chase order. Each shipment is for a specified quantity of parts
to be shipped on one date and delivered on another date. The
status of delivery is recorded by a code.

5. Relation name: actual receipt

A quantity of parts for an actual shipment made on one day is
received on another day. This quantity may not be the same as
that promised.

6. Relation name: reject

Quality control require that some parts be inspected. The
quantity of parts which are rejected are recorded on a reject
report together with the date of shipment, the part number and
the purchase order number. A unique number is allocated to
each reject report and a separate report is made out at the end
of each working day for each shipment.

7. Relation name: buyer
Each buyer is allocated a code number. His name is recorded
as well as the department that employs him.

8. Relation name: supplier

A supplier may have many addresses. A unique number is
allocated to each address. A supplier’s name is recorded with
each address as well as street, city, state and zipcode.

9. Relation name: payment committed

A buyer is authorised to make commitments of money, to an
agreed level, with particular suppliers. The amount of money
committed by each buyer is recorded by quarterly and annual
totals for each supplier. Payments to the supplier are also
recorded in quarterly and annual totals for each buyer.

10. Relation name: PAYMENT

Payments are made against invoices received from suppliers.
These invoices may refer to many purchase orders. The date of
each payment is recorded together with the date of payment
expected by the supplier, the gross amount payable and the net
amount paid. The status of payment is indicated by a code.

References
Copp, E. F. (1970).
WIEDERHOLD, G. (1977). Database Design, McGraw-Hill.

A relational model for large shared databanks, CACM, Vol. 13 No. 6, pp. 377-387.

CONCEPTS

BUYER AGREEMENT
PURCHASED PAYMENT TERMS
IDENTIFIED MONEY
CODE TIME INTERVAL
PLACES PART(S)
PURCHASE ORDER DESCRIBED
AUTHORISATION TEXT
MANAGER ALLOCATED
ATTENTION REFERRED
PERSON EMPLOYED
NUMBER UNIT OF MEASUREMENT
PLACED TOTAL QUANTITY
SUPPLIER AVERAGE PRICE
DATE ACTUAL SHIPMENT
DEPARTMENT RECEIVED
USES INSPECTED
LOCATION REJECTED

RECORDED
Conclusion g

The authors believe that greater efforts must be made to ensure
that the user has a fuller understanding of the implications og
the design produced by the analyst. Towards this end this papef
has listed two complementary approaches. Firstly, the business’
rules which specify the relationships between relations ancf;
secondly the narrative text which describes each relation. &

Both techniques allow the user to understand more fully the-
implications of a design. In consequence the user’s approval o§
the outline design will be based on a clearer understandingg
This should lead to fewer changes being made later due t@
errors in the design, with a resulting decline in developmeng
times and costs for new projects.

0o/woo'd

Acknowledgement
The authors wish to acknowledge the contribution of Ms. Gg
Butler of Exxon Corporation in the introduction of thé&
business rules concept and the case study used in the logical
data base design course. They also wish to thank Exxorf
Corporation for permission to publish the paper.

The user interface

E. B. James

202 Iudy 60 U0 3sanb Aq 2£99/9/52/L/€

Computer Centre, Imperial College, Exhibition Road, London SW7 2BX

Why we need a new approach

Our purpose here is to discuss new approaches to systems
analysis and design which may help to alleviate a growing
dissatisfaction with the performance of existing computing
systems. These systems are under attack on two main charges.
The first suggests that the systems do not do what is required by
the users; there is a mismatch between the views of the de-
signers and the users as to what was originally required of
the system. The second charge is that it is far too difficult to
make the computing system do anything useful. Other papers in
this symposium concentrate on the first issue. We propose to
concentrate on the second issue, which is concerned with the

The Computer Journal Volume 23 Number 1

quality of the ‘user interface’ as it is called. We feel that this is
particularly urgent because the type of user typical of a
computing system is changing rapidly. The far less experienced
user who will soon make up the principal proportion of all
users will have, it appears, even greater dissatisfaction with
existing computing systems and their dissatisfaction is likely to
become rapidly more vocal.

In this discussion, we aim to define those qualities which
contribute to ease of use and which seem to be missing from
existing designs. We try to determine who is capable of defining
these qualities in detail and we look at some previous attempts to
satisfy these requirements. Then we consider the current

25



situation in the hardware of computing systems, where it seems
that the rapid changes could assist a better type of user inter-
face design. We consider how we may exploit this new situation
and we propose techniques to achieve this. Finally, we describe
a project which has adopted the new approach and which may
encourage other designers.

The new user

Let us consider the new type of user, who may make obsolete
existing methods of interface design. In the early days of
computing svstems, the users would have been difficult to
separate out from the designer of the computing system.
Certainly they were technologists closely related and having
ready access to the original systems designers both on the hard-
ware and software sides. Now, in increasing proportion, the
users will be people without any direct experience of computer
design. They will be ‘the person in the street’. In earlier days,
the main use of computers was to ease the burden of calcula-
tion. Now, while this activity is still useful, the computer is
seen as providing a far wider range of support activities.
Earlier, the specialists who used the machines were prepared to
expend several months or possibly years of hard work in
preparing a working program, in order to obtain results which
would have taken many lifetimes to prepare by hand. Now, the
new users require a range of comparatively simple services from
the machine and are certainly not prepared to expend an
exorbitant amount of intellectual effort in obtaining these
straightforward results. This would seem to be particularly the
case when the machine does not produce the expected resuits.
The experienced professional user has in the past shown an
enormous tolerance to the unexpected behaviour of a system
and has even obtained a great deal of pleasure in the detective
work necessary to find the reasons for its incorrect operation
and to correct the program. The new user will have no interest
in helping the computer out if it goes wrong.

Defects in the system

What are the drawbacks of computing systems as seen by the
inexperienced user? We suggest that the first characteristic is
unreliability: the machines do not regularly and adequately
deliver the goods. They require continuous prompting some-
times to produce anything at all. The second characteristic is
intolerance: the computer system requires an absolutely cor-
rect stream of directives to carry out its functions. If a tiny slip
is made in this specification, then nothing seems to work. A
third drawback is that computers are impersonal: that is, it
seems to require a very wide general knowledge of all the things
that the computer can do before it is possible to instruct it cor-
rectly to do the particular thing which the user wishes. Who
then is able to define the required characteristics of a better
system ?

The natural suggestion would be that the users themselves
should define carefully what they require of a system. In
practice, this raises all sorts of problems. If a particular user is
selected to represent the users in general, say in consultations
with systems designers, then there is the danger that this person
will be a symbolic representative who is in practice unable to
talk for the other users, nor even possibly to communicate with
the existing experts at the level of discussion which is at present
unfortunately relevant to specifying the needs. The presence of
user representatives on a formalised committee to which sys-
tems proposals are presented may be ineffective, since the
actual decisions taken by the systems people are clearly not
made at those meetings, and the whole operation may well
smack of paternalism. In any case we must have some means
of getting over the well known impasse where the designer says
‘What do you require? and the user says ‘What can you
provide ?—it is rarely possible to see the flaws in a design from

the user’s viewpoint until the system has been in action for some
time. Therefore the sensible approach would seem to be to
present a trial system and then to provide all users with ample
opportunity to state their views on it frankly and constructively.

At this stage it may well be pointed out that there are many
groups of designers at work who believe that they are genuinely
working towards a better situation for users. We suggest that
many of the current attempts are misguided for various
reasons. Some of these attempts involve the construction of
non-solutions to the real problem. This occurs when a designer,
however well intentioned, designs a system effectively for
personal use rather than the use of a large number of people
who do not have the experience of the designer. As Bickley
(1966) has pointed out, this provision of pseudo-solutions takes
place at a much deeper level in other formal sciences. He sug-
gests that a formal mathematical proof is really laid out for the
satisfaction of the person who thought it up in the first place
and to the outsider gives no hint of the way in which the
theorem to be proved came to be conceived and investigated,
which is the really significant point. Surely no effective user_
interface can be provided if every user is assumed to have theo
same knowledge as the designer of the system?

Other workers it seems are producing solutions to somem
problem other than that of the user. For instance the aCthlthSQ_
of those trying to prove programs ‘correct’. De Millo (1979)F
discusses this strange situation at length and indicates how3
unhelpful some of these activities are. Again, many experts areg
applying themselves to the solution of problems connected withZ
an earlier situation in practical computing machines. For‘”
instance, they are involved in the design of large complex(D
languages which presupposes the construction of monollthlca
programs to do a clearly defined single task. Such is simply noto
the case in present day programming, as Winograd (1979)°
points out.

Finally, another group of well meaning designers are workmgo
on the solution to subproblems which, it turns out, do noti
satisfy the overall conditions of the total problem. For example
a multitude of very powerful packages are being produced
where it is necessary for the user to memorise the meanings of_
perhaps ten different parameters in say twenty different com-
mands before being able to specify what is required. If this i 1sa
repeated in a fotal computing system it leads to an mtolerablem
load on the user, particularly if that package is not going to bem
used at all frequently.

O|UM:

6ﬂq z€9

The changes in the machine
Let us now consider the present situation in hardware avanl-w
ability. This is now in a state of flux, due to the advent of theS
microprocessor, but certain new factors have clearly come to3
stay and they provide some very important new opportunities?
to improve the user interface. Let us consider the old situation%
compared with the new. The older type of system involves theQ
construction of a monolithic program to do a well defined job. =
The new situation seems to require a wide range of facilities
which can be joined together easily by the user to achieve the
particular task.

The old system involved no genuine interaction with an
executing program. The new system presupposes a continuous
interaction with every process. The old type of systems approach
places a great stress on obtaining the maximum performance
from inevitably limited hardware. In the new situation, with
the hardware dramatically cheaper, it is often convenient to
simplify software design problems by multiplying up on the
hardware side, and this will be the overall economic answer.
Finally, in the old situation we continually see the emphasis on
the program as the significant feature of the design. In the new
situation, the programs are no longer of such great significance
and there is much more emphasis on the data as the principal

The Computer Journal Volume 23 Number 1



‘given’. So how may we plan to exploit this new situation?
First, we must make the hardware work much harder than
before. In particular we may dedicate a considerable amount of
hardware power to looking after the interface between user and
the rest of the machine. Secondly, we can promote genuine
interaction so that the user does not have to wait long between
opportunities to redirect a process which is not going as
expected. Thirdly, in the same spirit, we should make it simple
for the user to experiment with various ways of processing data
in order to determine more effectively what is actually re-
quired. Finally, we should provide the processing programs as
a number of simple modules which are designed for easy inter-
connection. In particular, it should not be necessary to do
awkward conversions of data format between each section of
program.

Interface qualities

We looked earlier at desirable qualities of the user interface,
which have been conspicuous by their absence. Newman (1978)
provides a valuable summary. Let us concentrate on the
psychological aspects of certain of them which seem particu-
larly significant. The first and most important quality of the
interface is reliability. When everything is operating smoothly,
this is mainly a question of providing a consistent response to
user activities. However, reliability becomes much more
obvious when things are not going right. A first range of
problems will be encountered when there is a degradation in the
computer system. It is essential for a continuous and consistent
response to be maintained as far as possible even when parts of
the system are not working. Another range of problems arises
when the user performs incorrect operations or makes incorrect
requests. It is essential in this situation that the system con-
tinues to perform in a consistent manner and, most important
of all, continues to communicate. Clearly this implies a great
deal of tolerance to the user’s behaviour on the part of a
computing system.

The second quality is adaptability. We are concerned here
particularly with the ability of the computer system to provide
a dialogue which is consistent with the user’s previous experi-
ence. This implies that the system is able to learn a ‘required’
pattern of behaviour from a particular user and also to remem-
ber and reintroduce this pattern when the same user is in touch
again. There is no way in which a system with a permanently
fixed ‘level’ of response can satisfy a group of users with a very
wide range of experience. The third quality is self-sufficiency.
This is an aspect of reliability, in that the user is not required to
g0 elsewhere for help in solving a problem. This implies in turn
that the system is able to provide training in its own use and
therefore to act as a computer assisted learning system when-
ever required.

A fourth quality, ease of use, is connected very much with
reliability and tolerance. Clearly, ‘easy’ is closely related to the
personal background of the user. This implies that the system
should be as simple as possible but also that when a difficulty is
encountered, a fullscale teaching system should be brought into
action. In every case there must be no doubt in the mind of the
user as to what is required next. ‘Ease of use’ also implies that
the system adapts to the human method of problem solvmg
This is likely to be reflected in an overall hierarchical organisa-
tion of activities (Weiss, 1971). At the same time, however, each
activity must accept incremental additions at any point. Ease of
use also 1mphes efficiency but it cannot be stressed too strongly
that this is not the efficiency in the mind of the typical systems
designer, who is concerned with the efficient use of machine
resources. By efficiency here, we mean a minimum use of the
user’s resources in obtaining the required ‘results’ from a
computing system.

We believe that the qualities just described are absolutely

The Computer Journal Volume 23 Number 1

fundamental to a good interface design; and yet, our experience
of many different computing systems suggests that these
objectives have never been met in practice

What design techniques will help us to achieve the desired
qualities? Some basic principles already familiar in computer
assisted learning are very relevant here. The first one is that the
principal objective of any output from the computer is to
inform the user what is required next. Never at any stage of the
communication process should the user be unsure of what is
required. The second principle concerns the need for a user to
suspend what is being done at any time, and to be able to start
again from that point. It should be possible to remind the user
of what had happened previously. A final principle concerns
the wide variation in different users’ experience. An experi-
enced user’s time must not be wasted in going through tedious
question/answer sessions. This implies different levels of com-
munication varying between the very educational and the very
concise which may be chosen by the user or, one day, deter-
mined dynamically by the system as it converses. Naturally, the
system must show a great deal of tolerance to trivial mistakes_
in format or spelling (James and Partridge, 1976). It is com-é
paratively easy to define qualities and determine principles.Z
Many designers have been dissatisfied with an existing systema
and have set off to define a radically new and better one from!l
scratch. Eventually we must learn from Popper (1973) thatd
such attempts at changing the world are foredoomed to-
failure. The principal objective must be to make things rathera'
easier for large numbers of users on existing systems and so=
we must accept the inherent constraints.

0"0IWBapeoe]/:

Protective ware
Our solution to this problem is to insulate the user from thec
existing hardware and software by means of a new sort Ofo
protective ware. For example, concerning commumcatlonB
between the machine and the user, we never allow the user to8
see any peculiar system messages from the operating system of=:
a particular manufacturer. All systems messages are inter-5

=

cepted by the protective ware, which is a specially designeds
program controlling the interface. This program then plans
what to do. If necessary, the user is told of a particular requlredA
action in words which are meamngful to him, rather than to a%;
systems specialist. In many cases, it is not necessary to tell the2
users anything. Conversely, when the users wish to com-%
municate with the machine, they are never required to use the®™
particular operating systems jargon. The protective ware 1nter-
acts with the user and generates the necessary system com-
mands. A separate microprocessor is obviously very sultableg
for use in this intermediary role. As these methods develop?>
more fully we may look forward to the abandonment of formal ©
programming languages by the majority of users. But, heedingS
Popper, we must attempt to alleviate the immediate snuatlonm
first.

Our current work is directed towards integrating the same
simple principles into the normal programming users’ environ-
ment. In this case, it will be necessary to interpret a wide range
of users’ requests and therefore to provide a protective coat for
a considerable portion of the job control language which
requires to be activated in order to carry out what the user
requires. We have started by writing an interactive interpreter
for basic file processing operations. This runs in a local,
dedicated microcomputing system and generates the protocol
required to process the users’ files on the main machine. A
timesharing link to the main machine is automatically activated
and the generated protocol is initiated, resulting in the re-
quired file processing on the main system, with the transfer of
necessary results down the line to the user. As a concrete
example, the request from the user: ‘print’ results in a query as
to whether the output is required on line printer, microfilm or

2/°

¥20

27



microfiche and, based on the reply, the necessary system com-
mands are sent downline to the main system. Those who have
struggled with the totally different and complex series of
commands necessary to realise these, from the users’ point of
view, similar requirements will be grateful for the assistance we
provide. All the systems commands we have not protectively
covered can be requested in the original format. The net
result is that every user can gain something from using our
system.

What has this to do with a new approach to systems analysis
and design? We suggest that further developments in sym-
pathetic, easy to use systems will radically alter the role of the
systems analyst and designer in the future. No longer will the

References

BickLEY, W. G. (1966).

DEe MiLLo, R. A,, LiPTON, R. J. and PerLIs, A. J. (1979).
pp. 271-280.

JaMes, E. B. and PARTRIDGE, D. P. (1976).
212.

NEewwMmaN, 1. A. (1978).

PoDGER, D. N. (1978).

PoPPER, K. (1973).

WEIss, P. A. (1971).

WINOGRAD, T. (1979).

Personalised user interfaces to computer systems, Proceedings Eurocomp 1978, Online conferences.
High level languages—A basis for participative design, Manchester Business School.

For example see p. 85 of Magee B. Popper Fontana/Collins.

Hierarchichally organised systems in theory and practice, Hafner Publishing Co, New York.

Beyond programming languages, CACM, Vol. 22, No. 7, pp. 391-401.

main effort be concentrated on getting the processing operations
to work on a complicated and intolerant system. Instead, all
the ‘human engineering’ aspects can be concentrated on to the
greater satisfaction of users. Perhaps the systems designer can
be entirely dispensed with and the user can be allowed to ap-
proach the friendly system directly. The systems analyst’s role
will then be mainly to advise and encourage in the initial stages
of deciding what is required.

This seems to be in stark contrast to the conventional image
of the analyst as primarily an expert on the ‘system’. Maybe we
will require an entirely different sort of person, trained in an
entirely different way (Podger, 1978). But that is another
problem.

Some thoughts on Mathematical Thinking, Mathematical Gazette, Vol. 50, No. 371, pp. 1-8.
Social processes and proofs of theorems and programs, CACM, Vol. 22, No. 5,

Tolerance to inaccuracy in computer programs, The Computer Journal, Vol. 19, No. 3, pp. 207-

Discussion on ‘New approaches to systems analysis an

design’

Morning discussion

Keith Watts (Thames Water Authority)

I see the papers we have had moving in two directions and I can see a
conflict. I'd be grateful if it could be resolved for me. In Peter
Hammersley’s pivotal talk he said that he saw systems analysis
inevitably involving data base in future, and before that Enid
Mumford had shown us that in her analysis of users’ requirements
the requirement for autonomy figured fairly prominently. Peter
Prowse said you must have central control of the data. I see data
base development as really demolishing the users’ autonomy in many
ways because, well, Tom Gilb has said that data base technology is
the last round of the computer professional trying to exert control;
I don’t see it as that but I do see it as inherently centralist. I have this
problem at the moment to decide data base or not in a certain range
of application areas and giving more priority as I have done to the
social aspects of the introduction of change my view has been that
data base should be avoided unless it becomes inevitable because of
the invasion of autonomy. It is not so much the autonomy of the
clerical user as the autonomy of the manager, the manager who feels
very much threatened that his autonomy is being taken away and he
is giving his data to a centrally controlled data base.

Peter Prowse

The way I see it is that the user does not need to lose his authority
over data. Now I talked about a logical model which consists of
hundreds, maybe thousands, of relations. They are aggregated to-
gether into a data base. But we find that individual relations (they
might be implemented by records or segments of data)—individual
relations are generally updated by a particular part of the business.
You then have to be very careful because if you put all data into a
hierarchy then you have to have only one group that controls the
root of the hierarchy.

That is, generally, common things which are common to the
corporation. Now as you go down the hierarchy of data in the
subject there are many different sorts of data and each little aggrega-
tion is controlled by a different user group. So they still feel they can
update and control their own data—but the organisation of it is done
consistently and they cannot alter the little bit at the apex. But most
people are willing to give up something like that in order to get the
benefits they see from a data base approach.

28

p%ao //:5d1y wouy pepeojumoq

Peter Hammersley

I think, at least I hope, what I said was that if you are going to have a3
totally integrated system then I would support the data basea
approach. In the system which we implemented we went for the datag
base approach and nothing that happened subsequently convmcecE
me that the approach was wrong. But that is if you are going for an&>
integrated system. Now in that final postscript that I gave I pomtedg
out what I see as being the problem of the future, and possibly the,\)
problem to which you are addressing yourself, and that is that the%
user will not wish to have a corporate central data facility, that heg
will go out and he will buy his own micro with turnkey software, anda
he will build his own system and he will keep his own data, and theg
problem for the analyst who feels that a central data base system is®
desirable is whether or not developments of that kind are capable ofc
being controlled. Now I am afraid I have not answered the questlong
—1I have only posed it because only time will answer it, and we arem
talking about something that is going to hit us in two or three years’;
time. I do not know if there is anyone here who has actually hit ltg
already" Maybe if there is we ought to be hearing about it. But this©
is a problem that is going to hit us very shortly and therefore 1 hopejo>
when I spoke I actually presented the conflict myself by saying, ‘Thls—
is what we did, but it may not be possible for us to do it the nexto
time round for all sorts of reasons’. I am sorry I cannot answer your™
question except to agree with you that it is a real problem.

Bo: dnoolwe

Frank Land

May I make just one comment. I think one of the very important
elements in the introduction of any system is the process by which it
is introduced and if a centralised data base, for example, is intro-
duced by an authority who says ‘that is how you are going to do it’
then I think you have got much less chance of success than if it
springs from the desires and requirements of the people who are
involved in the process, and who are ultimately going to be the users
of the data base. As far as the technology is concerned, of course the
idea of distributed data bases, so you can distribute your data base
to the nodes which use them, is also becoming a possibility but it
seems to me the most important element is that we have got to have
a process of analysis, design and construction which really does get
the approval of those who are going to be the end users. If you do not
have that then what Peter said is going to happen: you are going to

The Computer Journal Volume 23 Number 1



