
A(I) = I
B(I) = -Y
Y=-Y
1 CONTINUE

The Computer Journal Volume 22 Number 4

2

10

"

12

ONE PASS OF THIS LOOP CORRESPONDS TO 300 GAMM UNITS
DO 15 REP = 1, N

FIRST ADDITION/SUBTRACTION LOOP
I=30
DO 2 J = 1, THIRTY
C(I) = A(I) + B(I)
I1=1-1
CONTINUE
FIRST POLYNOMIAL LOOP
Y = 0.0E+0
pDO3I=1, TEN
Y=(Y+cC(I)®X
CONTINUE
ACC1 = Y ® DIVN
FIRST MAXIMUM ELEMENT LOOP
Y = C(11)
DO4I=12, 20
IF (C(I) .GT. Y) Y = C(I)
CONTINUE
FIRST SQUARE ROOT LOOP
ROOT = 1.0E+0
pO5I=1,5
ROOT = 0.5E+0 * (ROOT + Y/ROOT)
CONTINUE
ACC1 = ACC1 + ROOT * DIVN
SECOND ADDITION/SUBTRACTION LOOP
DO 6 I = 1, THIRTY
A(I) = C(I) - B(I)
CONTINUE
SECOND POLYNOMIAL LOOP
Y = 0.0E+0
DOTI=1, TEN
Y= (Y+A(I) X
CONT INUE
SECOND SQUARE ROOT LOOP
ROOT = 1.0E+0
Do 8 I = 1, FIVE
ROOT = 0.5E+0 * (ROOT + Y/ROOT)
CONTINUE
ACC1 = ACC1 + ROOT ® DIVN
FIRST MULTIPLICATION LOOP
DO 9 I = 1, THIRTY
C(I) = c(I) * B(I)
CONT INUE
SECOND MAXIMUM ELEMENT LOOP
Y = C(20)
DO 10 I = 21, THIRTY
IF (C(I) .GT. Y¥) Y = C(I)
CONTINUE
THIRD SQUARE ROOT LOOP
ROOT = 1.0E+0
pO11MI=1,5
ROOT = 0.SE+0 * (ROOT + Y/ROOT)
CONTINUE
ACC1 = ACC1 + ROOT * DIVN
THIRD POLYNOMIAL LOOP
Y = 0.0E+0
Do 12 I = 1, TEN
Y =(Y+C(I) ®*X
CONTINUE
ACC1 = ACC1 + Y ® DIVN
THIRD MAXIMUM ELEMENT LOOP

20z udy 61 U0 189nB AQ £/ ZE7E/L LE/7/2Z/010M4e/|ufo0/W0d"dNo"oILePEDE//:SARY W) PAPEO|UMOQ

Y = C(1)
DO 13 I = 2, TEN

IF (C(I) .GT. ¥) Y = c(I)
13 CONTINUE
c FOURTH SQUARE ROOT LOOP
ROOT = 1.0E+0

DO 14 I = 1, FIVE
ROOT = 0.5E+0 * (ROOT + Y/ROOT)
14 CONTINUE
ACC1 = ACC1 + ROOT * DIVN
ACC = ACC + ACC1

References

15 CONTINUE
WRITE(6, 100) N, ACC, ACC1
C SHOULD PRINT N THEN 16.73343 22410 90064 71684 80142
c 13037 73134 63994
c AND THEN 16.73 ... / N
100 FORMAT(I10, 2E30.22)
C FORMAT SHOULD BE ADJUSTED TO PRINT TO MAXIMUM PRECISION
STOP
END

GENTLEMAN, W. M. and WICHMANN, B. A. (1973). Timing on Computers, SIGARCH, (ACM) Vol. 2, pp. 20-23.

HEINHOLD, J. and BAUER, F. L. (Eds.) (1962). Fachbegriffe der Programmierungstechnik. Ansgearbeitet vom Fachausschutz Programmieren der
Gesellschaften fuer Angewandte Mathematik und Mechanik (GAMM) Muechen, Oldenbourg-Verlag.

OSTERWEILL, L. J. and Fospick, L. D. (1976). DAVE—A validation error detection and documentation system for FORTRAN programs,

Software—Practice and Experience, Vol. 6, pp. 473-486.

ScoweN, R. S. (1969). BABEL, A new programming language, National Physical Laboratory Report CCUT.

WICHMANN, B. A. (1973). ALGOL 60 Compilation and Assessment, Academic Press, London.

CAD meets Al

Artificial Intelligence and Pattern Recognition in Computer Aided
Design, edited by J-C. Latombe, 1978; 510 pages. (North-
Holland, $60.00)

This book presents the 20 papers and as many discussions of a
conference convened in March 1978 by the IFIP working group on
Computer Aided Design (CAD). Its purpose was ‘to study the
impact of Artificial Intelligence (AI) and Pattern Recognition (PR)
on CAD’.

Of the three invited papers on CAD, AI and PR, Sandewall’s
account of Al stands out. It brought home the central message
‘the current body of knowledge in Al is mostly a way of thinking’
and stressed his own view of AI’s deep almost philosophical com-
mitment to advanced programming technology. Warman’s paper
on CAD failed to give me the picture I needed of CAD practice and
problems, though Fenves’ paper left me in no doubt about the
sheer size of design specifications that are created in building
designs and other fields of structural engineering. Nagao’s work-
manlike review of pattern recognition failed to arouse the audience
and PR was clearly a non-issue throughout the conference.

One of the issues that PR might be thought to address was taken up
in a number of papers directed towards the man-machine interface.
Thus the paper by Mohr and Masini presents the syntax-directed
approach to recognising drawings; in contrast Liardets excellent
paper shows how knowing the semantics of the pictorial forms being
drawn can be mobilised to ‘tidy up’ and recognise the input. Other
presentations concerned with making sense of drawings on paper
were consistently attacked by Negroponte (who stands out in many
of the discussions) for being the wrong way to go about it: graphical
displays will be ‘flat portable transparent waterproof” but not like
paper capable of being crumpled ?

While there can be little doubt that the communication interface
can and should require intelligent computation the main emphasis
of the conference concerned problem solving. Several papers were
directly concerned with the presentation of systems employing
problem solving techniques for necessarily limited areas of design
(Pereira, Henrion, Perkowski, Tyugu, McDermott), but the signifi-
cance of the topic lay not so much in particular solutions as in its
power to serve as a focus for questions about the nature of designing.
Akin examined the behaviour of designers with just such a perspec-
tive based upon Newell and Simon’s conceptions of human in-
formation processing. He believes that many cognitively distinct
mechanisms contribute to the emerging solution, an account echoed
in another Carnegie Mellon contribution from Eastman who sought
to integrate the contribution of different components of a CAD sys-
tem in a single data base reminiscent of the organisation of the

322

WwioJ} papeojumoq

speech-understanding systems built by Reddy and his colleagues=
at Carnegie Mellon University. Akin notes that ‘it is widely accepteds
that designers use parts of buildings’ (as a basis for generating=
solutions) and it is this notion that is at the centre of what was§
perhaps the most important contribution to the conference:2
Sussman’s idea of ‘problem solving by debugging almost right3
plans’ (PSBDARP). These almost-right-plans or ‘answers’ provide$
the basis for organising the design work, specifically in debuggings
and patching the bits of the answer that don’t fit the problemg
specification. While Sussman’s presentation concerned the imple-3
mentation of his PSBDARP approach in the field of circuit design, 8
it has a wider significance. It represents in part a concept widespread=:
in Al that as intelligent beings we bring to every situation larges
hunks of organised experience that determine our perceptual =
expectations, subserve our understanding and guide our thinking.2
Variously known as schemata, scripts or frames they figure pro-§
minently in AI work on vision and natural language. Sussman’sg
distinctive contribution to Al is to introduce his own version the=
‘plan’ into problem solving. Sussman’s argument was not just ‘get§
some answers into your systems’ but also, ‘look at what you are{;
doing as a designer in these terms’. Leaving the ‘answers’ with the3
designer of course maintains the balance of design responsibilityS
as CAD has largely conceived it—with the user—but Sussmane
(supported by Sandewall’s account of LISP style programming in{
Al) sees the prospect of the designer more explicitly formulatingo
his almost-right-answers in computational terms by giving himZ>.
powerful programming tools rather than problem oriented packages. g
Programmers are for Sussman designers, and Al programmersS
write programs to explore the problem often discarding the programy,
to write a better more informed and informative version. TheS
programming technology that supports such an approach to design

is perhaps one of the things AI has to offer CAD, and if designing

in the new computer age is to become synonymous with debugging

then we’ll surely need it. M. Crowes (Brighton)

An Introduction to Programming and Applications with Fortran by
T. E. Hull and D. D. F. Day, 1978; 254 pages. (Addison-Wesley,
£8-25)

This is really two separate and indifferent volumes stuck together to
make one poor but expensive book offering terrible value for money.

The first half is a vague and feeble introduction to FORTRAN (it
does not even touch upon COMMON). The second half, which has
no need of the first, has its brief moments of value but attempts too
much with the result that it is little more than a very superficial survey

of various numerical aspects of computation.
D. L. Fisuer (Leicester)

The Computer Journal Volume 22 Number 4

