Free store distribution under random fit allocation: Part 1
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Hitherto, most of our understanding of dynamic storage allocation techniques has come from
simulation studies, with Knuth’s Fifty Percent Rule as the notable exception. This paper extends
the analytic approach to derive equations relating the equilibrium distribution by length of free
blocks to the corresponding distribution of reservations under a random-fit allocation strategy. In
the special case of single word reservations, it is predicted that the existence of a stable solution
requires at least 379, store utilisation, and an analytic expression for the free store profile is

obtained.
(Received August 1978)

1. Introduction

The classic introduction to the concepts and methods of
dynamic storage allocation is that of Knuth (1968). He states as
the objective, ‘We want algorithms for reserving and freeing
variable size blocks of memory from a larger storage area,
where these blocks are to consist of consecutive memory
locations’.

Each individual store location experiences alternate reserva-
tions and releases so that, at any instant, there is likely to be
considerable fragmentation of free storage into blocks of
different size. Randell (1969) has defined external fragmentation
to be ‘the loss in storage utilisation caused by the inability to
make use of all available storage after it has been fragmented
into a large number of separate blocks’, and internal frag-
mentation to be ‘the loss of utilisation caused by rounding up a
request for storage, rather than allocating only the exact
number of words required’. Internal fragmentation depends
only upon the distribution of request sizes (Wolman, 1965;
Gelenbe et al, 1973) and is not of interest here.

Garbage collection provides one distinctive approach to the
control of external fragmentation. At the start of a cycle of
operations, reserved blocks are contiguous at one end of the
store, leaving a single block of unfragmented free store at the
other end. The initial configuration of an empty store is such a
situation. During the cycle, fresh reservations are placed
progressively through the free block to extend the reserved
area. Releases are marked as such but the space they occupy is
not released. When the remaining free store is insufficient to
meet the current request, garbage collection is invoked: all
reserved blocks are relocated to form a fresh contiguous
sequence, and a new cycle commences. This method has its
devotees and is widely used. Its disadvantage is that the
convenience of ignoring releases must be paid for in mounting
the periodic rescue operations.

The characteristic feature of truly dynamic methods of storage
allocation is that they coalesce contiguous sections of free
storage, arising from releases, without delay. In this way they
combat the steady diminution of free block sizes produced by
external fragmentation. A dynamic equilibrium results, in
which requests continue to be met, without the overhead
implicit in block relocation. Knuth commented that there were
few analytical results in this area, most information coming
from simulations. Ten years later the situation is little different.

Two classes of method may be distinguished, corresponding to
structured and unstructured external fragmentation.

In unstructured fragmentation, any free block of sufficient
size is eligible to satisfy a request, any residue forming a fresh,
smaller free block. Similarly, following a release, any contiguous
sequence of free blocks is instantly compacted into a single,
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larger free block. Algorithms in this class differ in their method 5
of selecting the free block appropriate to each request. g
Methods involving structured fragmentation are the buddy3
system (Knowlton, 1965) and its derivatives. Block lengths area
not arbitrary but are powers of 2. A request for L locations w1llQ
always be allocated the smallest possxble free block, of size 2"O
where 2" > L > 2"”!, thus minimising internal fragmentation. = :
If no such free block is available, a larger one must be sub-T3
divided. A block may only be subdivided into two equal halves\
corresponding to the relatlon
=2"t 4 2nt (1. 1)%

Conversely, following a release two contiguous free blOCkSo
may be compacted only if they are ‘buddies’ and so wouldU
reconstitute the block from which they were derived. g
The merit claimed for the buddy system is that, by restrictings
the number of block sizes, the administration of free storage ls§
simplified. Amongst the variations that have been described,= 5
aimed at improved flexibility and reduced internal fragmenta-=:
tion, are the weighted buddy system (Shen and Peterson, 1974,Q
1975) and the Fibonacci buddy system (Hirschberg, 1973)N
following the original suggestion by Knuth.
In the Fibonacci buddy system, block lengths are Flbonaccw

ped
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numbers f,, f5, f3, . . . satisfying the relation 4>
fo=Jfo-t + famz 125
in place of equation (1.1). More general systems have been<
proposed, based upon the relation C
fo=For + faci (1.3)§'

but it is not clear that they would be more efficient (Nielsen,5
1977). It may be noted that the choices k = 1 and k = 2 recover>
the two sxmpler systems. Further discussion of the simple buddy—
system is given by Purdom and Stigler (1970). Practlcal,\)
improvements to the various systems are discussed by Isoda ef™
al (1971), Cranston and Thomas (1975) and Hinds (1975).

The present paper is concerned with unstructured fragmen-
tation. It is convenient, both for exposition and as a reflection of
common practice to facilitate compaction, to suppose that the
free blocks are arranged as a list, ordered according to their
position in the store. Knuth describes two reservation strategies.
In ‘best fit’, a request is allocated the smallest free block of
sufficient length. This requires a full search through the free
block list. In ‘first fit’ on the other hand, the first free block
of sufficient size in the list is taken.

The “first fit’ strategy tends to generate a preponderance of
short blocks at the head of the free block list and so extends the
mean search time if a significant proportion of requests are for
longer blocks. Knuth proposed a modified ‘first fit’ strategy,
subsequently known as ‘next fit’, to avoid this demerit. In this,
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each new search in the list starts, not at the head but at the
point where the previous search terminated. For this purpose
the list is regarded as circular. By this means a more even spatial
distribution is encouraged. An interesting alternative strategy,
avoiding the extremes of ‘first fit’ and ‘best fit’ is the ‘optimal
fit’ strategy described by Campbell (1971).

‘First fit’ is a crude, and ‘next fit’ a less crude, approximation
to an idealisation which we may call ‘random fit’. In this, every
free block of sufficient size is equally likely to be allocated to a
request. Knuth’s Fifty Percent Rule, the best known (by default)
analytic result in dynamic storage allocation, presupposes a
‘random fit’ strategy. Indeed, observed deviations from the rule
have been attributed to a breakdown in randomness. Shore
(1977), in particular, has noted the effect of systematic place-
ment of a reservation at one end or the other of an oversize free
block. By varying the end selected, at random, better agree-
ment with the rule is obtained.

Clearly a deeper theoretical understanding of ‘random fit’
would be a practical advantage. It would extend the role of this
strategy as a yardstick against which more efficient practical
algorithms may be assessed. It is to this end that this paper is
directed.

2. Equilibrium under Random Fit

In this section equations are derived relating the equilibrium
distribution by length of free blocks to the corresponding
distribution of request sizes. The Fifty Percent Rule is re-
covered by summing over block size.

2.1 Definition and notation
Conditions are sought for statistical equilibrium between
reservations and releases in a store of N locations operating
under a ‘random fit’ allocation strategy. In order to avoid
consideration of the effects at the two ends of a linear store, the
store is assumed to be circular. It is further assumed that each
request can immediately be satisfied so that there is no neces-
sity to queue it pending sufficient releases to free more storage.
The distribution of reservations by length is assumed known:
b, is the probability that an arbitrary request is for a block of
length r. With maximum request length R, where normally
R < N, it follows that

R
> b =1 2.1
r=1
In equilibrium, for each block size, the average rates of
reservation and release are the same and so the size distribution
of releases is the same as for requests.

Under the above assumptions of equilibrium in an unsaturated
store, the size distribution of reserved blocks in store is deter-
mined by considerations outside the present analysis such as the
initial loading history. The case treated here is that in which the
size distribution in the store matches that for reservations and
releases. This is the situation that would arise for example if an
initially empty store were connected to the input stream of
requests with releases inhibited for a period.

The significance of the assumption of a common size distribu-
tion for requests, stored blocks and releases is its compatibility
with the simple release mechanism in which every stored block,
irrespective of size, is equally likely to be released next. It is this
mechanism that is applied in the subsequent analysis. In
general this would imply a wholly artificial relationship
between the duration of a reservation and its allocated position
in the store but under the random fit allocation strategy this
mechanism is the natural consequence of the simple assumption
that the duration of a reservation, whether determinate or
random, does not depend upon its size.

It remains to note, as a final preliminary to the analysis, that
the quantities introduced are to be understood as denoting
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average values under the conditions of statistical equilibrium
that have been outlined. At certain points of the discussion
however, variations in block counts due to individual reserva-
tions and releases are analysed and there the counts have the
significance of actual values of random variables close to their
average values. It is to be expected that the averaged block
counts will not be whole numbers but the discrepancies will be
insignificant for a sufficiently large store where the counts will
be large. The store utilisation 6 is defined as the fraction of
store occupied by reservations. If the number of reserved blocks
is B, then b,B of them are of length r and so

R
> rb,B = 6N
r=1
The free store may be treated similarly. Let f, be the number of
free blocks of length r, F the total number of free blocks, and
define

2.2)

¢, = fIF (2.3)
so that ¢, is the probability that a free block chosen at random
is of length r. For maximum free block size L, the analogous
relations hold.

L

¢ =1 (2.4
r=1

and

L

>r¢F=((1— 0N 2.5)
r=1
where an upper bound on L is seen to be (1 — )N, correspond-
ing to zero fragmentation.

Loosely analogous to the store utilisation 0, a block utilisation
ratio k is defined as

k = BJF (2.6)

In the analysis of the distributions arising, it is couvenient to
work with their generating functions. The generating function

corresponding to a distribution v,, r > 1, is denoted #(a) and
defined by

B(a) = Z", v,a’ 2.7

2.2 Block reservation

Let Q;, denote the probability that a request for a block of size
i is satisfied by using a free block of size r, r > i. In the ‘random
fit’ strategy, every sufficiently long free block is equally likely to
be used, so that

Qi = 11/8: 2.8
where
L
& = Z’f“ (2.9)
More conveniently, in terms of ¢,
Qir = d’r/),i (210)
where
L
vi=3 6 @.11)

As the result of such a reservation, the free block counts are
modified as follows
fief,—1 (2.12)
and, if r > |,
fici—fimi + 1 (2.13)
Accordingly, the expected increment to f following a single
random reservation is denoted by 4™ f and given by

R
4+ = Z b:{ - ;i:—':a" > &l a’)} @.14)
! r>i i

i=1
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2.3 Block release

2.3.1 The compaction mechanism

The release of a block of size i produces changes in the free
block counts. Three cases arise.

1. No compaction
The released block lies between two reserved blocks.’

fivfit 1 (2.15)

2. Single compaction

The released block lies between a reserved block and a free
block of length r.

(2.16)

(2.17)

fl+r‘_fl+r+1
S «f -1

3. Double compaction
The released block lies between two free blocks of lengths r and
s.

Sisrss © fiares + 1 (2.18)
f - f, -1 (2.19)
£, « f, -1 (2.20)
where, if r = s, the latter two relations combine to give
fief =2 (2.21)

2.3.2 The spatial distribution of blocks

As a consequence of the immediate compaction of adjacent
free blocks, each free block is bounded on each side by a
reserved block whereas sequences of contiguous reserved blocks
are permitted. The assumption of a circular store thus leads to

B>F (2.22)

Three categories of reserved block may be distinguished accord-
ing to the number of free neighbours. Thus category 2 consists
of blocks bounded on each side by a free block. Blocks of
category 1 are the ends, and those of category 0 are the interior
members, of a sequence of two or more contiguous reserved
blocks.

The numbers of blocks in each category are denoted by ng, n,,
and n, where

no + ny + n, = B (2.23)

On the assumption of a circular store, the number of separate
sequences of one or more reserved blocks is F. Of these, n, are
of unit length and F — n, of length two or more. The latter each
have blocks of category 1 as their ends so that

n, = 2(F — ny) (2.29)

To continue the argument, an estimate of n, is required. This is
obtained by averaging over a representative set of arrange-
ments of the B reserved blocks and F free blocks, treating each
such arrangement as equally likely. The resulting expected
value for n, is carried forward into the block release equations.
Suppose the reserved sequences are numbered 1 to F. Each
necessarily contains one of the B reserved blocks. The remain-
ing B — F reserved blocks may be allocated arbitrarily. The
arrangements chosen to reflect these constraints correspond to
the terms, before collecting coefficients, in the expansion of
XyXg oo Xp(Xy + X3 + ...+ xp)%7F (2.25)
There are F2~F such terms and hence F®~F different arrange-
ments. A term such as
T =xi'x...xir

(2.26)

represents an arrangement for which the numbers of blocks in
the F sequences are Iy, I, . . ., Ir. The number of single block
sequences in this arrangement is n, say, where 7 is the number of
variables x, in T for which /, = 1. This is given by

C ]
n Z [ 3:,], (2.27)
r=1
where [ ], indicates that the enclosed quantity is to be evaluated
atx, =0, x, = 1fors # r.
The estimate of n, now comes from averaging n over all
arrangements.

F
- 0 -
n, = FF~8 E [——x,x,...x,(x,+x2+...+xp)" ']
r

ox,
r=1
(2.28)
F - 1 B-F
= —_ .29
F ( 7 ) (2.29)
Introducing k = B/F (equation 2.6) now yields
B[ (F—1\F1*!
It is a well known result of classical analysis that 5
n o
lim, _, o (” - 1) ! @315
n 8
and hence, for large F, §
n, = Bke*"")™! (2.328

A comment on the above derivation is in order. The method of:
enumerating and weighting arrangements may well be ques?
tioned. Its tractability is a substantial merit and it has plausiz-
bility. It would perhaps be foolish to say more, though diss
honest to say less.

no"olwa

2.3.3 The effective compaction rate £
Under a ‘random fit’ strategy and the assumptions already;
made, the spatial position of a reserved block has no influencé
upon its becoming due for release. It follows that the probabilitg?
that a released block is in category 0, 1 or 2 is pg, py OI P, wherg

po="/B, py="/B, p,="YB (2.33%_

so that, using the results above, g
py = (k™)1 (2.34§

1 w

P =2 (7( - Pz) (2.35§

n

w

Po=1—-—p —p; (2-36§

The same assumptions also determine that blocks are distri<
buted randomly in space as regards their length, whether
reserved or free. It follows that the probability that the releas¢
of a block of length i will yield S
(a) no compaction is po ©
(b) single compaction with a free block of length r is p; ¢,, and
(c) double compaction with free blocks of length r and s ig

P2 ¢r ¢r =
In the double compaction case it is assumed that the probabili-
ties of the free blocks can be taken as independent. This is valid
for any particular r and s if the store is large so that f; and f, are

large.
The expected increment to ffollowing a single random release

is denoted by 4~ and given by
R
A7 f= Poi Zlbia‘

6L U

+@§mzyw“~wﬂ

-] rm=

(2.37)
(2.38)

+ P EBE 5 T —  — )
= pob + pi(6 — D¢ + pa(bF — 2$
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which may be further simplified using the expression above for
P

4] = (o + p1é + p6%b - (2.39)

?:HN

2.4 Equilibrium conditions

As indicated in Section 2.1, in equilibrium reservations and
releases take place at the same mean rate in order to maintain a
stable store utilisation. The conditions for equilibrium are thus
seen to be

A*f+ 4 f=0 (2.40)

2.5 The Fifty Percent Rule

The equation above, in generating function form, is to be
regarded as an identity in @ hence as a shorthand for the
equations corresponding to each power of a in a series expan-
sion. By evaluating the generating functions at @ = 1, these
equations are summed, and the result expresses the constancy
of the number of free blocks.

ie. A*F 4+ A"F=0 (241)
since
ja)y=F 2.42)
Substituting @ = 1, and using b(1) = (1) = 1, yields
R
4 F = = > b .43)
Yi
i=1
and
4 F=1-2 (2.44)
z '
so that
FIB=14p (2.45)
where
R
p=1= S b (2.46)
Vi

i=1

This is Knuth’s Fifty Percent Rule with p being the probability
that an arbitrary request will be satisfied by using an oversize
free block. It may be noted that this imposes the bound

B> 2F (2.47)
i.e.

k=2 (2.48)
which is stronger than that of equation (2.22).

3. Unit size requests: a special case

The case in which all requests are for a single store location is of
interest both in regard to the results obtained for the free store
profile and to the methods for obtaining them.

3.1 Egquilibrium conditions
The restriction to unit size requests is represented by

b=a 3.1
ie.
R=1b,=1and b, =0fori > 1 3.2)
Substituting into equations (2.14) and (2.39), noting that
'Yl = 1 (3.3)
and setting
%=x (.4)
yields
A f=@'-1é - ¢, (3.5)
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and

A7 = (po + 1$ + p2$Ha — x¢ (3.6)
The Fifty Percent Rule here determines that

xX=p 3.7
where
p=1-¢, (3.8)
so that
0<x<1 (3.9
and hence
o=k>2 (3.10)

Using these relations to eliminate ¢,, and equations (2.35) and
(2.36) to eliminate p, and p,, the equilibrium conditions (2.40)
are obtained in the form

ap -1+ —-al —ax)g—1D+(1—-a)}?=0

3.11)

Further simplification results from the substitution
d-1=-(1-a% (3.12)
where o
© S
X=X (G135
r = []
to yield %
@px —(1-a)x+1=0 (3.14%
and 3
b= Y-t — Xrs r21 3.15%

In these derivations some care is needed at a = 1 since, fog
example, equation (3.11) collapses at a = 1. However q§ and )@
are continuous and so the difficulty is removed.

%
3
3.2 Existence of solutions o
Combining equatlons (2.2) and (2.5) in the case of unit size5
requests results in 8
0 3
k = o' 3.1 5;
or, equivalently, 3:’
k =

0= 3.17
k+F ( §
where 3
L N
= 3r$, = FO) = x0) .18
Now the condition for the existence of a real solution ¥ oé
equation (3.14) is cr
(1 — ax)? — 4a’p, = 0 @G. 19%

For given x, 0 < x < 1, this condntlon is satlsﬁed for suﬁicwntly"l

small a. However, equation (3. 18) shows that a solution 1s>

required for @ = 1 and it is therefore necessary that ©

(1= x)? = 4p,>0 (3.20%

This condition, together with equations (2.34) and (3. 4)8
determine that solutions exist within the range

03737<6< 1 (3.21)

with corresponding ranges for the other major parameters as
follows

31936 < k< (3.22)
06263 > x> 0 (3.23)
00349 > p, > 0 (3.24)
53513> F> 1 (3.25)

It would appear that no stable solution exists for less than 379,
store utilisation.

3.3 Approximation for high utilisation
As k increases, equations (2.34) and (3.4) indicate that both p,
and x decrease, the former much more rapidly. At small x




values, p, may therefore be neglected, and equation (3.14)
yields

i=0-a)l=Yax (3.26)
0

leading to
¢, =10 — x)x! (3.27)
Thus the proportion of free blocks with given length decreases

with length in simple geometrical progression. The mean free
block length in this approximation is given by equation (3.16)

as

F=31)=(1-x"" (3.28)
In this approximation the store utilisation is given by equation
(3.17) as

X (3.29)

1 —
2—-x

3.4 The complete solution

In this section the solution ¥ of equation (3.14) is derived quite
straightforwardly as a series expansion in powers of a. The
expression for x is

1—ax( [, _4d°p, 1}
2a%p, {l [1 (a- a)’]}

where the negative square root is chosen to ensure that X is
bounded as p, — 0 and so recovers the approximation of the
previous section.

Expanding first in powers of p, gives

c il — ax _4‘12p2 n+1
X 2a*p, \(1 — ax)?

(3.30)

52:

n=0
1 1 3 1 - 2n
X3 =573 3 (3.31)
1. 2. 3..... n+1
S @ (2n)!
_ a*"p; n)!
n (1 — ax)®>"*! nl(n + 1)! (3.32)
n=0
and then, in powers of a,
o)
~ (2n)' 2n + w)!
= 2"p 3
X z n'(n + l)' ax “Qn)lu! (3:33)
n=0

+
30 40 50 114

Fig. 1 Variation of H, with r at different utilisations

Table 1 Parameter sets for plotting H, curves

0 x k § 2 F
09 0-1818 11-0000 0-000004 1-2222
0-8 0-3328 6-0100 0-0011 1-5025
07 0-4549 4-3964 0-:0076 1-8842
06 0-5450 3-6695 0-0189 2:4463
05 0-6015 3-3251 0-0294 3-3251
0-4 0-6252 3-1989 0-0347 4-7984
0-3737 0-6263 3-1936 0-0349 5-3513
- 0-7 2-8571 0-0546 -

(2n + u) 2n+u .
DD e 639
n=0 u=0

Hence, putting 2n + u = r,
[5]
= r! pixTTn (3.35)

A wn + DI = 20 P2 :

n=0

where [ 2] denotes the largest integer not exceeding % .

Detailed examination suggests evaluation of y, by a form of
nested multiplication.

Casel:rodd. Putr =2s + 1,s> 0.

., rr—1 . r(r - Dr—2)(r -3 -
x' = X + -T2-!—)p2x 2 )(2' 3' )pgx 4
rr—1...3.2
+ ...+ TG+ D) p3x (3.36)
_ r(r Dp, 54 p,
B (1+ 12 x2( (1+ (s—Ds x

32 p,
(e 2%) )
Case 2:reven. Putr = 2s,5s > 0.
R { Gl VIS I | (el ) (i) Glnl:) JECY
%=X+ T b 7731 2
rr—1)...21
+ o . . + "m—pz (3-38)
r rr—1Dp, 43 p,
= 1 - 7= ... —
x( M) x2< (1+(s—l)sx2

21 p,
14+ =~ 2231} 3.39
% ( + s(s + 1) x’)) )) (3.39)
Possibly the clearest representation of the free store profile is in
terms of the cumulative distribution function

H, = El¢.. (3.40)
=Yo—X=1-1x (3.41)

Here H, is the proportion of free blocks whose length is r or
less. Fig. 1 shows the variation of H, with r for a range of 6
values. For each 6, the corresponding value of x, and hence k
and p,, was obtained by interpolation in equation (3.17) using

the expression
= 1 -1 - )

2p, 1 - x
derived from equations (3.18, 3.30). A logarithmic scale is used,
with the vertical axis corresponding to —log (1 — H,). Relevant
parameter values are listed in Table 1. The linearity of the curve

~

(3.42)
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for 0 = 0-8 illustrates the high utilisation approximation of
Section 3.3. At lower utilisations the curves wilt progressively.
The broken curve shows the result of applying equations (3.37,
3.39) outside their range of validity with x = 0-7—i.e. above
the critical value 0-6263 of equation (3.23). The existence of a
turning point and subsequent negative gradient is behaviour
clearly incompatible with that of a respectable cumulative
distribution function.

4. Discussion

On the personal level, quite the most satisfying part of the work
reported here was the Eureka experience of stumbling, after
some weeks of ineffectual groping, upon the realisation that
generating functions were the key to the problem. Not only did
this technique permit a compact and elegant formulation of the
equations, but, in the case of unit length requests, their solution
then required merely schoolboy algebra. Although the intro-
duction of this technique into the study of storage allocation
may possibly be the most important contribution of this paper,
the prediction of a stability threshold at 379 store utilisation is
undoubtedly the most intriguing. Any speculation now, in
advance of further investigation, is likely to be a source of
embarrassment in the future but some comment is clearly called
for.

The theoretical model has two distinct components. The major
part is summed up in equations (2.14, 2.39) which lead to
equilibrium conditions in terms of the parameters p, and k.
The second is somewhat separate and is contained in Section
2.3.2. This establishes a relationship between p, and k so that
the free store profiles ¢ form a one-parameter family. Itis a
simple matter to transform between k, the block utilisation
ratio, as parameter and 0, the store utilisation. As was noted at
the time, the argument of Section 2.3.2, though logically sound,
is somewhat unsatisfying. The difficulty is a familiar one in that
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Book review

The Process of Question Answering, by Wendy G. Lehnert, 1978; 278
pages. (Wiley, £11-75)

This book seeks to answer the sixty-four dollar question: What is a
question and what is an answer? Although a laudable attempt is
made to present a systematic and logical flowchart for this common
and complex human activity, the book suffers considerably from
that tiresome American scholarly affliction, a combination of
indigestible jargon and fourth-form humour. An example of the
first runs as follows: ‘The processes which assign the proper con-
ceptual category to a question must be sensitive to the context in

The Computer Journal Volume 22 Number 4

which that question is asked. Questions cannot be correctly under-
stood by processes that do not consider contextual factors.’ In other
words, a question like ‘Are you a little queer ?” depends on its con-
text if it is to generate the correct response. An example of the
humour is one subsection heading which goes: ‘Smart heuristics
know when to quit’. Another subsection heading, which falls
between these stools, unintentionally bursts into verse: ‘You can’t
always expect to find / Exactly what you had in mind’. No wonder
one of the programs exploited in the production of this book is called
QUALM.

R. W. LAst (Hull)
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