XMAES-FIG-1. NOTE TABLE.

GROUP .
IS I1 .. IN.
Is I1 .. I2.

>
<
IS I2 .. UGR. =,
- - IS 12 .. OGR.
- - IS A(I2) = ACIN).
IS A(I1) = ACIN).
PERFORM A.
PERFORM B.
PERFORM C.
PERFORM D.
PERFORM F.
PERFORM G.
PERFORM H.
PERFORM J.
PERFORM E.
NEXT GROUP.

Vv
AANAN

I M I M I I I I M I I I I M W M
!
x
x

=
S

more than one exit, the table must stipulate which exit is being fol-
lowed. This is done by writing ‘Y’ or ‘N’ for two-way decisions. The
more general case of multi-way decisions is done by numbering the
exit paths. Such a ‘multi-choice’ condition is expressed by a general-
ised stub, followed by a list of parameters which apply to the
specifically numbered exits. (This notation is a useful compromise
between limited—entry tables, which tend to be cumbersome and
extended—entry tables, which tend to fit too few rules on to a coding
sheet.)

The technique of describing a flowchart by its paths breaks down
when there are loops. But such flowcharts can always be described
by dissecting them into components which are loop-free. This is done
by assigning lables to selected points in the flowchart. There must be
a label at the entry point of the flowchart, and at least one label in
each loop. Beyond this, the choice is arbitrary.

The flowchart can now be documented by tabulating the flowpaths
as follows:

1. The starting label (referred to as the GROUP)

2. The list of conditions and actions on the path

3. The terminating label (referred to as the NEXT GROUP).

To apply this technique to Maes’ Fig. 1 four points can be labelled.
The entry point can be labelled ‘1°; the conditions I1::12 labelled 2’;
and A(I4)::A(IN), ‘3’. By convention the exit point is always
labelled ‘-’. The result of this labelling is shown in Table 1.

There is an interesting analogy with the standard technique used to
convert an arbitrary program into a ‘structured’ program. This
technique introduces an auxiliary variable to enable and program to
be reduced to a single loop containing a single case statement.

We can, if we wish, imagine the GROUP to be just such an
auxiliary variable. The first action in each rule tests it, and the last
action either exits the program, or sets a new value in the variable
and continues the loop. The conversion of a flowchart to a COPE
decision table, and its ‘structuring’ with an auxiliary variable are
closely analogous. (COPE does not actually use auxiliary variables.
It will produce a COBOL program with the same flowchart use
auxiliary variables. It will produce a COBOL program with the same
flowchart as the original problem. The method is explained in Dwyer
and Hutchings (1977.)

Because there is freedom in choosing the points to be labelled,

different tables can be derived from a given flowchart. The various
techniques reviewed by Maes correspond to COPE tables with
different labellings. Thus Maes’ Fig. 5 is the case of labelling all
conditions. Table 5 is similar, except that the single auxiliary variable
representing the label has been replaced by a set of two-way switches.
Table 6 corresponds to labelling the entry point of each loop.

COPE can therefore be used in ways analogous to each of these
examples. This flexibility may be exploited to choose a labelling
which best seems to document the problem.

Contrary to Maes’ general conclusions, COPE has proved to be an
excellent COBOL programming tool (Dwyer, 1978). It is claimed to
save about 509 of PROCEDURE DIVISION coding.

COPE is written in ANS COBOL. A source tape is available from
the writer for a moderate charge. The program can be expected to
work on most COBOL system:s.

Yours faithfully,
BARRY DWYER
School of Mathematics and Computer Science
South Australian Institute of Technology
North Terrace
Adelaide, South Australia
2 February 1979

References
DwyERr, B. and HutcHINGs, K. (1977). Flowchart optimisation i
COPE, a multi-choice decision table, Australian Computer>
Journal, Vol. 9 No. 3, p. 92. o
DwyER, B. (1978). Experience with COPE, a Multi-choice decisioni
table processor, Proceedings of 8th Australian Computer Society=
Conference, Vol. 1, p. 302. £
Mags, R. (1978). On the representation of program structures by
decision tables: a critical assessment, The Computer Journal>

BO|JUMO(J

)

Vol. 21 No. 4, p. 290. 3

o

C

©

Q

To The Editor S
The Computer Journal g
3.

Sir =
Pseudo-random sequences of Mersenne prime residues =3

The paper by G. W. Hill (The Computer Journal, Vol. 22, pp. 80-85)%
includes description of a FORTRAN function RESIDU(K,KN)E
‘which replaces the value of KN by K*KN(mod M), leaving K=
unchanged’. The author then, however, uses X =RESIDU(I(J),
13)).
The 1966 Fortran Standard (clause 8.3.2) says ‘If a function’
reference causes a dummy argument in the referenced function tog
become associated with another dummy argument in the same-
function . . . a definition of either within the function is prohibited’
The 1978 Fortran Standard repeats this restriction, in slightlys
modified words, in clause 15.9.3.6. 2

€/

Yours faithfully, S

I. D. HiLLo

MRC Clinical Research Centre Z
Watford Road =
Harrow, Middlesex HA1 3UJ §
~

Book review

Computers and Commonsense (2nd Edition) by R. Hunt and J.
Shelley, 1979; 166 pages. (Prentice-Hall, £3-50)

This new edition of a book first published four years ago has been
updated by new technology and by the mention of new applications
and social issues. As computers influence the life of the ordinary man
more and more it becomes much more important to deal with these
issues. Five pages may be better than nothing but it is very little
compared to the space allocated to the arithmetic and logical unit
with which few users of computers are directly concerned. The social
issues at work, where top management still has a tendency to lay
down the ‘requirements’ of a new system without consulting those
who actively operate the former clerical system, has only been

382

touched upon. The position of the Trade Unions and the welfare of
the individual worker as a human being are not really investigated.
Is compulsory idleness for the unskilled going to be an inescapable
future? Trying to train them to higher levels of skill is an idealistic
aim, especially if it involves a loss of personal identification.

This book is well put together, with its cross referencing and its
updated bibliography, and such criticism only points towards areas
where commonsense is still to be developed. The need for a new
edition within four years shows the demand for this paperback which
provides nine pages of introduction to BASIC in addition to the wide
picture required by everyone who wants an introduction to com-
puters or wishes to develop a sense of proportion in these confusing
developments. PHILIP GILES (Stirling)

The Computer Journal Volume 22 Number 4





