A study of processing repetition:

J. R. Haley* and A. S. Noetzelt

The phenomenon of repetition in the workload of a computer system is investigated from the point
of view of its implications for systems design. Measurements taken from a CDC 6000 Series inter-
active system are presented. The first results show the distribution of repetitions of command
executions (or program runs) over the classes of programs within the system. Then, a resource
demand sequence is defined as the detailed pattern of hardware resources required by a program in
execution. A technique for measuring the repetition of resource demand sequences is demonstrated,
and the resulting measurements of this form of repetition are presented. The results show that the
amount of repetition, though considerable, is insufficient to support the development of predictive
schedulers. But they also indicate that a new approach to compilation—the use of an incremental
recompiler—may effectively increase the productivity of an interactive computer system.

(Received April 1978)

1. Introduction

It is a fundamental assumption in the design of operating
systems that the pattern of resource utilisation by each user
program is a random phenomenon. However, reflection on the
modus operandi of the users of a computing facility suggests
that since each program is run many times during its period of
development and productive use, the sequences of the resource
demand generated during any run of a program may be quite
similar to those generated during the preceding and succeeding
runs of that program. An awareness of the existence of
repetitiveness in a computer system workload may lead to new
approaches to operating system design. For example, one
might consider strategies for bypassing duplicated logical
processing sequences (repeated executions of subroutines with
unvarying data) in much used applications programs such as
compilers. Alternatively, if the resource utilisation patterns are
known to be repeated to a sufficient degree, it may be feasible
to develop predictive scheduling algorithms, which schedule
programs on the basis of the records of their previous runs.

In this paper, we report the results of a study undertaken to
describe and measure the repetition of the patterns of demand
for computer system resources. Since this aspect of program
behaviour has been largely ignored, we first seek an intuitive
understanding of it. A coarse yet practical quantification of the
phenomenon seems a reasonable first step. We have attempted
to retain sufficient generality in our approach, so that our
results will be useful to evaluate or suggest design possibilities
in several application areas. However, the results necessarily
reflect the entire context of the study: the hardware, operating
system, job characteristics, and user population. We therefore
describe the relevant details of the environment in which our
measurements were taken. As an example and an aid in inter-
preting our results, we will consider the repetition of resource
demand from the point of view of the requirements of a pre-
dictive scheduler.

In the second section of the paper, we partition the commands
of an interactive system into various classes, and characterise
the user behaviour in terms of command usage frequencies and
processing requirements over the command classes. This data
is presented as a background for the study of repetition of
program executions. For a more comprehensive study of user
behaviour in an interactive system, we refer the reader to Boies
(1971; 1974). The consistency of our results with those of Boies

is apparent, even though the IBM system he has studied is quite
different from ours. We then show the frequencies of the
repetition of commands with unvarying file name parameters.
Command repetition is expected to be the source of repetitious
resource demand patterns.

In Section 3, we define the concept of a resource demand §
sequence, and present an example. We then discuss the 5
technique for measuring repetition of resource demand §
sequences. In Section 4, we show results indicating the degree S
and distribution of resource demand repetition that may be o
expected in the workload of an interactive system. About half §
of all the resource requests occur in sequences that are repeti- 3
tious, and therefore predictable.

In the last section, we discuss the feasibility of several tech-
niques for exploiting the repetitiveness. It does not appear likely =
that predictive schedulers can be made practicable in a general o
purpose computing environment. But the results also show that &
the resource demand repetition is concentrated in the com-
pilers and user-written programs. This strongly indicates the
possibility of redesigning compilers to work in an incremental
mode, thereby eliminating much duplicated processing.

1y WOy papeojumoq

[woo/w

/v/ce/d

w
a

yevevele

2. Measurement of program repetition
As a first step in the measurement of repetition, we identify and <
measure the frequency of repeated use of each program by a€
specific user. We regard the potential usefulness of the measure- &
ments of repetition to be greatest in interactive systems,S
because of the great deal of involvement that such systems have ©
with the management of the user programs and files. WithinZ
interactive systems, there exists the possibility of greater%
integration of the schedulers and systems software thatS
represent a major portion of the processing activity. Our study =
was conducted on the CDC 6400 with the UT-2D operating
system at the University of Texas. The workload of this system
consists of programs initiated by users at interactive ter-
minals. This interactive system was developed from a batch
operating system. It has an advantageous structural simplicity,
which allows the collection of data describing user behaviour
at several different levels, and enables the identification of
various job types or processing modes within the system. We
will distinguish these processing modes and report our results
for each category. We first present an overview of the inter-
active system.

$The research reported in this paper was sponsored by National Science Foundation grant GJ-39658.
*Department of Computer Sciences, The University of Texas, Austin, Texas 78712, USA.
tApplied Mathematics Department, Brookhaven National Laboratory, Upton, New York 11973, USA.

352

The Computer Journal Volume 22 Number 4

The interactive system

The UT:2D interactive system evolved from an elementary
facility that simply allowed control cards to be entered from an
interactive terminal. The command vocabulary available to the
user has now been expanded to include many functions
specifically for interactive use, but a relatively small subset of
the basic control card commands still represents the major
portion of computation in the interactive system.

The file system resides on a hierarchy of storage devices. The

storage medium at the lowest level is magnetic tape. Each tape
holds a set of files, called a permanent file set, belonging to a
single user. When a filein a permanent file set is referenced, as by
the interactive command READPF, the entire permanent file
set is transferred from the tape to the next level of the hier-
archy (if it is not already present there), which is a set of auxil-
iary disc units. The requested file is read from the auxiliary
disc unit to the highest level, the set of four large system
disc units, and it is then logically attached to the user jobasa
local file. Any program requested by the user may reference the
local file just as it does the standard local files INPUT and
OUTPUT. Once modified, a local file may be restored to the
permanent file set by the command SAVEPF. Various forms of
the COPY command write the contents of one file to another.

The interactive system is structured as a command inter-

preter. Commands entered at the terminals may name system
routines, or they may name binary files attached to the user job
as local files. Commands, in this system, are synonymous with
programs. For a profile of the usage of the interactive system,
it is convenient to partition the commands available to users
into the following classes:

L.

Utility commands. Many of the commands in this class,
such as READPF, SAVEPF, COPY, etc. specify various
file positioning and data transfer operations. Others control
file names and job parameters.

Editors and interactive compilers. There are several text
editors in the system: the one most often used is called
EDIT. The BASIC compiler has an interactive mode which
can be distinguished at the command level. These software
processors are characterised by a large amount of inter-
action with the terminal once the command has been
entered.

Compilers and other applications software. FORTRAN
and BASIC are the most heavily used languages in this
system. The BASIC compiler is included in this class when
it is not in the interactive mode.

User programs. Used as a command, a file name causes the
loading and execution of the program within the file.
Almost all of the commands not in the above three classes
call for the execution of user-written binary program files.

Distribution of processing by command type

Table 1 shows the frequency of use and average processing time
requirements of the command classes. The processing time
requirements are shown as two components: the CPU time and
the peripheral processor time, in seconds. Most of the

Table 1 Processing requirements for command classes

CPU Peripheral Percent
processing processing of

Command Command per per system
class Jrequency command command processing
Utility 0.744 0.039 1.12 18.4
Editor 0.112 0.703 6.45 20.6
Compiler 0.080 4.319 1.87 39.2

User program 0.064 3.150 1.01 21.8

The Computer Journal

3

Volume 22 Number 4

Repotition
Probability
n

a T T a se 6 Y
Numb2r of Commands
Fig. 1 Probability of detailed repetition of the EDIT and FORTRAN
commands

peripheral processor time represents data transfers for I/0
operations. The Utility commands are seen to be I/O bound,
whereas the other command classes have an approximate
balance between CPU and I/O requirements.

Table 1 also shows the percentage of the total system process-
ing (CPU time plus one sixth of the peripheral processor time)
accounted for by each of the command classes. Though the
Utility commands have by far the highest frequency of use,
their processing requirements are so small that the amount of
processing within this class is comparable to that of the other
classes.

peojumoq

Detailed repetition of commands
The system accounting file contains a record of the commandsp
and the parameters of the commands issued by the interactives
users. Through searching the accounting file, instances of3
potentially repetitive program executions were found. A§
detailed repetition of a command is said to occur each time an”
interactive user repeats a command with identical input para-8
meter file names. Parameters that are not file names are not§
considered in detailed repetition. In searching for detaileds
repetition, adjustments are made for several common filed
names that often signify different files. S

The probability that a command is repeated in the detailedS
sense increases with the total number of commands issued bys
the user. Fig. 1is the cumulative probability distribution for the_%_
number of commands issued between detailed command=
repetitions. The characteristics shown are for the EDIT andz=
FORTRAN commands. The remainder of the interactiveo
commands have detailed repetition characteristics similar tor
those shown in Fig. 1. Generally, the commands with the
highest frequency of use also have the highest probabilities of 3
detailed repetition. ®

The data of Fig. 1 was accumulated from the occurrences of S
these commands for which at least 70 of the user’s preceding *
commands (possibly over several interactive sessions) appeared S
in the accounting log. We define the command repetition factor$
(CRF) of each command type to be the final observed value of 2-
the probability of detailed repetition. As the characteristics of 2
Fig. 1 show, the final value for the observed data is approxi- ©
mately the limiting (in the mathematical sense) value of theS
detailed repetition probability. The difference between one and g
CREF is the probability that the command is not a repetition.
The CRF values for various commands are shown in Table 2,
column 2. These values represent an upper bound on the degree
of repetitiveness of the processing associated with the various
commands.

Resource demand sequences

A resource demand sequence of a program execution is a detailed
profile of the hardware resources required by the program
during its execution. Ideally, this profile should be a conse-
quence of only the program and its data: it should be free from
the effects of the scheduler and the multiprogramming mix in
which the program is run.

One way to obtain this characterisation of a program execu-
tion is to run the program in a uniprogramming mode and
record as the resource demand sequence the times of the CPU
processing periods together with the memory, I/O and other

353

Table 2 Repetitiveness factors

Command k n, CRF, SRF, V,
%) VA %)
READPF 70 83 85 21.3
REWIND 44 92 97 2.6
RETURN 41 42 100 1.9
SAVEPF 42 9 78 11.6
SHOW 27 67 63 1.6
49 Others 223 53 63 14.9
Total; UTILITY 447 539
EDIT 129 92 52 43
BASIC 2 99 3.1 0.1
TEXEDIT 2 84 3.8 2
Total: EDITOR 133 4.6
FORTRAN 67 87 84 31.3
SPSS 41 67 71 1.6
BASIC 33 84 75 7.0
PASCAL 9 82 88 7.6
COBOL 17 74 81 62 -
24 Others 33 69 80 11.6
Total: COMPILER 200 65.3
USER PROGRAM 107 91 80 80.1

supervisor service requests as they occur. But even with this
straightforward approach, it can be seen that the definition of
resource demand cannot always be fully separated from the
modes of the system’s response to that demand. In a virtual
memory system, for example, the series of page faults indicating
the memory demand will be determined by the system’s page
replacement policy, and that policy may well depend upon the
activities of other programs.

But it is not necessary to belabour this point. Since our intent
is only to obtain estimates of the degree of repetitiveness of
sequences (at the level at which the hardware resources are
scheduled), any resolution of these ambiguities that can be
applied consistently will be useful.

Our technique for extracting resource demand sequences
involves tracing programs in their true multiprogramming
environment. We will supplement our informal definition of the
resource demand sequence with an example drawn from the
CDC 6009 series machine used in this study. We expect that the
examples and data drawn from this system will convey the
essence of our motivation, technique, and results.

The user programs in the CDC 6400 system are multi-
programmed in a main memory of 64099 60-bit words, and
executed by a single fast CPU. A pool of seven peripheral
processing units (PPU’s), which are twelve-bit minicomputers,
each having a memory unit of 4009 twelve-bit words, execute
auxiliary functions, including I/O, for the user programs. The
PPU’s are ideally suited for control functions, while the CPU
is a slave. However, some service functions reside in a portion
of the operating system called CMR (central memory resident)
and are executed by the CPU. One PPU, called MTR (monitor),
constantly polls both the user program active on the CPU and
the active pool PPUs, to determine whether operating system
service is needed. Upon finding a service request, MTR either
executes the required function, assigns it to an available PPU,
or, if it is a CMR function, interrupts the CPU. MTR also
interrupts the CPU at the end of each processing quantum to
effect a round-robin schedule of service to user programs. Pool
PPUs that require CMR service are also capable of interrupting
the CPU.

Thus, the system may be viewed as consisting of four virtual

354

processors: the user programs, MTR, the set of pool PPUs, and
the CMR portion of the operating system. Each request for
system resources is made via communication between these
processors. The system has been equipped with a detailed trace
facility that can record all interprocessor communication
events. While the trace is in operation, each communication
event is marked with timing data and written in a main memory
buffer. The buffer is periodically dumped to a magnetic tape,
called the system event trace. Under moderate load, a complete
tape is obtained in about half an hour.

The user program resource demand sequences are obtained
through offline processing of the system event race by a pro-
gram called the trace decomposition program. In addition to
accumulating the events corresponding to each job, this pro-
gram filters out all of the effects of the scheduler and the multi-
programming mix. It adjusts the times of each jobs’ events to
be relative to the processing time of the job, eliminating the
queueing periods and other delays due to the system. It removes
all events initiated by the operating system, such as memory
swap-in and swap-out sequences for pre-emptive memo
scheduling, and it links the various processor runs to the events
that invoked them.

An example of a resource demand sequence
A simplified example of a resource demand sequence is shown
in Fig. 2. The elements of the sequence are (time, event) pairsg
In this example, the FORTRAN compiler (RUN) is executeds
It calls for an I/O operation after three milliseconds of pro=.
cessing, and then halts for I/O completion after fifteen millig
seconds. The PPU sequence corresponding to the I/O caly
requests and uses device three (REQ) of channel two (RCH}
and then, after 86 milliseconds, recalls the central programg
The central program requests a 50,000 word block of memory,
in the RFL (request field length) call after 30 milliseconds of it§,
processing.

} Papeoju

/lulwooy

Stability of the recording technique
The representations of user program resource demand sequen=:
ces produced by the trace decomposition program have beert.
shown to be stable: the CPU sequences obtained by identicaE
runs of a program differ only by minor variations of the timin@
data. The timing variations are a result of deficiencies in our>
measurement tools. For example, the precision of the clock use@
in the trace facility was limited to a quarter millisecond, where:
as the average period of uninterrupted CPU processing was i,
the order of two milliseconds. We also note that many events,
are recorded only after they are recognised by MTR, henceé
after a variable delay of up to two milliseconds for the MTRS
polling cycle. Memory interference due to simultaneous I/O..
operations with processing also has a noticeable effect on the_
apparent length of each computation. 2

The PPU sequences show the channel and device holdingy
times for I/O activity. This timing data was more variable than

e

PPU TRACES CPU TPRACE
9: RUN
0: 1pp CIC "__/~ 3: CIO X
19: REQ 3 15: RCL X
12: RCH 2 l=30: RFL
el: DCH 2 3: lop RFL 7¢: CIO 2
84: DEQ 3 15: RST 59
86: RCP 20: RCP .
94: DPP 33: DPP .

Fig. 2 Example of resource demand sequence

The Computer Journal Volume 22 Number 4

that of the CPU sequences. Since the delay for disc arm
positioning and latency was not recorded separately from data
transfer time, these delays could not be filtered out of the
resource demand sequences. The only other significant effect of
the operating system that could not be eliminated is the
apparently arbitrary assignment of the user program files to the
various I/O devices. The device numbers specified for 1/O
operations therefore did vary under identical executions of a
program.

Repetition of resource demand sequences

In considering a resource demand sequence to be a repetition
of another, we allow for little variation in the sequence beyond
that due to the imprecision of our measurement tools. A
resource demand sequence is defined to be a repetition if it has
been preceded by another, its predecessor, such that the follow-
ing conditions hold:

1. Each event in the CPU processing sequence matches, in
kind, the corresponding event in the predecessor sequence.

2. Each CPU processing period is within fifteen percent of the
length of the corresponding period of the predecessor sequence.

3. All events of the PPU sequence match, in kind.

The search for repetition of resource demand sequences is
limited to detailed command repetitions. When a detailed com-
mand repetition is found during a period in which the trace was
in operation, the resource demand sequences of both the
repetitive use and that of its predecessor were extracted. When
multiple detailed repetitions occur, those between the first and
the last play the role of predecessor as well as repetition.

For the i™ detailed repetition of command type k (READPF,
EDIT, etc.), let P,; and R,; represent the accumulated CPU
time in the resource demand sequences of the predecessor and
the repetition, respectively.

The comparison program performs a tree search, scanning the
CPU sequence, and each PPU sequence in the order in which it
is invoked in the CPU sequence. It compares events of the
predecessor and repetition resource demand sequences and
halts when it finds a violation of the above rules. Let C,; be the
accumulated CPU time at which an irreconcilable difference
between the traces occurs: if there is none, then C; = R,;. The
sequence repetition factor (SRF) forveach command type is
defined as the ratio of the total repetitive processing time to the
total processing time in the repetitive uses of the command:

.Z Cri
SRF, = i=1 _,)

nk

2 Ry

i=1

where n, represents the number of detailed repetitions found in
all of the periods in which the system trace was active. Because
the processing times are summed over all repetitive uses of the
command, the repetitiveness of each program run is weighted
by the length of the run in the computation of the SRF. The
SRF shows the fraction of processing that may be predictable
within all the repetitive uses of the command.

4. Results: resource demand repetition

Resource demand sequences of all the interactive jobs in the
system were collected, by the means outlined in the previous
sections, from five trace periods, taken on different days at
various times. In all, 57 complete and 107 partial interactive
sessions representing 133 different users were recorded.

The SRF values for several of the system commands are given
in Table 2, column 3. Most notable is the great disparity
between the SRF value of the Editor class and that of the other
three classes. For all commands except the editors, the input
data is in the files named as parameters of the commands, with

The Computer Journal Volume 22 Number 4

a negligible amount being supplied by interaction with the
terminal. But the program traces show that each EDIT call is
followed by about ten interactions with the terminal. The inter-
activeness with the editors is of the kind that calls for various
processing functions (as opposed to numerical data), hence,
results in divergent processing sequences at the various
invocations of the editor.

The product of CRF, and SRF, represents the fraction of
processing due to command type & that is repetitive. We obtain
repetitiveness figures for each command class and the system
as a whole as follows. Let F, represent the ratio of the pro-
cessing that occurs within command type k to the total
processing of its class. Then

¥, = CRF, * SRF, * F, V)

is the contribution of command k to the total repetitiveness of
its class. By summing ¥V, over all the commands of the class,
one obtains the fraction of all the processing within the class
that is repetitive. These results are shown in Table 2, column
4.

The Utility commands show moderate degrees of repetitive-
ness, although the values were broadly distributed over the
various commands. The most significant result is the high
repetitiveness factors of the Compiler and User Program
classes. Weighting the repetitiveness factors of each class by the
fractions of system processing within the class (Table 1, column
4) and summing over the classes, one obtains the fraction of all
system processing that is repetitive. This result is 52 percent.

5. Conclusions
The goals of this study were to define appropriately and then 3
measure repetitiveness of resource demand sequences, and to 2
examine its implications for systems design. One possibility
that was considered is that the repetitiveness present in the 3
workload of an interactive system might be a fruitful source of S
predictive information to be used in scheduling. Our definition =
of resource demand repetition is consistent with the require- 3:’

IWepeo.//:sd)y Wolj papeojumoq

N
previous run. If the repetitiveness were 100 percent, the pattern 2
of requests by the previous run would be a perfect predictor. In &
that case, a deterministic scheduler could be designed to achieve
the optimum throughput.

Since perfect predictability is not possible, we undertook i
simulation studies of various straightforward predictive CPU &
and memory scheduling algorithms, with varying degrees of @
correctness of the predictive data. Examples of such algorithms &
are described as ‘shortest CPU burst time first’, ‘shortest time to g
completion first’, ‘shortest time to I/O operation first’, etc. The _
results showed that properly designed predictive algorithms >
could achieve higher device utilisations and throughputs than E
standard algorithms (Noetzel, 1974). The margins of difference, §
however, were only a few percent, because under proper +
loading, the simulated system is capable of high CPU utilisa-
tion (Sherman, Browne and Baskett, 1971). But more sig-
nificantly, the predictive algorithms required a high degree of
correctness of the predictive data in order to maintain their
superiority. When the correctness (that is, the CRF*SRF
product) was degraded to about 70 percent, the predictive
algorithms lost their advantage over standard algorithms.

Although better techniques for recording and exploiting
repetition may be developed, the overhead of the scheme, which
is likely to be considerable, must also be taken into account. On
balance, we must conclude that predictive scheduling in this
environment is not advantageous. Noting the distribution of
repetitiveness over the command classes, we may speculate that
in a batch processing environment in which a small number of
large programs are run repeatedly, some variation of the

14

predictive scheduling technique may be beneficial. In Forbes
and Goldsworthy (1977), for example, the quantifications of
CPU boundedness and I/O boundedness are expected to be of
sufficient importance to determine an efficient scheduling mix.
Our results indicate than an even more specific representation
of dynamic resource requirements is available.

One positive result for computer systems design can be
drawn from this study. The high degree of resource demand
repetitiveness in the Compiler class suggests that the compilers
are performing a large amount of logically repetitious process-
ing; that is, executing subroutines or processing phases with
unvarying data. It seems apparent that a significant degree of
processing could be eliminated by redesigning compilers to
operate in an incremental mode, recompiling modified state-

References

ments only, and integrating these with the stored object code of
the previous compilation. In an interactive system, the changes
are made through the text editor: they could be made known to
the compiler with no explicit directives by the programmer.
Using the data for resource demand repetition presented here,
eliminating only half of the repetitive processing of the
FORTRAN compiler reduces the total processing workload of
the system by over six percent.

The high degree of repetitiveness in the User Program class
indicates a potential benefit in studying their logical repetition
also. Techniques for automatically eliminating a large amount
of duplicated processing may become apparent after the most
frequent repetition patterns are characterised.

Boigs, S. J. and GouLp, J. D. (1971). User Performance in an Interactive Computer System, Proceedings, Fifth Princeton Conference on

Information Sciences and Systems.

Boigs, S. J. (1974). User Behavior in an Interactive Computer System, IBM Systems Journal, Vol. 13 No. 1.

EsTRIN, G., MUNTZ, R. R. and UzaGauss, R. C. (1972). Modelling, Measurement and Computer Power, Proceedings, Spring Joint Computer

Conference

Forses, K. and GOLDSWORTHY, A. W. (1977). A prescheduling algorithm—scheduling a suitable mix prior to processing, The Compute

Journal, Vol. 20 No. 1.

HowaARD, J. (1973). A Large-Scale Dual Operating System, Proceedings, ACM National Conference.
JoHNSON, D. S. (1972). A Process-Oriented Model of Resource Demands in Large Multiprocessing Computer Ultilities, Ph.D. Dissertation, Thc

University of Texas.

papeojdmoq

woJf

NOETZEL, A. S. (1974). Simulation Studies of Predictive Scheduling, Technical Report No. 37, Department of Computer Sciences, The=
University of Texas.

NOETZEL, A. S. and HERRING, L. A. (1976). Experience with Trace-Driven Modeling, Proceedings of the Symposium on the Simulation of\
Computer Systems. National Bureau of Standards, Boulder, Colorado.

NOETZEL, A. S. and HALEY, J. R. (1975). The Decomposition of a Multiprocessor Event Trace into User Program Resource Demand Pattems,m
Technical Report No. 49, Department of Computer Sciences, The University of Texas. 3

SHERMAN, S. W. (1972). Trace Driven Modelling Studtes of the Performance of Computer Systems, Ph.D. Dissertation, The University ofo
Texas.

SHERMAN, S. W., BROWNE, J. C. and BaskerT, F. (1971). Trace Driven Modelling and Analysis of CPU Scheduling in a Multlprogrammmgo

//-sdy

o-dn

System, Proceedmgs, SIGOPS Workshop on System Performance and Evaluation, Harvard University. 8
| E]

>

)

=

o

@

i §

Book reviews R
w

Ol

catered for by multiple coples of a system rather than addmonaL
system complexity, an approach which should only be used 1n4>
conjunction with a narrowing of applications supported The ﬁnal‘\)

Advances in Information Systems Science (Volume 7), edited by
Julius T. Tou; 1978; 310 pages. (Plenum, £17-32)

This is the latest in a series of books edited by Tou which have
appeared roughly annually since 1969. The book consists of five
articles apparently solicited by the editor. Although each chapter
contains a background introduction, the papers are by no means
tutorial such as those in Computing Surveys. There is no obvious
theme addressed by all the papers and the majority of readers will
find at most a couple near to their interest. The work presented is of
uneven quality, and the whole is not up to journal standards.
Presumably the book is intended for libraries.

The first paper surveys fault diagnosis techniques for computer
hardware and discusses some practical and useful diagnostic
methods in real world digital systems. The second chapter presents
a design for a heterogeneous, widely distributed, heavily used
information network that permits complete sharing using current
systems. That is quite a tall order! The proposal consists of a set of
Basic Modular Units (BMUs) communicating via a single switching
system. The BMUs consist of a large central configuration sur-
rounded by satellite minicomputer systems. The system imple-
mentation language is a variant of FORTRAN. The third paper is an
interesting attempt to develop a mathematical model of a distributed
information system on which to implement a distributed data
base. The problems are framed in terms of constrained optimisation
for which heuristic approaches are proposed. The fourth paper
discusses the revolution in computing which has been caused by the
recent dramatic shift in hardware costs. The author argues that a
computer should be large enough to support a limited application
with just a small number of users. Additional users should be

paper muses at length on the role of data structures in pattern recog-
nition. g
J. M. BRADY (Colchester)%
(2]

Advanced Programming Techniques by C. E. Hughes, C. P. PfleegerS
and L. L. Rose, 1978; 287 pages. (John Wiley, £10-50) 2
>
A large balloon blown up in a small box will have its inherent shape=.
modified. If this book is less well rounded than it might be, certain
constraints might be supposed. Perhaps the needs of the authors”y
students have been one such constraint, changing what could have
been a book on advanced FORTRAN programming into one which
also includes information on JCL and internal data representations
for IBM and DEC machines.

Perhaps the authors’ limited experience with few types of computer
imposes the greatest constraint on the book. Despite lipservice paid
to them, the FORTRAN standards receive scant attention. Some-
what naive statements are made at times (‘A DO-loop always
executes at least once’ p. 27).

These are unfortunate limitations on a book which contains much
useful material on programming techniques. The advice given
concerning program design and documentation is excellent. The
subject areas (such as data structures) are demonstrated with clear
sample programs and well chosen exercises. If your constraints
resemble those of the authors, you may well find this book very
valuable.

A. C. DAy (London)

The Computer Journal Volume 22 Number 4

