Discussion and correspondence
Q charts—a method of specification*

G. Duncan

Rand Information Systems Ltd, 1 Parkshot, Richmond, Surrey TW9 2RD

The purpose of this note is to outline an approach to software specification and documentation
which the author uses for both system and program design. It is not proposed that the ensuing
technique be applied in all circumstances; alternative presentations such as flowcharts may be more

suitable for particular problems.
(Received March 1979)

The term Q Chart, standing for Question Chart, was derived
from the emphasis given in the method to the questions or
conditional branches of the procedure being specified. These
questions or conditional branches control the activities actually
performed and can be regarded as the real skeleton of the
procedure. The non-question processing steps can be viewed as
being hung upon the question skeleton. This view of a pro-
cedure as a framework of questions is borne out by the errors
or bugs which are usually found in complex programs.
Frequently, the processing step itself is not incorrect but rather
the error tends to lie more in the fact that the step is being
performed at all, indicating that either a question has been
omitted or a conditional branch has been wrongly designed.
This does not mean that the processing steps are unimportant,
but rather that the complexity of a procedure is primarily
dependent upon the network of the questions and not upon the
nature of the processing steps performed.

Unlike conventional flowcharts, a Q Chart is written rather
than drawn. Although this distinction may appear to be trivial,
it does highlight a fundamental difference in approach. A Q
Chart is composed of sentences or phrases written in conversa-
tional language; it does not require templates; it may be hand-
written or typed and can be used at any level of specification.
Through the use of embedded comments even a detailed pro-
gram code specification can be made self documenting.

Basically a Q Chart consists of a set of consecutively num-
bered sections. Each section is composed of statements which
may be processing steps, comments, jumps or questions.
Unless the flow is diverted by means of a jump or question, the
implied flow through the chart is always to the next statement,
be it in the same section or in the next section. There is no
definite limit to the size of a section, but the ease of reading,
comprehension and maintenance can be impaired if a section
extends over more than two pages. The first statement of each
section is given a subnumber of zero, i.e. 1.0, 2.0, etc. The other
statements are not numbered unless an explicit jump is made to
a statement other than the first in a section, in which case that
statement is given a unique subnumber in the left margin and a
series of dashes is drawn connecting the label and the state-
ment. The jump format consists merely of ‘YUMP section.sub-
number’. It is a principal design objective of Q Charts that
although jumps may be made to any subnumbered statement
within the same section, jumps to other sections should only be
made to the first statement of the other sections. If this rule is
adhered to, then a programmer at either the design or mainten-
ance level is assured that a section can be redesigned without
affecting any jumps which may have been made from other
sections.

The structure of a Q Chart permits comments to be inserted
at any point in the system without breaking the natural flow of
the process. Comments consist of any specific sentences,

phrases, numbers, program variable references or explicit
expressions which may improve the understanding of the
process being specified. They are enclosed within parentheses
and can appear anywhere within a statement. The author has
found it useful when writing detailed program level Q Charts t&
comment virtually every line. The commented Q Chart is t

main program documentation with cross referencing commen&
in the program identifying the start of every section. "’

The physical layout of the Q Chart is important. The nun¥
bered sections of the chart are organised as block structure§5
All statements at the same block level have the same indentz
tion and are preceded by a dash. This also applies to a questiofi
and the identification of the answers associated with the queﬁ%
tion. However, the statements which form the various answe@
are treated as being at a lower block level and have a greatet
indentation, being aligned to the right of the answer 1dcnt1ﬁev
The answer identifier is placed within parentheses and may l?:
labelled with a subnumber if the action at that answer is t
target of a jump. In order to improve readability, a vertical lug
in the form of an elongated square bracket is drawn to the left
of a question and its answer identifiers. Apart from merely lin%
ing the subblocks associated with the question, the vertical ling
is a valuable aid to the location of the relevant reply, especnallg
in cases where the answers contain further questions a;
answers.

There are three types of question which can be used withina
Q Chart structure, namely dichotomous yes/no questlong
comparative questions and multiple reply questions. By
convention, the yes reply for dichotomous questions always
appears first with the yes reply flow jumping around the no
section. This type of questlon translates readily into the coﬁ-
struct IF ... THEN ... ELSE. ... The comparative questugl
is framed in the form - compare A with B (commented)’. The
order of the three answers is always < (A less than B), = (&
equals B) and > (A greater than B). Unless a specific jump s
included to force continuation, the flow is assumed to jump
around the intervening answers. The format of the multiple
reply question depends greatly upon the nature of the question
being asked.

Since it is frequently necessary in both detailed and high level
specification documents to indicate that a looping action is to
be performed over a set of statements, a specific Q Chart
format has been designated for loops. The control statement at
the start of the loop is specified as:

section.subnumber — FOR action; AT END label

The subnumber should not be .0 since confusion can arise
between looping and jumping to the start of the loop. The
‘action’ can be any meaningful phrase such as ‘all columns’ or
‘J starting at 10 and decrementing by 1 until 0’. The ‘label’ is the
identifier of the next statement to be done at the conclusion of

B8E/Y,

*This technique was originally developed when the author was with the OR Unit of ICL Dataskil, Reading, England.

The Computer Journal Volume 22 Number 4

the loop. In the statements which follow, the looping activity is
invoked by the phrase ¢ — LOOP TO section.subnumber’ where
section.subnumber is the identifier of the FOR statement.
Assuming that it is within one section, the whole of the loop is
connected by a square bracket line.

Frequently, the end of a page is reached at an awkward point
in a section with perhaps three or four questions still open. The
linking lines are continued to the bottom of the page and
labelled in alphabetical order. The required number of lines is
drawn at the top of the ensuing page and labelled in the same
order. The chart is then continued without further modification.

Example

— how much money has been raised ?

- <£10,000) (get more volunteers) JUMP 5.0

- (£10,000 - £30,000) (continue fund raising) JUMP 4.0
- (£30,000 - £50,000) (cut back on campaign) JUMP 3.0
- (> £50,000) (consider building)

2.0 -(consider building)

[~ compare money collected with builder’s contract price ?
-(<) - (insufficient money)

"~ have all of the pledges been collected ?

— (yes) (continue fund raising) JUMP 4.0

22 |- - - ~-| -(no) | FOR all pledges not collected ;
ATEND 2.0
-JUMP 9.0 (INSERT SECTION 9
AT THIS POINT -
AMENDMENT)
-LOOP2.2

2.1 [-(=) —(sufficient funds - collected or pledged)
- sign the fixed price contract
—JUMP 7.0 (have a celebration drink)
-(>) - (excess funds)
- consider improving the quality of the inside
furnishings
-JUMP 2.1

To the Editor
The Computer Journal

Sir
Vector approximation to curves

D. H. McLain’s ‘Vector Approximation to Curves’, Algorithm

No. 100 (The Computer Journal, Vol. 21 No. 2) should be required

reading for all engaging in computer graphics. Although the prin-

ciple is not new (I have used it myself since 1969) McLain’s solution
is particularly neat and an object lesson in the avoidance of trig
functions. Even so, it could be improved in two respects:

(@) The author acknowledges that a substantial part of processing
time is spent in the SQRT routine, yet for every point in straight
and near-straight lines he calculates the square root twice—
first to update the upper boundary and then the lower.

(b) As it stands Algorithm 100 is unsuitable for some applications
(e.g. my own, which is cartography) because a long narrow
closed figure, having width equal to or less than the permitted
deviation, would collapse into a point. To prevent the dis-
appearance of ridge contours and the truncation of spurs,
I make an additional test and terminate the vector if it begins
to shorten.

A similar but 3-dimensional vector approximation is used when

reducing photogrammetric data captured from stereoscopic models.

Here the 2-dimensional version would of course invalidate subse-

quent operations such as spatial transformation or the extraction

of vertical sections.

Yours faithfully,
K. M. Ker
Hunting Surveys Limited
Elstree Way
Borehamwood, Herts WD6 1SB
8 June 1978

To The Editor
The Computer Journal

Sir
Decision tables

An important topic in the paper on decision tables by R. Maes (1978),
is the conversion of an arbitrary flowchart to a program-oriented
decision table. A paper which I wrote in conjunction with K.
Hutchings (Dwyer and Hutchings, 1977) was known to Maes, but
the apparently inevitable delays of publication have prevented him
from citing it. 1 therefore feel justified in bringing the paper to the
attention of your readers.

The paper describes a COBOL-based decision table language and
processor called COPE. It details a number of innovations. One of
these is a direct method of converting flowcharts to program tables.

The approach is as follows: If a flowchart is loop-free, it has a finite
number of paths from its entry point to its exits point. The content of

The Computer Journal Volume 22 Number 4

jumoQ

each condition box and action box is coded as a stub. A list of stubsnz
is made up, in the logical order in which they appear in the flow
chart. Each path through the flowchart is described by checking oﬂ'g
those boxes which are on it, thus building a table. (There is nos
requirement for all conditions to precede all actions.) =
Whereas a simple ‘X’ serves to indicate that an action appears on a
path, a condition box is more complex. Because a decision box has;:
Q

AMAES-FIG-1. NOTE TABLE.

1112222222233 GROUP «
123 ----=--====- IS I1 .. IN. =
- 11123333~ - Is I1 .. I2. >
--=-123 - ====-=-- IS 12 .. UGR. >
——————— 1123 -~ IS I2 ++ OGR., =
- - - - IS A(I2) = ACIN).
——————————— NY IS A(I1) = A(IN).
R S PERFORM A.
=X X == - - == PERFORM B.
—————————— X - - PERFORM C.
—————————— X - - PERFORM D.
-=-XXX===-=-- PERFORM F.
X=-=-=-==-==-=- PERFORM G.
———————— PERFORM H.
———————— PERFORM J.
X - == PERFORM E.
-=-=-322 - NEXT GROUP.OUS 13 RULES
TE END OF TABLEs 17 CORRECTLY CODED Ri v .
gngY IN ROW 2y RULE 3 IS A COMMENT - NO VALID ALTERNATIVE L
ENTRY IN ROW 4» RULE & IS A COMMENT - NO VALID ALTERNATIVE
ENTRY IN ROW 3, RULE 9 IS A COMMENT - NO VALID ALTERNATIVE),
ENTRY IN ROW 5S» RULE 11 IS A COMMENT - NO VALID ALTERNATIVE{?

>
<o
=.

A A NA

/08€/¥/22/3191Me/|ufwoo/woo" dno-ojwape

ol X X X
1
1
1
1

IZEEEEXEXEREEEEEEEE RS R R R RN X3
LI I I A 4

o
<
MAES-FIG-1. @
MAES-FIG-1-1. %
IF I1 = INé} GO TO MAES-FIG-1-2430. @
IF I1 < IN? GO TO MAES-FIG-1-2131. P
PERFORM A. S
MAES-FIG-1-2131. 6
PERFORM B.
MAES-FIG-1-2. %;
IF I1 > I24 GO TO MAES-FIG-1-1633. =,
IF I1 = I23 GO TO MAES-FIG-1-2430. E
IF 12 = OGR} GO TO MAES-FIG-1-1837. S
IF I2 < OGR; GO TO MAES-FIG-1-2833. §
PERFORM C.
PERFORM D, GO TO MAES-FIG-1-2.
MAES-FIG-1-1837.,
IF A(I2) = ACIN)S GO TO MAES-FIG-1-EXIT ELSE
GO TO MAES-FIG-1-2430.
MAES-FIG-1-1633.
IF I2 > UGR$} GO TO MAES-FIG-1-2533.
IF I2 < UGR$ NEXT SENTENCE ELSE GO TO MAES-FIG-1-2430.
PERFORM H.
PERFORM J. GO TO MAES-FIG-1-2833.
MAES-FIG-1-2533.,
PERFORM G.
MAES-FIG-1-2833.
PERFORM E.
MAES-FIG-1-3.
IF A(I1) = ACIN)? GO TO MAES-FIG-1-EXIT ELSE
GO TO MAES-FIG-1-2,
MAES-FIG-1-2430.
PERFORM F.
MAES-FIG-1-EXIT.
EXIT.
x
Fig. 1
381

XMAES-FIG-1. NOTE TABLE.

GROUP .
IS I1 .. IN.
Is I1 .. I2.

>
<
IS I2 .. UGR. =,
- - IS 12 .. OGR.
- - IS A(I2) = ACIN).
IS A(I1) = ACIN).
PERFORM A.
PERFORM B.
PERFORM C.
PERFORM D.
PERFORM F.
PERFORM G.
PERFORM H.
PERFORM J.
PERFORM E.
NEXT GROUP.

Vv
AANAN

I M I M I I I I M I I I I M W M
!
x
x

=
S

more than one exit, the table must stipulate which exit is being fol-
lowed. This is done by writing ‘Y’ or ‘N’ for two-way decisions. The
more general case of multi-way decisions is done by numbering the
exit paths. Such a ‘multi-choice’ condition is expressed by a general-
ised stub, followed by a list of parameters which apply to the
specifically numbered exits. (This notation is a useful compromise
between limited—entry tables, which tend to be cumbersome and
extended—entry tables, which tend to fit too few rules on to a coding
sheet.)

The technique of describing a flowchart by its paths breaks down
when there are loops. But such flowcharts can always be described
by dissecting them into components which are loop-free. This is done
by assigning lables to selected points in the flowchart. There must be
a label at the entry point of the flowchart, and at least one label in
each loop. Beyond this, the choice is arbitrary.

The flowchart can now be documented by tabulating the flowpaths
as follows:

1. The starting label (referred to as the GROUP)

2. The list of conditions and actions on the path

3. The terminating label (referred to as the NEXT GROUP).

To apply this technique to Maes’ Fig. 1 four points can be labelled.
The entry point can be labelled ‘1°; the conditions I1::12 labelled 2’;
and A(I4)::A(IN), ‘3’. By convention the exit point is always
labelled ‘-’. The result of this labelling is shown in Table 1.

There is an interesting analogy with the standard technique used to
convert an arbitrary program into a ‘structured’ program. This
technique introduces an auxiliary variable to enable and program to
be reduced to a single loop containing a single case statement.

We can, if we wish, imagine the GROUP to be just such an
auxiliary variable. The first action in each rule tests it, and the last
action either exits the program, or sets a new value in the variable
and continues the loop. The conversion of a flowchart to a COPE
decision table, and its ‘structuring’ with an auxiliary variable are
closely analogous. (COPE does not actually use auxiliary variables.
It will produce a COBOL program with the same flowchart use
auxiliary variables. It will produce a COBOL program with the same
flowchart as the original problem. The method is explained in Dwyer
and Hutchings (1977.)

Because there is freedom in choosing the points to be labelled,

different tables can be derived from a given flowchart. The various
techniques reviewed by Maes correspond to COPE tables with
different labellings. Thus Maes’ Fig. 5 is the case of labelling all
conditions. Table 5 is similar, except that the single auxiliary variable
representing the label has been replaced by a set of two-way switches.
Table 6 corresponds to labelling the entry point of each loop.

COPE can therefore be used in ways analogous to each of these
examples. This flexibility may be exploited to choose a labelling
which best seems to document the problem.

Contrary to Maes’ general conclusions, COPE has proved to be an
excellent COBOL programming tool (Dwyer, 1978). It is claimed to
save about 509 of PROCEDURE DIVISION coding.

COPE is written in ANS COBOL. A source tape is available from
the writer for a moderate charge. The program can be expected to
work on most COBOL system:s.

Yours faithfully,
BARRY DWYER
School of Mathematics and Computer Science
South Australian Institute of Technology
North Terrace
Adelaide, South Australia
2 February 1979

References
DwyERr, B. and HutcHINGs, K. (1977). Flowchart optimisation i
COPE, a multi-choice decision table, Australian Computer>
Journal, Vol. 9 No. 3, p. 92. o
DwyER, B. (1978). Experience with COPE, a Multi-choice decisioni
table processor, Proceedings of 8th Australian Computer Society=
Conference, Vol. 1, p. 302. £
Mags, R. (1978). On the representation of program structures by
decision tables: a critical assessment, The Computer Journal>

BO|JUMO(J

)

Vol. 21 No. 4, p. 290. 3

o

C

©

Q

To The Editor S
The Computer Journal g
3.

Sir =
Pseudo-random sequences of Mersenne prime residues =3

The paper by G. W. Hill (The Computer Journal, Vol. 22, pp. 80-85)%
includes description of a FORTRAN function RESIDU(K,KN)E
‘which replaces the value of KN by K*KN(mod M), leaving K=
unchanged’. The author then, however, uses X=RESIDU(I(J),&
13)).
The 1966 Fortran Standard (clause 8.3.2) says ‘If a function’
reference causes a dummy argument in the referenced function to§
become associated with another dummy argument in the sameo
function . . . a definition of either within the function is prohibited’
The 1978 Fortran Standard repeats this restriction, in slightlys
modified words, in clause 15.9.3.6. 2

€/0

Yours faithfully, S

I. D. HiLLo

MRC Clinical Research Centre Z
Watford Road =
Harrow, Middlesex HA1 3UJ §
~

Book review

Computers and Commonsense (2nd Edition) by R. Hunt and J.
Shelley, 1979; 166 pages. (Prentice-Hall, £3-50)

This new edition of a book first published four years ago has been
updated by new technology and by the mention of new applications
and social issues. As computers influence the life of the ordinary man
more and more it becomes much more important to deal with these
issues. Five pages may be better than nothing but it is very little
compared to the space allocated to the arithmetic and logical unit
with which few users of computers are directly concerned. The social
issues at work, where top management still has a tendency to lay
down the ‘requirements’ of a new system without consulting those
who actively operate the former clerical system, has only been

382

touched upon. The position of the Trade Unions and the welfare of
the individual worker as a human being are not really investigated.
Is compulsory idleness for the unskilled going to be an inescapable
future? Trying to train them to higher levels of skill is an idealistic
aim, especially if it involves a loss of personal identification.

This book is well put together, with its cross referencing and its
updated bibliography, and such criticism only points towards areas
where commonsense is still to be developed. The need for a new
edition within four years shows the demand for this paperback which
provides nine pages of introduction to BASIC in addition to the wide
picture required by everyone who wants an introduction to com-
puters or wishes to develop a sense of proportion in these confusing
developments. PHILIP GILES (Stirling)

The Computer Journal Volume 22 Number 4

