Process synchronisation in MASCOT*

H. R. Simpsont and K. Jacksont

The MASCOT approach to programming is concerned with the build up of software in a computer,
its run time operation and the testing of individual facilities. A central feature of the approach is the
manner in which certain synchronisation primitive procedures and control variables are used to
achieve a high degree of modularity. This paper describes MASCOT software structure and
synchronisation, and includes several examples to illustrate this style of programming.

(Received January 1978)

1. Introduction

The acronym MASCOT stands for ‘Modular Appproach to
Software Construction, Operation and Test’ (Jackson and
Simpson, 1975) and identifies the more important character-
istics of a line of research started in 1972. Experience gained
from the design and implementation of a large real time
system had emphasised the need for software modularity in
three separate but interdependent aspects which are represented
by the words ‘construction’, ‘operation’ and ‘test’. In this
context the term ‘software construction’ is used to denote the
process of converting program source text into the total
software content of a computer; it embraces individual
functions such as compilation, loading and linking which are
sequentially combined to produce executable code resident in
a machine. ‘Operation’ refers to the execution of constructed
code at run time. ‘Test’ refers to the debugging and proving
of facilities for the purpose of commissioning, approval,
development and so on.

Modularity is concerned with the partitioning of software
into smaller more manageable components. Modularity in
the construction process comes about naturally by providing
facilities which allow computer loads to be built up from
many component parts; however care must be taken to ensure
that the maximum degree of flexibility is retained. Modularity
at run time is necessary so that processor time can be shared
between competing parallel processes; it is only partially
controllable since real time interrupts break into running
programs in an unpredictable fashion. As for software testing,
modularity is achieved by identifying and separating the indi-
vidual facilities which are combined to make up the total
system specification; to these must be added various facilities
which are not available to system users but which provide
support for higher levels of software.

In the initial stages the MASCOT work was designated as an
‘approach’ since it was intended to develop a style of program-
ming rather than to produce tight specifications for standard
facilities. However with the passage of time a considerable
amount and variety of experimental work has been associated
with MASCOT and a set of well defined standard facilities
has evolved. We are now confident that these facilities represent
a useful and balanced set and are applicable to a reasonably
wide range of practical requirements.

If applied to its full extent MASCOT affects nearly every
aspect of software design and implementation. However not all
MASCOT features need be incorporated and there is scope for
taking a subset which can be blended in with existing facilities.
At the very least a MASCOT-like system will include the execu-
tive software for process scheduling. This takes the form of a

small kernel providing certain basic operating system facilities
for handling interactions and sharing processor time between
parallel processes. Other more complex facilities may then be
constructed using standard MASCOT system building
techniques. g
In this paper we concentrate on the process synchronisation=
aspects of MASCOT. Shrivastava (1975) has reviewed some§
important ideas relating to process synchronisation and many=
papers including, more recently, those by Kammerer (1977)%
and Ford and Hamacher (1977) give a good summary of the=
more significant contributions to work in this area. There are%
two main lines of approach: first, the use of P, V operations =
on semaphores (Dijkstra, 1968) introduced in order to provideg»
mutual exclusion and second, the use of monitors for mutualg
exclusion supplemented by wait, signal operations on a con-&
dition variable to provide an explicit cross stimulation mechan-g
ism (Hoare, 1974). MASCOT has much in common with theseg
techniques but there are significant differences, the most3
important being that both mutual exclusion and cross stimula- 8
tion are treated as a coordinated set of facilities operating=
on a single type of control variable called a control queue. s
Also, in designing MASCOT we have attached great import- &
ance to practical considerations. All process scheduling
operations are made as efficient as possible and the facilitiesg
provided are flexible yet safe and can be easily adopted for use &
in conjunction with design methods, languages and most 5
hardware associated with current projects. §
Sections 2 and 3 of the paper provide some background to 3
MASCOT process synchronisation. These sections introduce 2
the relevant terminology, and describe the structure of<
MASCOT software and the particularly simple form of kernel &
operating system which is required to schedule processes at S
run time. Section 4 describes the basic facilities for process 2
synchronisation in terms of a control variable and the set of >
primitive procedures which can operate on it. Section 5 %
shows how this form of control variable and its associated S
primitive procedures can be used to construct the message pass- =
ing system which is an integral part of the MASCOT approach.
Section 6 extends the discussion to interrupt handling and
shows how this aspect can be incorporated in the overall
design. Section 7 gives some examples illustrating various
techniques and solutions to standard problems. Section 8
compares MASCOT synchronisation with techniques using
semaphores and monitors. Section 9 discusses some general
points and gives the present state of MASCOT research and
Section 10 summarises the main features and advantages of
the MASCOT approach. Finally, for completeness two
appendices are included outlining the MASCOT construction

w

S0

*In the interval between submission and publication of this paper MASCOT has been further developed and refined resulting in some
changes to the facilities and techniques described herein. Further details can be obtained from the authors.

tDepartment of Computing and Control, Imperial College, 180 Queens’ Gate, London SW7 2BZ

{Royal Signals and Radar Establishment, St. Andrews Road, Gt. Malvern, Worcs. WR14 3PS

332

The Computer Journal Volume 22 Number 4

and test facilities.

MASCOT is in fact language independent but in this paper
we have found it convenient to use the conventions of ALGOL
68-R (Woodward and Bond, 1974) to express program text
and data structures. Three additional types of procedure,
the ‘root procedure’, ‘access procedure’ and ‘response pro-
cedure’ are used to denote particular MASCOT functions.
Example programs have been chosen to illustrate points of
technique and are not necessarily optimised for run time
efficiency. There are a few minor changes to MASCOT as
previously described (Jackson and Simpson, 1975) which have
been brought about by recent development work.

2. Software structure

MASCOT software consists of ‘subsystems’ which run under
the control of a ‘kernel’. The subsystem is an important
MASCOT concept. It provides a means of expressing software
structure and organisation which is sufficiently general to be
used in the formulation of the major part of a computer load.

The kernel software provides executive programs which
exercise overall control over the allocation of processing time,
both in response to external hardware interrupts and at the
base (i.e. non-interrupt) level. It also contains certain key
files, tables and lists (called the kernel data base) which are
used both in the construction of the software and in the dy-
namic management of the execution sequence. A third import-
ant component of the kernel software consists of a set of
‘primitive’ procedures. These procedures allow subsystems to
interact both with the kernel data base and with certain applica-
tion dependent control variables lying outside the kernel
software.

A MASCOT subsystem consists of one or more ‘activities’
which are connected by ‘intercommunication data areas’.
Each activity is essentially a ‘process’ in the conventional
sense and can be regarded as a separate thread in a multi-
programming system. The program which determines the
function of an activity is called a ‘root procedure’. The formal
parameters of a root procedure specify the intercommunication
data areas and their types which will be required when it
is used to support an activity.

Intercommunication data areas fall into two broad categories,
‘channels’ and ‘pools’. Channels are used exclusively for
passing message data between activities, i.e. from producer
activities on the one side to consumer activities on the other.
Pools are generally used as depositories for non-transient
data. Conceptually a channel has two uni-directional inter-
faces and is represented by the symbol I whereas a pool has
one bi-directional interface and is represented by the symbol —
Both of these basic types can be further qualified by use of the
ALGOL 68 mode and structure facility. Access to pools and
channels is generally by means of ‘access procedures’.

Root procedures, channels and pools are known collectively
as ‘system elements’ and are built up individually by the
construction facilities (see Appendix 1). They are the com-

'

'

'
in

' dictionary
'
i
1
!
[

Fig. 1 MASCOT subsystem

The Computer Journal Volume 22 Number 4

ponent elements which are combined together into subsystems
by use of a ‘FORM’ facility. These concepts are best illustrated
by an example. Fig. 1 shows a MASCOT subsystem called
triplicated expansion. The subsystem has three activities and
uses two root procedures which would have the following
procedure headers:

ROOT PROCexpand = (REF CHARCHAN indata, outdata,
REF DICTPOOL lookuptable)

ROOT PROC duplicate = (REF CHARCHAN indata,
outdatal, outdata2)

The function of expand is to read text as a sequence of
characters from a channel of type CHARCHAN, recognise
macro definitions and store them in a look up table within a
pool of type DICTPOOL, recognise calls of remembered
macros, and output the expanded source text as a sequence
of characters into another CHARCHAN channel. The func-
tion of duplicate is to take a stream of characters from one
channel of type CHARCHAN and copy it into two others.
The data areas required by this subsystem are six channels_
of type CHARCHAN (in, transl, trans2, outl, out2, out3)2
and one pool of type DICTPOOL (dictionary). These system=
elements are actual areas in main store and are conceptuallys
loaded by the construction facilities. Some data areas areg
internal to a subsystem (transl, trans2, dictionary); otherss
provide the external interface and are usually shown on thei
dotted line deﬁnmg the boundary of the subsystem.
The subsystem is created by a command such as:

FORM triplicated expansion =
(expand (in, transl, dictionary),
duplicate (transl, outl, trans2),
duplicate (trans2, out2, out3)); .

Such commands will normal!y be actioned by a commando

interpreter which carries out checks on parameter types.O
Once created the subsystem does not run until a furtherg_

5 dno-ojwepeoe//:sdy

command is issued: 2

START (triplicated expansion, p); 3
The second parameter in the command specifies the prlorlty%
to be attached to the start up of this subsystem. N]

The root procedure duplicate is used by two activities and ltg
follows that MASCOT software is normally re-entrant. Ing
general activities are anonymous although a subsystem whlclfg’
contains a single activity is in effect a named activity. oo

The FORM command constitutes an additional stage of’"
linking over and above that required to build up md1v1duaé
root procedures, pools and channels. It gives a degree o
ﬂexnblhty which is of considerable advantage during com-*

missioning and modification. It also provides a means ot%
expressing overall software structure clearly and;:
unambiguously. =

N
3. Scheduling S

Processing time is allocated by the kernel. Fig. 2 shows those
parts of the kernel which are most directly concerned with the
scheduling of activities. The despatcher ‘calls’ activities
to deal with the outstanding work as listed in the current lists.
An activity returns control to the scheduler when it has no
further useful work to do or has consumed a reasonable share
of processor time; this is a cooperative form of scheduling.
Alternatively the kernel may force a return of control on a
pre-emptive basis.

Either of the following statements can be used to place an
activity on the kernel lists:

SUSPEND The activity is placed on one of the current lists.

DELAY (n) The activity is placed on a delay list and will be
transferred to a current list after » time units have
elapsed.

333

subsystens

wmmmeds shows flow of control
control
queues

~—+ shows movement of activities
from, to and between lists

Fig. 2 Scheduling of activities

Statements of this type, which are scheduling primitives, are
used by activities to return control unconditionally to the
kernel. The despatcher then selects the next activity to be run
from one of the current lists and initiates further processing.

In addition to SUSPEND and DELAY there are other primi-
tives which interact with ‘control queues’ declared within the
subsystem software. These control queues contain ‘pending
lists’ which are used to list activities waiting to be restarted
by a software stimulus. When an activity is restarted in this
way it is transferred from the pending list to one of the current
lists; this mechanism is fully described in Section 4. The
primitives which interact with control queues may or may not
cause control to be returned to the despatcher; this depends
on the state of the control queue and the particular primitive
used. It should be noted that control queues always appear
as elements in a pool or channel data structure and that the
primitives which interact with them are normally embedded
in access procedures.

The kernel contains several current lists each with its own
priority. An activity normally retains the priority allocated
at START time except when it is running under the control of
a control queue when it assumes the priority of that queue
(Section 4). This straightforward treatment of priority is
designed to achieve very low scheduling overheads by eliminat-
ing searching and reordering of list items when executing
scheduling primitives. When items are selected from the
current lists the despatcher can use a special technique based
on dynamic adjustment of list priority according to a ‘scan
policy’ (chosen to suit the particular application). The effect
of this is to restrict the proportion of processor time that can
be allocated to activities held on high priority lists. This ensures
that all outstanding work is turned over even under heavy
overload conditions.

The period of execution of an activity started by the despatcher
and terminated by a scheduling primitive is known as a ‘slice’.
The MASCOT monitor (Appendix 2) includes a facility for
measuring and recording slice times and this information can
be used to position scheduling primitives so that satisfactory
cooperative scheduling is achieved. Also, the despatcher
contains a mechanism for detecting excessively long slices
and can forcibly terminate the offending activity.

The hardware configuration used to run MASCOT affects
the design of the kernel and also influences the detailed
programming of the subsystem software. The simplest con-
figuration consists of a single processor with no additional
facilities, and the despatcher, together with its associated
lists. and primitives, provides the executive software which is
necessary for parallel processing in such a system. Three
additional features are relevant:

More than one processor (with shared storage)
Interrupts

Unilateral slicing.
A multiprocessor configuration is readily catered for by feeding
a new slice from a current list to each processor as it becomes
free. Interrupts are handled by an interrupt handler (see
Section 6). The term ‘unilateral slicing’ describes a facility
which reduces the need for cooperative scheduling; such a
mechanism would forcibly suspend activities according to
some time rationing system and return them to the current
lists in order to achieve a more equitable share out of processor
time. In all cases certain straightforward safeguards (e.g.
ensuring the indivisibility of critical sections of program in
primitive procedures) must be used to avoid the possible
corruption of control data; if this is done then MASCOT
provides all the facilities necessary for the synchronisation of
parallel processing.

The simplicity of the MASCOT scheduling mechanism leads
to very efficient opeération in practice. Activities created by the
FORM facility remain inert until the START command
transfers them onto a current list. Following this they are
normally either running or held on one of the lists previouslyo
described, and only exceptional measures can interfere w1thg
this process (see Appendix 2). It should be noted that a commono
area is used for all kernel and control queue lists. This meansQ
that the individual allocations of space for each list can be
adjusted dynamically without affecting the overall space3
required so that, following the FORM command, no activity=
can ever be held up for lack of list space.

4. Control queues
Synchronisation embraces the interrelated functions of mutual 5
exclusion, cross stimulation and resource allocation. Mutual g
exclusion is required to prevent activities running in parallels
from interfering with each other’s operations on variables3
which are common to both. A cross stimulation mechanism=
is required to allow activities to be stopped temporarily and S
restarted. Resource allocation is concerned with controlling=
the use of limited physical assets (peripheral devices, memory, S
etc.) and usually involves a rather complex form of mutual &
exclusion. MASCOT caters for mutual exclusion and cross)
stimulation in a direct and simple manner. These basic faClllthS £
can be used to build the more complex scheduling algorithms a
required for resource allocation.
The ‘control queue’ is the fundamental MASCOT controlw
variable and is a simple data structure having a number of
elements. It is necessary to describe three of these in order to<
explain basic operations on the control queue:
MODE CONTROLQ = STRUCT (INT state,
LIST pendinglist,
INT priority,

opeoe//:sdy

evele

202 1udy 61 uo 1senb Aq

The integer variable priority is used to denote the prlorlty S
of the current list to which an actmty is transferred when it is >
removed from the control queue’s pending list. The value of
priority would normally be preset at load time. The list
variable pending list is used to queue up activities which are
held on the control queue. Finally we have the integer variable
state which can take on five basic values denoting whether
the control queue is in use, whether the activity at the head
of the list is waiting for an explicit stimulus, and whether the
control queue has already been primed by a stimulus. (Note:
two further state values may be introduced to support the
response facility used in interrupt handling; this is explained in
Section 6.)

Before going on to describe the basic primitive procedures
which can operate on a control queue we must clearly define
the five states of the queue:

State 1: The control queue is not in use and any activity joining

The Computer Journal Volume 22 Number 4

the queue will be allowed to proceed immediately.

State 2: The control queue is in use and any activity joining
the queue will be held up.

State 3: The control queue is in use but the activity at the head
of the queue is held up awaiting a stimulus to restart it.

State 4: As for state 2, except that the queue has already been
primed by a stimulus.

State 5: As for state 1, except that the queue has already been
primed by a stimulus.

States 4 and 5 allow a stimulus to be remembered and so re-
move the constraint that a stimulus to restart an activity
must be generated after that activity has waited on the control
queue.

Four basic primitive procedures are used to interact with
control queues:

JOIN (controlq): If the control queue is not in use (states 1 or
5)itis ‘secured’ and the activity proceeds. Otherwise (states
2, 3, 4) the activity is placed at the back of the pending list
to await its turn on a first-in-first-out basis.

LEAVE (controlq): The control queue is ‘released’ for use by
the next (if any) activity on the pending list; this activity will
automatically be transferred to a current list with priority
as specified by the priority field of the control queue.

WAIT (controlq): This statement can only be used between
JOIN-LEAVE brackets and allows an activity to retain its
hold on a control queue whilst waiting to be restarted by a
stimulus from elsewhere. If the control queue is already
primed (state 4) the activity proceeds immediately. Otherwise
(state 2) the activity is placed at the front of the pending list.
STIM (controlq): If an activity is waiting on the control queue
(state 3) then that activity is restarted by transferring it to a
current list with priority as specified by the priority field of the
control queue. Otherwise (states 1 or 2) the stimulus primes
the control queue by adjusting the state to 5 or 4. A control
queue which has already been primed (states 4 or 5) ignores
further stimuli.

These MASCOT primitives are easily programmed and are
efficient in use. Clearly operations on control queues must be
indivisible. Fig. 3 is a control queue state change matrix
summarising the effect of the basic primitive operations. In
addition to the illegal operations indicated checks are also
carried out to ensure that WAIT and LEAVE are only used
by the activity which has been able to secure the queue by
means of a JOIN.

The JOIN-LEAVE operations on a control queue give an
identical facility to P, V operations on a binary semaphore.
Likewise the WAIT-STIM combination is similar to wait,
signal operations on a condition variable. In the next section
we show how the coordination of JOIN-LEAVE-WAIT-
STIM into a unified set of operations on a single type of control
variable produces a natural and logical solution to the problem
of intercommunication between loosely coupled processes.

5. Activity intercommunication using channels

MASCOT activities communicate with one another by means
of channels and pools. Where an activity is the sole user of an
interface to a channel or pool it is permissible for that activity
to secure the interface for its own exclusive use (see Sections 6
and 7). However it is more common for an interface to be
shared between several activities and in this case it is a
MASCOT convention that all interaction with the data area
must be by means of access procedures.

The pools, channels and associated access procedures can
take many forms and are defined by the user to suit his own
particular application. However all access procedures follow
certain design conventions which cope with the synchronisa-

The Computer Journal Volume 22 Number 4

State following operation

Initial

state JOIN WAIT LEAVE STIM
1 2 * * 5

2 B 3 lor2 4

3] * * 2

4 [] 2 S5or4 o

5 4 * * ®

* illegal operation
@ no effect on state
I no effect on state, but activity joins pending list

Fig. 3 Control queue state change matrix for basic primitives

ACCESS PROC put = (INT x, REF ONEWORDCHAN
chan):
BEGIN
JOIN(inq OF chan);
WHILE NOT(empty OF chan)
DO WAIT(inq OF chan);
data OF chan := x;
empty OF chan := FALSE;
STIM(outq OF chan);
LEAVE(inq OF chan)

END;

ACCESS PROC get = (REF INT x, REF
ONEWORDCHAN chan):

BEGIN

JOIN(outq OF chan);
WHILE(empty OF chan)
DO WAIT(outq OF chan);
x := data OF chan;
empty OF chan := TRUE;
STIM(inq OF chan);
LEAVE(outq OF chan)
END;

Fig. 4 Writing and reading procedures for simple channel

bo/p/zz/a1one)|ulwod/woo dnoolwepese//:sdiy wWwoll papeojumod

12904

tion aspects. These procedures contain calls of the JOIN%
LEAVE-WAIT-STIM primitives which operate on control:i
queues within the pools and channels. By standardising on @
restricted number of access procedures operating on a hmnte@
set of pool and channel types it is possible for the primitive;
operations to be hidden completely from the user. This can be &
great advantage in a large project employing many3
programmers.

One of the most important and interesting applications og
this technique concerns its use in setting up a message passmgo
system. The principles of this application are best explained by\)
considering two examples. Once these are understood the
approach is readily extended to other related problems.

Consider the simplest possible form of channel designed to
transmit one word of data at a time. The channel data structure
might take the following form:

MODE ONEWORDCHAN =
STRUCT (CONTROLQ inq, outq,
BOOL empty,
INT data);

Fig. 4 shows the associated put and get access procedures for
writing and reading. The elements in a channel data structure
invariably fall into three categories.

Control variables
These are control queues for mutual exclusion and cross

stimulation. There are always at least two control queues in a
channel, one for controlling input access and one for controlling
output access.

State variables

These indicate the state of the data areas used for passing the
information. In our example above we have only one state
variable but more complex channels will have input and output
pointers, etc.

Data area
This is the area set aside for temporary storage of data on its
way through the channel.

There is complete symmetry between input and output access
procedures. These are always programmed to carry out the
following sequence of actions:

1. JOIN the control queue controlling the relevant (own)
interface

. Check the state of the data area and WAIT if necessary
. Transfer data

. Amend state

. STIM the control queue controlling the other interface
6. LEAVE the control queue controlling own interface.

The logic behind this sequence is quite straightforward.
If several activities are simultaneously attempting to gain
access to an interface by means of the JOIN primitive then all
but one are held on the control queue’s pending list. The
activity which has access then inspects the state of the data
area; if it cannot proceed it WAITSs on the control queue and
will be restarted in due course by a STIM from the other side
of the channel. The data is then placed in or taken out of the
channel and the state is amended accordingly. Since the action
is likely to be of interest to an activity WAITing on the other
side of the channel the other interface control queue is STIM-
med. Finally the activity uses the LEAVE primitive to release
the interface and the next activity (if any) held on the control
queue is automatically restarted.

A second more useful illustration of the technique is that of
intercommunication using a ‘bounded buffer’. Such a buffer
for passing characters might take the following form:
MODE CHARCHAN = STRUCT (CONTROLAQ inq, outq,

INT inpoint, outpoint, max, size,
mask,
[0 : max] CHAR data);

where max = 2" — 1, size = 2", mask = 2"*! — 1 n=0

wm W

The way in which the structure elements are used can be seen
by studying the write and read access procedures in Fig. 5.
These procedures transfer one character at a time. Where an
activity needs to transfer a group of several characters, rather
than use repeated call of read and write, it is more efficient
to provide additional standard procedures which secure the
interface until the message is complete.

The buffer pointers in CHARCHAN are always incremented
modulo 2"*!; this means that the full and empty states can be
deduced from the pointer values alone so avoiding the use of
any state variable which can be amended from both sides of
the channel. Thus there is no need for additional control
queues to protect the state variables. This technique could also
be applied to the ONEWORDCHAN described previously.

The use of control queues as described above ensures that
mutual exclusion is only applied where it is strictly necessary
and it is quite possible for the buffer to be accessed from both
sides simultaneously. On the other hand a large number of
redundant STIMSs are generated. This is quite harmless since
STIM is a short procedure taking little time to execute. Once a

ACCESS PROC write = (CHAR x, REF CHARCHAN
chan):
BEGIN
JOIN(inq OF chan);
WHILE full (chan)
DO WAIT(inq OF chan);
(data OF chan) [inpointer(chan)] : = x;
stepinpointer(chan);
STIM(outq OF chan);
LEAVE(inq OF chan)
END;

ACCESS PROC read = (REF CHAR x, REF
CHARCHAN chan):
BEGIN
JOIN(outq OF chan);
WHILE empty(chan)
DO WAIT(outq OF chan);
x := (data OF chan) [outpointer(chan)];
stepoutpointer(chan);
STIM(inq OF chan);
LEAVE(outq OF chan)
END;
where
PROC full (REF CHARCHAN chan) BOOL:
((inpoint OF chan-outpoint OF chan) MASK mask OF
chan = size OF chan);
PROC empty = (REF CHARCHAN chan) BOOL:
(inpoint OF chan = outpoint OF chan);

PROC inpointer = (REF CHARCHAN chan) INT:

(inpoint OF chan MASK max OF chan);

PROC outpointer = (REF CHARCHAN chan) INT:

(outpoint OF chan MASK max OF chan);

PROC stepinpointer = (REF CHARCHAN chan):

(inpoint OF chan := (inpoint OF chan + 1) MASK mask
OF chan);

PROC stepoutpointer = (REF CHARCHAN chan):

(outpoint OF chan := (outpoint of chan + 1) MASK mask
OF chan);

OP MASK = (INT i, j) INT:

ABS(BIN i AND BIN j);

Fig. 5 Writing and reading procedures for bounded buffer

Kq 8Leev€/ee/vIzz/a1ome/|ulwod/woo dnoolwapede//:sdiy Wol papeojumoq

control queue has been primed with a STIM this condition iso
only cleared by a WAIT operation on the same control queue;?
in some circumstances this may cause the ‘WHILE conditiong
DO WAIT(q)’ statement to be executed twice in quick succes-2
sion, but this is a small price to pay for the extreme simplicity >
of the technique. =

¥20¢ I

6. Interrupt processing

It is envisaged that the bulk of a computer’s workload will be
carried out at the base level and as such will be controlled by the
despatcher. However where hardware interrupts are present
there is a need to respond to stimuli whose time of occurrence
is completely uncorrelated with the scheduling of activities
by the despatcher. This processing cannot be controlled by the
despatcher and an ‘interrupt handler’ is required.

The interrupt handler is that part of the kernel software
which provides the immediate response to hardware inter-
rupts. It must interface with MASCOT subsystems lying outside
the kernel and in practice the proportion of the total interrupt
handling function that is retained within the kernel is very much
dependent on the particular application. At one extreme it is
possible for the interrupt handler to cover all aspects of inter-
rupt processing and to interface directly with standard

The Computer Journal Volume 22 Number 4

MASCOT channels. On the other hand MASCOT subsystems
can be included to take on a large share of this work thus
greatly reducing the size and complexity of the interrupt
handling software within the kernel. This section illustrates the
latter approach and introduces the necessary additional
features required for this style of interrupt programming.

The basic synchronisation facilities described in the previous
sections provide a technique for the indirect call of a WAITing
activity. The time at which a restarted activity will run is
uncertain and there are small but significant overheads
associated with the transfer of an activity from list to list.
This makes the basic facilities unsuitable for initiating the
response to a hardware interrupt and a more direct mechan-
ism is required. Accordingly we define a new type of parameter-
less procedure called a ‘response procedure’ which can be
associated with a control queue in a manner such that it is
called immediately without despatcher intervention whenever
that queue is STIMmed.

One way of providing the response procedure facility involves
the introduction of two additional control queue state values,
three new primitives and a minor extension to the STIM
primitive. The new control queue state values are defined as
follows:

State 6: A response procedure is associated with the control
queue and is waiting to run.

State 7: A response procedure is associated with the control
queue and is currently being executed.

The response primitive procedures are defined as follows:
SET RESPONSE (q, response proc): This primitive associates
a response procedure with a control queue. The control queue
must previously have been JOINed (i.e. be in state 2 or 4).
If the control queue has state 2 then the state is adjusted to 6
indicating that a response procedure is associated with the
queue. If the control queue has state 4 (i.e. has already been
STIMmed) then the state is adjusted to 7 and the response
procedure is executed immediately; on completion of the
response procedure the queue state is set to 6.
CLEAR RESPONSE (q): This primitive can only be used
within a response procedure (i.e. when the control queue
is in state 7). It has the effect of cancelling the response and
places the activity in which it is embedded on a current list so
that this activity will be re-entered from the despatcher
at a point following the SET RESPONSE statement. Since
in this case the stimulus has not been fully actioned the control
queue must be left in state 4. CLEAR RESPONSE causes
immediate exit from the response procedure.
CHANGE RESPONSE (q1, g2, response proc): This primitive
can only be used within a response procedure (i.e. when q1 is in
state 7). It combines the effect of a CLEAR RESPONSE (ql)
immediately followed by SET RESPONSE (q2, response proc).
It cancels the response on one queue and sets up a new response
on a second queue without involving the despatcher. CHANGE
RESPONSE causes exit from the response procedure when the
associated clearing and setting actions are complete.
Minor extensions to the STIM primitives are required to deal
with control queue states 6 and 7. The action of STIM for
state 6 is to set the queue to state 7, execute the response
procedure and on completion reset the queue to state 6.
There is no STIM action for state 7 and the STIM is ignored;
state 7 prevents multiple initiation of a response procedure
which would cause faulty operation of the response software.
Implementation of the response facilities is quite straight-
forward. Fig. 6 is the relevant control queue state change
matrix. Special arrangements must be made so that response
procedures always return control to the calling primitive
(STIM, SET RESPONSE or CHANGE RESPONSE). Also,
when the response is set up, the re-entry point following SET

The Computer Journal Volume 22 Number 4

State following operation

Initial

state SET CLEAR STIM
RESPONSE RESPONSE

1 * * 5

2 6 * 4

3 * * 2

4 76 . ®

5 * * o

6 * * 76

7 4 ()

* illegal operation

@ no effect on state

7 — 6 denotes that state is set to 7 whilst the response procedure
is running and is set to 6 on completion

Fig. 6 Control queue state change matrix for response primitives

ojdmoq

RESPONSE must be remembered for use by the responss
procedure exit mechanism when executing CLEA&
RESPONSE. Clearly the only primitives that are allowed wit
in a response procedure are STIM, CLEAR RESPONSE ang
CHANGE RESPONSE.

The response facility as outlined above can be used to set u§
an immediate reaction to STIM from any source. When dealin
with interrupts it is merely necessary for each interru
(index i), in addition to the usual register preservation, eté:
to cause the execution of a STIM ((q OF icp) [i]) statemerﬁ
(or equivalent) where icp is an ‘interrupt control pool’ com
taining an array q of queues, one queue for each mterrupfi
source. The activities (one per interrupt source) which contaifi
and control the response to interrupts interface with thg
interrupt control pool and are known as interrupt responsg
activities. It should be noted that those response procedures
which contain ‘privileged’ data transfer instructions will neech
to be loaded within the appropriate protection regime of thB;
computer. °°

To illustrate some possible techniques, consider a computqs
having three hardware interrupts associated with the followmg
functions:

1. A simple clock interrupt with no data transfer

2. An input peripheral for passing single characters. It 15
assumed that the data is transferred through a hardwarg
register (designated hwreg[2]). >

3. An output peripheral for passing single characters. It ig
assumed that the data is transferred through a hardware
N

register (designated hwreg[3]). S

Fig. 7 shows a subsystem containing a set of interrupt respons@
activities to deal with these interrupts. Possible forms of the
root procedures clockint, incharint, outcharint are given in
Fig. 8. incharint is programmed using the CLEAR RESPONSE
facility to escape from the response procedure whereas out-
charint uses CHANGE RESPONSE to switch between two
response procedures. It is interesting to compare the two
different approaches adopted by these two root procedures
to the problem of deciding when to restart the response to
interrupts. outcharint produces a direct response with low
overhead to every STIM through the channel but lacks the
ability to dispense with redundant STIMs—this latter feature
occurs naturally in incharint under conditions where the
consumer may issue many STIMs before incharint is resched-
uled (i.e. in some circumstances this algorithm may be more
efficient). A further practical point in these programs is the

6 Aq g2

337

interrupt
subsysten

Fig. 7 Interrupt subsystem

presence of the INT i parameter in incharint and outcharint
to illustrate a method whereby a single root procedure can be
used to support many identical interrupt response activities.

The technique outlined above allows easy and effective control
of interrupt handling. The access mechanisms for channels
and pools used in conjunction with interrupts must be pro-
grammed with particular care since input and output opera-
tions on a data area can be interlaced. The form of channel
described in Section 5 is quite safe and particularly efficient
in use. Consider the operation of incharint (Fig. 8). This is
programmed to run for as long as possible until the buffer is
full. If data is being removed from the buffer at a sufficiently
high rate the input device will run continuously. If the output
rate is slower than that of the input device then the input
batch size is greater than the capacity of the buffer; for example
if data is removed from the buffer at a rate which is § the rate
of the input peripheral then the batch size is 4 times the size
of the buffer. This is an important advantage of the MASCOT
approach to channel access synchronisation. However, having
said this, it should be noted that the implementation of the
clock interrupt in Fig. 8, although efficient as regards time
overheads, carries a constant space overhead in the form of the
response activity which, once started, is never called again
from the despatcher. System designers must weigh the con-
venience of using this standard interrupt handling technique
against the space required to support it.

The program text in Fig. 8 illustrates a practical point which
gives efficient operation of MASCOT software. The interrupt
response activity secures the input interface of its output chan-
nel for its own exclusive use. Thus the JOIN statement is only
executed once and there is no need for a matching LEAVE
statement (the activity can be stopped by means of the
TERMINATE command described in Appendix 2; and of
course care must be taken to force a CLEAR RESPONSE
where necessary when terminating an activity in this manner).

The MASCOT approach to interrupt handling is unusual
in that it allows a considerable degree of direct control over
interrupt programming. This may be undesirable in some
applications and in such cases interrupt response becomes a
system software function and an interface with user programs
should be provided by means of standard channels or pools.
However where unusual or complex peripheral devices are
involved the flexibility of the MASCOT approach can give
considerable advantages when developing the interrupt
response software.

7. Examples

Two examples are considered. The first deals with the sorting
of messages so that they can be handled in an order other than
first-come-first-served, and the second is concerned with
coordinating reading and writing access to a common data

338

base. These are typical real time problems and it is shown that
MASCOT synchronisation facilities provide straightforward
solutions.

7.1 Example 1. Priority message sorting

Consider a subsystem for handling messages in order of
priority. It is assumed that such a subsystem (called priority
sort) is to have three input channels and one output channel.
It is to be designed so that messages appearing in the first
input channel are given precedence over those in the second and
third input channels; similarly the second channel is given
precedence over the third. To further define the problem we
specify that the subsystem should be capable of insertion
as an optional element between producer and consumer

ROOT PROC clockint = (REF ICPOOL icp, REF
CLOCKPOOL t):
BEGIN
INT clockintnum = 1;
RESPONSE PROC tick = VOID; time OF t : = time OF
t+1;
JOIN((q OF icp) [clockintnum]);
SET RESPONSE((q OF icp) [clockintnum], tick)
END;

ROOT PROC incharint = (REF CHARCHAN oc, REF
ICPOOL icp, INT i):

BEGIN

RESPONSE PROC transdata = VOID:

BEGIN IF full(oc) THEN
CLEAR RESPONSE((q OF icp) [i]) FI;
(data OF oc) [inpointer(oc)] : = hwreg[i];
stepinpointer(oc);
STIM(outq OF oc)

END;

JOIN((q OF icp) [i]);
JOIN(inq OF oc);
DO

BEGIN WHILE NOT empty(oc) DO WAIT(inq OF oc);
SET RESPONSE((q OF icp) [i], transdata)
END
END;

ROOT PROC outcharint = (REF CHARCHAN ic,
REF ICPOOL icp, INT i):
BEGIN
RESPONSE PROC transdata = VOID:
BEGIN IF empty(ic) THEN
CHANGE RESPONSE((q OF icp) [i], outq OF ic,
waiting) FI;
hwreg[i] := (data OF ic) [outpointer(ic)];
stepoutpointer(ic);
STIM(inq OF ic)
END;
RESPONSE PROC waiting = VOID:
BEGIN IF full(ic OR lastchar(ic) THEN
CHANGE RESPONSE(outq OF ic, (q OF icp) [i],
transdata)FI
END;
JOIN((q OF icp) [i1);
JOIN(outq OF ic);
SET RESPONSE(outq OF ic, waiting)
END;

Note: lastchar delivers value TRUE if the last character
inserted in the channel is an end of stream marker.

Fig. 8 Root procedures for interrupt handling

The Computer Journal Volume 22 Number 4

20z udy 61 U0 188nB AQ 8/EEHE/ZEE/F/2Z/10M4e/|UlL00/WO0d"dNO" oIS PEDE//:SARY W) PAPEOUMOQ

subsystems on either side and can be bypassed if the priority
sorting facility is not required. This means that priority sort
must not in any way alter the form of the mutually compatible
producer output and consumer input interfaces. Priority sort
merely arranges the ordering of messages in course of transfer
between standard message channels.

This problem is best tackled by developing a technique such
that a message appearing in any one of several input channels
is able to restart a single activity which can take account
of channel precedence whilst transferring the message data.
There are several ways of doing this; here we use a method
involving a REF CONTROLQ element in the channel data
structure to give greater control over the destination of STIMs.
Consider the following type of channel for transmitting
messages:

MODE MESSCHAN = STRUCT (CONTROLQ inq, outq,
: REF CONTROLQ
refoutq,
INT inpoint, outpoint,
max, size, mask,
[0 : max] MESS data);

where max = 2" — 1, size = 2", mask =2"*!' — 1,n >0

In normal use refoutq would be preset to point to outq but
is also available to route STIMs through to a control queue
outside the MESSCHAN data structure.

Two access procedures are required (say readmess and write-
mess) for reading from and writing to MESSCHAN data
structures and these are similar to those shown in Fig. 5.
To achieve the desired effect it is necesary to make the following
change:

STIM(outq OF chan) in write becomes
STIM(refoutq OF chan) in writemess
The dereferencing involved in executing this statement causes

a small additional overhead.
Several MESSCHAN structures can now be combined so that

1
chan[1) OF inmess \

'

chan[2) OF inmess \ outmess
T cranemtt J
1

'
chan(3) OF inmess

Fig. 9 Message sorting subsystem

ROOT PROC transmit = (REF MULTMESSCHAN ic,
REF MESSCHAN oc):
BEGIN
REF CONTROLQ sync = commonoutq OF ic;
MESS x;
INT m = size OF ic;
JOIN(sync);
DO BEGIN
scan: FOR n TO m
DO IF NOT empty ((chan OF ic) [n])
THEN readmess(x, (chan OF ic) [n]);
writemess(X, 0oc);

GOTO scan
FI;
WAIT(sync)
END
END;

Fig. 10 Root procedure ‘transmit’

The Computer Journal Volume 22 Number 4

an input to any one of them applies a STIM to a common
output control queue. We define a multiple message channel
as follows:

MODE MULTMESSCHAN = STRUCT(CONTROLQ
commonoutq,
INT size,
[1 : size] MESS-
CHAN chan);
where refoutq of each MESSCHAN is preset to point to
commonoutq.

Using the above channels and associated access procedures
the subsystem required for this example is extremely simple
and is shown in Fig. 9, with the associated root procedure
transmit shown in Fig. 10. The size of inmess is set to three
to give three input message channels (chan[1] OF inmess,
chan[2] OF inmess, chan[3] OF inmess). The size of the input
channels depends on the desired maximum input queue lengths
but the output queue should be kept reasonably short (say 2 or 4
messages); this prevents a flood of low priority input messages
from blocking those of higher priority for any length o S
time but at the same time allows more than one message>
to be held forward so reducing the chances of holding up theX
consumer subsystem under heavy loading conditions. g

The root procedure transmit uses standard access proceduress
to read and write messages. This type of situation is one wherei
it might be advantageous to allow transmit permanently toS
JOIN the output queues of the input channels and the input-
queue of the output channel and adopt an alternative style o
access mechanism which dispenses with calls of JOIN and®
LEAVE as each message passes through the subsystem%
(cf Fig. 8). This technique will be more efficient at run time. |

wo9o'dno

7.2. Example 2. Readers and writers
As our second example we consider the problem of ‘readerss
and writers’ and program it in the style of monitor locaé-
procedures proposed by Hoare (1974). The problem concernss
a record (regarded as a POOL) which is kept up to date by a5
number of ‘writer’ activities and is accessed by a number of>
‘reader’ activities. The design constraints are as follows:

1. Any number of reader activities may simultaneously acces:
the record.

ez

2. Writer activities must have exclusive access.
3. A new reader should not be started if a writer is waiting.

4. To avoid the danger of indefinite exclusion of readers
those readers waiting at the end of a write should hav
priority over writers which arrive after them.

6 Aq gzeev¢/2

Four procedures are required:

(a) startread entered by reader who wishes to read.

(b) endread entered by reader who has finished reading.
(c) startwrite entered by writer who wishes to write.

(d) endwrite entered by writer who has finished writing.
The record to be accessed could take the following form:

MODE RECORDPOOL = STRUCT(CONTROLQ iq, rq,
INT rcount,

20z Iudy 61 uo 1T

where iq Ensures exclusive access by writing activities
and where necessary queues readers and writers
in order of arrival.
rq Protects operations on rcount.
rcount Counts number of readers with current access.
The startread, endread, startwrite, endwrite procedures are
given in Fig. 11 and are self explanatory.
This solution would be somewhat safer in use if each pair of
start and end procedures were combined into a single access

339

PROC startread = (REF RECORDPOOL pool):
BEGIN

JOIN(iq OF pool);

JOIN(rq OF pool);

(rcount OF pool) PLUS 1;

LEAVE(rq OF pool);

LEAVE(iq OF pool)
END;

PROC endread = (REF RECORDPOOL pool):
BEGIN

JOIN(rq OF pool);

IF (rcount OF pool) MINUS 1 = 0

THEN STIM(iq OF pool)

LEAVE(rq OF pool)
END;

PROC startwrite = (REF RECORDPOOL pool):
BEGIN

JOIN(iq OF pool);

WHILE(rcount OF pool) > 0

DO WAIT(iq OF pool)
END;

PROC endwrite = (REF RECORDPOOL pool):
BEGIN

LEAVE(iq OF pool)
END;

Fig. 11 Control procedures for readers and writers problem

procedure. Such access procedures would have to allow users
to specify their particular form of data transfer as a PROC
parameter, but would avoid the danger of unmatched start
or end statements.

8. Semaphores and monitors

In this section we will compare the MASCOT approach to
synchronisation with techniques using conventional sema-
phores and monitors. Each approach to synchronisation has
its own particular advantages and to make a comparison it is
necessary to define a common problem. The problem con-
sidered here is that of the bounded buffer (channel) which can
be accessed simultaneously by many producer and consumer
processes, access conflicts being resolved on a first-in-first-out
basis. The MASCOT solution to this problem is described in
Section 5 and Fig. 5. As a further aid to the establishment
of a common framework for discussion the action of sema-
phores and monitors is described in terms of MASCOT-like
operations.

8.1 Semaphores
Fig. 12 shows the construction of a semaphore control variable
and associated P, V operations using MASCOT control
queues and primitives. The operations on ‘i OF s’ must be
indivisible to guarantee the integrity of the counting variable.

To obtain the required control over access to a buffer of type
CHARCHAN (Section 5) it-is necessary to replace the two
control queues by four semaphores: insem1, insem2, outseml,
outsem?2. The access procedures then take the form shown in
Fig. 12.

inseml is initialised to the size of the buffer and ensures that
input processes are blocked when there is no space in the buffer.
outseml is initialised to zero and ensures that output processes
are blocked when there is no data to be cleared. insem2 is
initialised to 1 and ensures that no two input processes attempt
to write simultaneously. outsem2 performs a similar function

for output processes. By using two semaphores insem2, out-
sem2 we allow input and output processes to run concurrently
when it is safe to do so.

It is seen that synchronisation using semaphores is not as
direct as can be achieved with the MASCOT approach.
Four control variables are required instead of two and the
counting of full and empty spaces is effectively duplicated by
the semaphore operations and the stepping of the pointers
controlling data access. Furthermore the synchronisation
protocol is not so readily understood. The advantage of the
MASCOT approach mainly derives from the ability to
program an explicit conditional wait (in fact the conditional
wait can be achieved by using binary semaphores in place
of general semaphores but in this case it is still necessary
to have four control variables to achieve synchronisation).
The explicit conditional wait is of course also a feature of
monitors which will now be considered in more detail.

8.2 Monitors
The monitor approach to this synchronisation problem is
based on the rule that only one process should be allowed access
to the buffer at any one time. If a process finds that it has to
wait it must release its access to the buffer to allow use by
other processes.

MASCOT contains no facilities for LEAVEing one control
(q1 say) whilst simultaneously JOINing or WAITing on

MODE SEMAPHORE = STRUCT(CONTROLQ q, INT i):

PROC P = (SEMAPHORE s):

BEGIN
JOIN(q OF s);
WHILE i OF s = 0 DO WAIT(q OF s);
iOFs:=i0OFs — 1;

LEAVE(q OF s)
PROC V = (SEMAPHORE s):
BEGIN
iOFs :=i0Fs + 1;
STIM(q OF s)
ND;
ACCESS PROC write = (CHAR x, REF CHARCHAN
chan):
BEGIN

P(insem1 OF chan);
P(insem2 OF chan);
(data OF chan) [inpointer(chan)] := x;
stepinpointer(chan);
V(insem2 OF chan);
V(outsem1 OF chan)
END;

ACCESS PROC read = (REF CHAR x, REF
CHARCHAN chan):
BEGIN
P(outseml OF chan);
P(outsem2 OF chan);
x := (data OF chan) [outpointer(chan)];
stepoutpointer(chan);
V(outsem2 OF chan);
V(insem1 OF chan)
END;

Note: inseml, insem2, outseml, outsem2 are SEMAPHOREs
within CHARCHAN

Fig. 12 Channel access control using semaphores

The Computer Journal Volume 22 Number 4

|w)
<]
S

=
o
0]

Q.
(]
[}

202 1udy 61 U0 }sanb Aq 8/€€1€/2€E/7/2z/101ME/|uliod/Woo dnoolwapede//:sdiy woy

another (g2 say). This is the sort of action necessary in order
to implement Hoare’s WAIT primitives on his condition
variable. MASCOT is also deficient of the means of implement-
ing the SIGNAL primitive. Thus to implement monitors we
define Hoare’s primitives in MASCOT terms (changing the
name of WAIT to WAIT FOR SIGNAL to avoid confusion
with the MASCOT WAIT). However since it is our aim to
expose the underlying scheduling implications of these primi-
tives we have given them each two control queue parameters.
The first, q1, is the control queue used to guarantee that only
one monitor procedure is active at a time. It is a rule in both
cases that this control queue must have been JOINed by the
caller. The second control queue corresponds to a condition
variable. The primitives are defined:

WAIT FOR SIGNAL (ql, q2)—releases the mutual exclusion
on ql by performing LEAVE (ql) and places the calling
activity in a first-in-first-out queue of waiting activities on q2.
SIGNAL (q1, q2)—if g2 contains any waiting activities then
the front activity is taken off and is placed at the front of ql
whence it will be restarted by the next LEAVE(q1).

These primitives are not formally part of MASCOT but are
introduced to facilitate the comparison with monitors. They
constitute the minimum additions to MASCOT to allow
monitor style programming.

In order to exercise monitor style control over access to a
buffer of type CHARCHAN it is necessary to replace the
two control queues by three which we will name gmutex,
qcin, gqcout. gmutex is the main queue controlling access to the
buffer. qcin holds input processes which have to wait and
qcout holds output processes which have to wait, i.e. they
correspond to condition variables. The access procedures
would be programmed as shown in Fig. 13.

The difference between MASCOT and monitors in the con-
text of this problem is immediately apparent. The input
and output monitor processes are subjected to control by a
single control queue and this unfortunately increases the inter-
action between input and output particularly when the buffer
is busy. Read and write procedures will normally be embodied
in program loops within consumer and producer processes on
either side of the buffer and there will be a high probability
that these processes are blocked and restarted as they compete
for access. This problem can be alleviated by introducing
facilities for the dynamic adjustment of process priority but
this complicates both the scheduling mechanism and the moni-
tor procedure programs. In contrast the MASCOT approach
reduces the interaction between input and output processes to
the absolute minimum.

The importance of achieving a highly efficient method of
interprocess communication using buffers of this type depends
very much on the amount of message passing which takes
place. MASCOT is aimed at supporting a system design method
which is based on the extensive use of loosely coupled processes
to limit and define interactions within the system. In this
context it is most important to provide efficient message
passing facilities.

Of course significant advantages of the monitor approach
arise from rigorous run time protection of a data area and the
possibility of using formal proof rules for program correctness.
MASCOT relaxes the protection criteria and a pragmatic
approach is adopted to the verification of access procedure
algorithms. However the writing of access procedures can be
confined to skilled programmers who can make use of approved
standard techniques, and well proven test procedures can be
used to test and authenticate the resulting software. The cor-
rect use of access procedures is ensured by compile and FORM
time parameter checks. Thus a highly satisfactory set of practi-
cal tools is provided to cope with the problems arising from
software production for concurrent processes.

The Computer Journal Volume 22 Number 4

ACCESS PROC write = (CHAR x, REF CHARCHAN
chan):

BEGIN
JOIN(qmutex OF chan);
IF full(chan) THEN
WAIT FOR SIGNAL(gmutex OF chan, qcin OF chan) FI;
(data OF chan) [inpointer(chan)] : = x;
stepinpointer(chan);
SIGNAL(gmutex OF chan, qcout OF chan);
LEAVE(qmutex OF chan)

END;

ACCESS PROC read = (REF CHAR x, REF
CHARCHAN chan):
BEGIN
JOIN(gmutex OF chan);
IF empty(chan) THEN
WAIT FOR SIGNAL(gmutex OF chan, gqcout OF chan)
FI;

= (data OF chan) [outpointer(chan)]; g
stepoutpointer(chan); 2
SIGNAL(gmutex OF chan, qcin OF chan); 3
LEAVE(qmutex OF chan) §

END; 3
3

Note: gmutex, qcin, gcout are CONTROLQs in CHARCHAN
Fig. 13 Channel access control in the style of a monitor

9. Discussion
The MASCOT approach to programming, if applied in its®
entirety, impinges on every aspect of software design andU
implementation. It is however possible to make use of a subset3
of the MASCOT facilities and embed these within existing=
arrangements for compilation, loading, etc. In its most llmltedg
form a MASCOT system consists of the kernel (possiblys
excluding the interrupt handler) and the synchronisation®
primitives. Even then there is the option of implementing2
the kernel either on the bare machine so that it provides they
fundamental level of software, or of building it on top of anb
existing operatmg system. Both approaches have provedw
successful in a number of applications. The MASCOT kernelw
has been implemented at the fundamental level on Marconi&
Myriad, CTL Modular 1, Ferranti FM1600B, Ferranti Argus>
700, Intel 8080 and Texas Instrument 990 series computersir
and it has been constructed on top of host operating systemSg
for Marconi Myriad, ICL 1907, CTL Modular 1 and DEC"’
PDP11 machines. S
The kernel is particularly compact and efficient. In the Mar-©
coni Myriad 1mplementatlon on a bare machine the followmgo
approximate main store sizes were required for the basnc—

Luepeoeu:sd}

software: |\>
Despatcher and list handling (Fig. 2) 520 words
Scheduling primitives (Fig. 2) 500 words
Activity table (Appendix 1) for 50 activities 550 words

Subsystem table (Appendix 1) for 20 subsystems 80 words
Interrupt handler (Fig. 2) for 24 channels
multiplexed on one level 30 words

The smallest viable system will usually require a command
interpreter whose size will depend on the facilities provided;
500 words are sufficient for a basic interpreter, including
the necessary typewriter control software. Thus it should
be possible to construct a reasonably useful MASCOT kernel
together with a basic interpreter in about 2,200 words of main
store. Further facilities, e.g. the monitor (Appendix 2) and
various loading and linking options (Appendix 1) will clearly
require additional space. Time overheads are heavily dependent

341

v interrupt subsystem |

! priority sort ! :
! | | .
chan(1) OF tnness | _‘_‘D
nessages Ve Y '
W transformation ' H
| \
| |

subsysten

"
'
'
chan(2] OF inmess

.
chan(3) OF inmess

Fig. 14 Interconnection of three subsystems

on the machine architecture. Machines designed for re-entrant
programming and which have good microprogramming
facilities are ideal for minimising scheduling overheads.

The overall structure of MASCOT subsystems interconnected
by channel and pool data areas can be used to produce a
style of programming with a high degree of functional modu-
larity. For example, Fig. 14 shows how messages passing
through three channels can be multiplexed so that they are
transmitted in character form to a single output peripheral.
The facility is achieved by the insertion of a message to charac-
ter transformation subsystem between the priority sort sub-
system of Fig. 9 and the interrupt subsystem of Fig. 7. This
approach results in data being copied several times over from
one data area to another, and contrasts with the more con-
ventional method of using procedure calls to carry out particu-
lar programming functions. However it should be noted that
modularity of this type is precisely that which is enforced by
distributed processing architectures. The use of an individual
subsystem to perform each function gives considerable
flexibility and reduces the area of influence of component
elements of software. If desired two or more subsystems can be
amalgamated to increase efficiency. Thus MASCOT software
structure gives the system designer the option of ‘direct call’
or ‘indirect call through the operating system’ (i.e. through a
MASCOT channel) in a straightforward manner.

Although MASCOT can be used in a wide range of applica-
tions it is most suited to systems where most of the software
is main store resident and is dedicated to a particular online
requirement. The MASCOT design has its origins in such
systems, examples of which are found in command and control
applications having a large number of operators requiring
rapid response from online terminals. In these systems the
loading and linking flexibility (Appendix 1) is used during
commissioning and subsequent development, and the general-
ity of the approach allows offline analysis and support pro-
grams to be readily mixed in with the online software.

Returning now to the synchronisation aspect it is prudent
to enquire as to the in-use safety of MASCOT programming.
It is immediately apparent that JOIN statements can be
combined in a manner which gives a potential deadly embrace
situation. For example, the two sequences JOIN(x)...
JOIN(y) ... and JOIN(y) ... JOIN(x) ... called on by two
different activities run this risk. The answer to this problem
is to adopt a nested hierarchical approachtotheuse of JOIN. . .
LEAVE statements so that at least one segment of program
governed by any given control queue can always be active
at any one time (i.e. we are safe from deadly embrace if
JOIN(x) always precedes JOIN(y) in time sequence). Even
then, from the practical point of view, it is essential to take
note of potential bottle necks where many activities can be

342

held on a single control queue whilst awamng the use of some
particular pool or channel interface.

Although the pitfalls associated with the synchronisation
primitives are avoidable this can be difficult to achieve in a
large project using many programmers with varying skill
levels. In this case the recommended approach is to provide a
comprehensive set of standard access procedures, channels and
pools which are carefully inspected and tested before issue
for general use; if this is done there should be no need for
widespread and dangerous use of primitive procedures.
Further safeguards can be applied by ensuring that access
procedures are only used with compatible pools and channels.
The ALGOL 68 mode and structure facilities can achieve
this or, alternatively, a translator such as that used for the
MASCOT Oriented Reliable Applications Language, MORAL
(Harte and Jackson, 1976) can be used to check for compatibil-
ity prior to compilation.

The main body of this paper has concentrated on data inter-
communication between activities and its associated synchron-
isation mechanisms. For this purpose the control queue_
primitive operations are ideally suited. These primitives cané
also be used within access procedures to a pool data structure to2
provide a convenient method for the management of resourcesa
Each resource is represented by a boolean variable and accessa
to the pool is synchronised by the access procedure(s) usingo
a single control queue. Processes wishing to acquire resource
must call a procedure giving a list of the requested resources-;‘
as a parameter. The access procedure then ensures that each=
process in turn is allowed exclusive access to the pool and, i
successful, the states of the resource variables are adjusted to®
indicate which resources are now secured. If a process is5
unsuccessful a ‘not available’ answer is returned and it must2
try again when resources have been released by other pro-
cesses. The allocation algorlthm can be made as sophlstlcateﬁ
as necessary for the problem in hand, and deadly embrac38
can be avoided by imposing sensible rules for batching and=
ordering of resource requests which can be policed by them
access procedures.

MASCOT, like other synchronisation techniques, works wel%
provided that there are no ‘hang-ups’ caused by softwarey
or hardware faults. These faults can occur in a manner whichg\;g
prevents certain control queues from being released for use by:
other activities and this could progressively disrupt a major’;
part of a computer load. It is important that a well designediﬁ
system guards against such faults by ensuring that all sub=
systems are either running or ready to run. Special supervisory=
subsystems can be incorporated to perform a continuous}
programme of checks to establish that all is well throughouts
the system. Subsystems which are found to be faulty can be_
TERMINATED (Appendix 2). The checking and recovery>
strategies are of course heavily application dependent.

¥20c 4

10. Conclusion
In this paper we have described the MASCOT approach to
synchronisation and have shown how this can be used to form
the basis of a method for process intercommunication. The
principal features and advantages of the MASCOT approach
are summarised below.

1. Terminology

The use of the CONTROLQ and the JOIN, LEAVE, WAIT,
STIM primitives have the advantage of giving a clear indica-
tion of the underlying scheduling implications of process
synchronisation. At a higher level the concepts of CHANNEL,
POOL, ACCESS PROC, ROOT PROC, activity, subsystem
have been found useful in describing and designing the
components and functions of real time systems.

The Computer Journal Volume 22 Number 4

2. Synchronisation

The use of a matched set of four synchronisation primitives
allows a logical approach to interprocess communication
problems, particularly where a conditional wait facility is
required. The resulting solution to the bounded buffer problem
is neater and more efficient than can be achieved using con-
ventional techniques for mutual exclusion and cross stimula-
tion.

3. Relevance

MASCOT is designed to deal with the type of software
required to support on line command and control systems in
military, civil and industrial applications. In such systems
the distinction between the operating system and user pro-
grams becomes extremely blurred. MASCOT provides a
unified set of facilities for dealing with both the application
programs and the conventional operating system functions
and this results in a homogeneous and flexible approach
to the software design and production problem.

4. Overheads

The basic kernel is compact and efficient. It is difficult to make
direct comparison with other systems but it is believed that the
. size of the MASCOT kernel in relation to the facilities offered
is highly competitive.

5. Interrupts

MASCOT provides an option for dealing explicitly with
interrupts using the RESPONSE PROC, SET RESPONSE,
CLEAR RESPONSE, CHANGE RESPONSE facilities.
There is no requirement for interrupts to be buried away in the
depths of an operating system and this is certainly an advantage
in the class of real time systems mentioned in 3 above.

6. Machine and language independence

MASCOT style programming is independent of any particular
programming language or hardware. As such it is possible
to use it as a standard approach when dealing with a wide
range of applications using a variety of different machines.
Standardisation of this nature can be a great advantage when
faced with the management problems associated with software
procurement and maintenance for a large number and variety
of systems. Machine and language independence is also of
considerable technical importance when a system is being
developed by construction of a software prototype on one
machine for subsequent transfer to another.

7. The MASCOT approach

Although we have restricted the paper to the synchronisation
aspects of MASCOT a brief description has also been given
(Appendices 1 and 2) of the construction and test facilities.
The coordinated approach which MASCOT adopts to
construction, operation and test is an important feature of the
method and of great practical significance in tying together
the various stages of the software procurement process.

Of course many of the above features are present in other
approaches to real time systems programming. However the
comprehensive nature of MASCOT coupled with the straight-
forward approach to the principal aspects of real time software
production is considered to give significant advantages.
MASCOT is attracting considerable interest at the present
time and is being used in a number of practical projects.
An active research programme is aimed at extending its use
and exploring its full range of applicability.

11. Acknowledgement
The authors wish to thank the members of the MASCOT
Suppliers Association (MSA) for several suggestions and

The Computer Journal Volume 22 Number 4

comments during the design and development of the MASCOT
facilities. The MSA represents selected government establish-
ments and system houses concerned with the transfer of
MASCOT technology from a research environment to a fully
engineered form suitable for widespread use.

Appendix1 System construction facilities
MASCOT system construction is formulated in terms of the
fundamental stages of the construction process. Thus we have
the conventional facilities of COMPILE, LOAD and LINK,
and to these is added FORM which provides the final stage
of linking and work space allocation.

The basic unit of construction is the module. Each module has
a name and it is a MASCOT convention that this name should
be the same as the name of the procedure or data structure
which the module represents. For compiling and loading
purposes it is essential for the module name to be further
qualified by a version number so that different editions of
the same module can be identified.

Four types of file are used to support the construction process:

1. Source Text File (STF)—This file contains the source texts
for all modules.
2. Compiled Code File (CCF)—The contents of this file are
generated as a result of the compilation process.
3. Load Map File (LMF)—*Thxs file indicates which modules=
are currently loaded and gives their location in the machine.3 s
. System Element File (SEF)—This file lists those modulesm
which can be used to form MASCOT subsystems, i.e. th
contains load details of root procedures, channels andB

U woyy papeojumogd

pools which have been ‘linked’ (see below).

‘dno-ol

The STF and CCF are essentially part of the user’s data baseo

and there may well be several sets of these files. There is only 3
one LMF and SEF and these lie within the kernel data base.3

3
o

In addition to these files there are three other lmportant_

components of the kernel data base which are used in the
construction process.

Activity table

This contains an element for each activity and records its&
state (running, held on current list, held on pending list, etc.):
together with certain other key information (for example,:;
program re-entry point, store index for work space) vital to theX
running of the activity. The current, delay and pending llsts

W)

€elv/ce/aPie]

I\)

(.»)
\‘

o

lie within the activity table which chains together activitiesg

on each list; thus the start of a list is represented by an index$

number denoting an entry in the activity table.

Subsystem table

This tabulates the current set of subsystems. It is indexed by
subsystem name and contains a pointer to the first activityS
in the subsystem, remaining activities being chained together
in the activity table.

Activity stack
This is an area set aside to provide the work space require-
ments for each activity as it is FORMed. The portion of work
space allocated to an activity within the activity stack is called
the activity environment.

We are now in a position to outline the various construction
operations.

COMPILE

This takes the source text for a module (specified by name and
version number) from the STF and places the result of com-
pilation as an element in the CCF. In addition to generating
the compiled code, this operation must also list details of work

343

(2]

idy 6] uo

o
=

space requirements and all external calls of and references to
other modules so that linking can take place at a later stage.

LOAD

This takes an element (specified by name and version number)
from the CCF and loads the compiled code into core. It
records the details of the loaded module in the LMF. If the
module is a system element and it requires no further linking
(i.e. it is ready for use) then an entry is made in the SEF at
this stage.

LINK

This acts on a loaded module with a view to establishing the
links for all external calls and references. It also computes
work space requirements for code modules taking into account
its own requirements and those of any called modules. A mod-
ule can only be linked to other modules which have themselves
been fully linked and successful linking of a system element
results in an entry in the SEF.

FORM

This is used to build up subsystems in the manner described in
Section 2. The FORM operation checks the mode of root
procedure parameters, sets up an entry in the activity table
for each activity, secures an activity environment in the activity
stack for each activity and loads the root procedure parameters
into each activity environment.

It should be noted that the above method is based on static
work space allocation where work space requirements are
calculated at COMPILE time, consolidated at LINK time
and allocated at FORM time. This rules out certain program-
ming facilities such as dynamic setting of array sizes and
unrestricted recursion, but produces the important advantage
of avoiding the possibility of activities being held up by
shortage of work space. If it is essential for work space to be
allocated dynamically then this can still be arranged by means
of a POOL with suitable ACCESS PROCEDURES for secur-
ing and releasing space.

Various techniques are possible for giving some flexibility
in the use of space in the subsystem table, activity table, activity
stack, and the remaining area outside the kernel available
for system elements and other modules. Perhaps the simplest
approach is to divide the computer into ‘standard’ and
‘development’ portions. In such a scheme the standard portion
can only be changed when the computer is completely reloaded
whereas the development portions can be rewritten as required.
Alternatively facilities can be provided for removing any
subsystems or module without stopping the machine. To give
tight control and safe operation two additional files would be
required:

Forward Cross Reference File (FCRF) listing system elements
used by subsystems and modules required to support other
modules.

Reverse Cross Reference File (RCRF) listing subsystems sup-
ported by each system element and modules supported by
other modules.

It is then possible to provide two further facilities:

DELETE (subsystem) to recover the space in the subsystem
table, activity table and activity stack.

REMOVE (module) to recover space in the area outside the
kernel available for system elements and other modules.

LOAD, LINK, FORM, DELETE and REMOVE would all
need to interact with the FCRF, RCRF to give a compre-
hensive system of cross checking on usage; this is not too
difficult to provide although it does complicate the construction
process to a degree.

The system construction facilities would normally be provided
through a command interpreter although there is no reason

344

why more complex systems should not allow these operations
to be called from within programs. Inevitably any implementa-
tion will need to take account of existing compilers, loaders,
file handling, etc. ; this constraint has been found to cause little
difficulty in practice.

Appendix 2 Test facilities

The basic structure and organisation of MASCOT software
produces an excellent test environment. The construction
facilities are extremely flexible and allow user facilities to be
dummied, isolated or duplicated as required. This is of con-
siderable advantage when testing software throughout all
stages of implementation and development. There are also
some additional MASCOT features which can be used for
test purposes. Firstly a range of commands provides overall
control at run time and secondly a monitor facility allows
recording of user-kernel interactions arising from primitive
procedure calls. These two features are briefly described
below.

1. Commands

The following commands are available for control at run
time:

START(subsystem, p). This starts a subsystem by placing its
activities on the current list having priority p.
TERMINATE(subsystem) This stops a subsystem and places =
it in a state where it can only be restarted by a START
command.

HALT(subsystem). This temporarily stops all activities in a3
subsystem either at the end of the current slice or on attempted
re-entry from the despatcher. This is done in a manner which
allows them to be continued from the same point at a later
stage. It can be used to give a controlled pause for all activities 8
in a designated subsystem.

RESUME(subsystem). This restarts a subsystem which has
previously been stopped by the HALT command.

The commands listed above would normally be available S
through an online command interpreter (itself a subsystem)
and would be used for normal control as well as for test
purposes.

2. MASCOT monitor facility

The monitor facility in MASCOT is designed to provide az

//:sd1y WoJ) papeojumoq

<

(')

lwap

O
o)

]
3
o

/ZZ/3100B/|ulwod

N
I

8LELVE/CE

o

means of observing and recording the interaction between<

MASCOT subsystems and the kernel software. The facility &
is capable of providing a record, in strict sequence, of slices S
initiated by the executive programs (i.e. the despatcher and

(2]
—
o

N

the interrupt handler) and primitives called by active sub->

systems. The events recorded by the monitor take place at=
the fundamental level of operation and occur at a high rate
under normal conditions. Thus it is necessary to provide
comprehensive selection facilities to limit recording to specific
areas, together with some means of buffering information to
produce complete and continuous short term records.

The recording element of the monitor software is an integral
part of the executive programs and primitive procedures lying
within the kernel. It has been possible to provide a facility
which carries negligible overheads when not in use, and which
minimises any disturbance to the natural timing of events
caused by the recording mechanism. Output of the record is
implemented in the form of a privileged subsystem having
access to the kernel data base. Control of the facility is exer-
cised by means of a command interpreter.

The MASCOT monitor records the occurrence of selected
events where selection is exercised in terms of primitives,
activities and queues:

The Computer Journal Volume 22 Number 4

=1

o
A

Primitives

All primitives previously mentioned can be selected to be the
subject of monitoring. In addition the start of a slice by an
executive program is also included as a pseudo-primitive
called ENTER.

Activities
These may be selected in terms of complete subsystems or
individual activities within a subsystem.

Queues

A queue can be selected in terms of its main store address or
other suitable reference number or identifier. Since this may not
be readily available a special facility (see ALLQS option
below) is included to obtain this information.

The three selector fields above ensure that a selected primitive
must be called from within a selected activity and, if it has a
control queue parameter, must operate on a selected queue
before recording can take place.

Monitor data is gathered in a special circular buffer and
various commands are provided for overall control. Input
to the buffer can be switched on and off as required. Output
from the buffer can be arranged to give a snapshot of immed-
iate past events or to provide as complete a continuous

References

DUuKSTRA, E. W. (1968).

Forp, W. S., and HAMACHER, V. C. (1977).
Vol. 20, No. 2, pp. 156-162.

HARTE, H., and JAcksoN, K. (1976).
Workshop on Real Time Programming, IRIA, France.

Hoarg, C. A. R. (1974).

Note No 778, October 1975.
KAMMERER, P. (1977).
SHRIVASTAVA, S. K. (1975).
WOoODWARD, P. M., and Bonp, S. G. (1974).

Co-operating Sequential Processes, Programming Languages, Academic Press.
Low Level Architecture Features for Supporting Process Communication, The Computer Journal,

Achieving Well Structured Software in Real Time Applications, Proceedings of IFAC/IFIP International

Monitors: An Operating System Structuring Concept, CACM, Vol. 7, No. 10, pp. 549-557.
JacksoN, K., and SimpsoN, H. R. (1975). MASCOT—A Modular Approach to Software Construction Operation and Test, RRE Technical

Excluding Regions, The Computer Journal, Vol. 20, No. 2, pp. 128-131.
A View of Concurrent Process Synchronisation, The Computer Journal, Vol. 18, No. 4, pp. 375-379.
ALGOL 68-R Users Guide, HMSO.

record of events as is possible within the limitations of buffer
and output capacity.

Certain optional extra items of data can be recorded if desired :
TIME—The time of occurrence of each event.
SLICE—The duration of each slice.
LOCATION—The address associated with each event (i.e. the
point of call of a primitive or the location to which an executive
program transfers control).
ALLQS—This allows a user to override the queue selection
mechanism and this produces a record containing queue
addresses, reference numbers or identifiers which can be used
subsequently to select the control queues of particular interest.
The monitor facility is an important aid during the initial
stages of implementation of a MASCOT system when it can
verify the correct operation of the executive programs and
primitive procedures. In an established system it can be used
during the implementation and test of access procedures and
interrupt control subsystems. It can also provide valuable
timing information at all stages of a test program. The MAS-
COT monitor can be enhanced by arranging for other forms _
of online test aid to write their information in the monitor g
output buffer, so allowing the production of a single time =
sequence record for a wide range of preselected events.

Book reviews

Microcomputer Architectures, edited by J. D. Nicoud, J. Wilmink
and R. Zaks, 1978; 283 pages. Proceedings of Euromicro, 1977.
(North-Holland, $40-00)

The proceedings of a 1977 conference on ‘Microcomputer archi-
tecture’ might sound a little dated, and this would indeed be the case
for those secking details of the most recent products. Most of the
systems discussed make use of the established eight bit processors.
The chosen papers are, however, respectable contributions con-
cerned with the solution of specific problems in original and improved
ways. Many of the problems are not new, or specific to micro-
processor systems, but will remain topical for some years yet.

The selection panel appear to have struck a good balance between
the highly theoretical studies and the systems and applications areas.
The most interesting central themes are multimicroprocessor
configurations, shared bus structures, synchronisation and speed
limitations; shared memories; fault tolerant systems and reliability.
Applications areas include data communications systems, graphics,
automatic control and signal processing.

Some papers are not strictly concerned with mxcrocomputers, viz
‘A modular microprogrammable pipeline signal processor in ECL-
technology’, but these infiltrators are of high quality. The hardware
designers get good coverage, with bus standards, programmable
logic arrays, languages for logic design and simulation of central
processors. With only two papers devoted to programming lan-
guages, and many of those on cross assemblers in the reject pile, the
selection panel clearly felt that there was little progress to report in
this area. They did accept a very good paper describing a universal
cross assembler, which must be of commercial value.

The Computer Journal Volume 22 Number 4

LEEYEIZEEIVIZT/oI01E/|UlWOo/WOod dNo dlWwapede//:SARY WOol) POPEOjuM

$40.00 you may prefer to buy another 8080 just in case they ever come g
back into fasion.

I would echo the panel chairman’s comments, that insufficient ¢
research and development is reported on programming tools and
languages. The large number of systems being written in BASIC and
Assembler gives little satisfaction to those who struggled to provide
current high level languages in the face of the same scepticism in their
day as that voiced by the current wave.

This book is for the departmental libraries of those actively involved '\>
with microcomputer research and development.

1. P. PAGE (Uxbridge)

anb

0z ludy g uo

Information Representation and Manipulation in a Computer 2nd
edition by E. S. Page and L. B. Wilson, 1979; 271 pages. (CUP,
£10-00; £3-95 paper)

This is the welcome second edition of a now well established intro-
ductory text on data structures, brought up to date and somewhat
expanded. Starting with a section on the various data representations
—including data compression and error detection and correction—
the authors continue with chapters on the basic data structure of
arrays, linear lists and trees and finish with a short chapter each on
searching and sorting. Lots of exercises with solutions or suggestions
given, and each chapter has its own bibliography. At £3-95 in soft
cover, it would be difficult to find better value for hard-up students.

ARTHUR S. RADFORD (Leicester)

345

