Clearly, line generation by exploiting repeated patterns is
applied at the line generation stage rather than the output
stage (although this inhibits the straightforward implemen-
tation of drawing in broken format). For curves, no simple
parallel formulation at the generation stage would appear to
be possible, other than that similar to the implementation at
the output stage (i.e. corresponding to encoding repeated
codes for a graph containing curves).

The decision whether or not to cater for curves by com-
pression depends strongly on the expected benefits, the latter
being related to the proportion of code information corres-
ponding to curves and also the extent to which such information
can be compressed in general. The analysis of the code
information for a graph containing curves (Fig. 12) showed
that (excluding the drawing of the border) the compression of
repeated codes (> 5 identical codes in sequence) gave a saving
of 19% in the total space occupied by the code information
(17894 codes). This corresponds principally to the drawing of
the curves. A more detailed analysis of 6058552 codes corres-
ponding to curve drawing information only, gave a saving of
17% by the compression of more than five repeated codes in
sequence. The results of the analysis of the coding for Fig. 12
are therefore not unrepresentative of the general overall
savings that can be made for curves.

It is possible to implement compression of curve drawing
codes by duplication of the output routine; one copy then
being used specifically for curves. The modifications for the
compression of repeated codes can then be inserted into this

References
BOOTHROYD, J. (1974). Private communication.

BooTHROYD, J. and HAMILTON, P. A. (1970). Exactly reversible plotter paths, Australian Computer Journal, Vol. 2, No. 1, pp. 20-21.
BRESENHAM, J. E. (1965). Algorithm for computer control of a digital plotter, IBM Systems Journal, Vol. 4, No. 1, pp. 25-30.

DuKSTRA, E. W. (1976). A Discipline of Programming, Prentice-Hall, Englewood Cliffs.

EARNsHAW, R. A. (1976). Graph plotting in ALGOL 68-R, Software Practice and Experience, Vol. 6, No. 1, pp. 51-60.

KNutH, D. E. (1969). The Art of Computer Programming, Vol. 2, Seminumerical Algorithms, Addison Wesley Publishing Company,

pp. 293-338.

PirTEWAY, M. L. V. (1967). Algorithm for drawing ellipses or hyperbolae with a digital plotter, The Computer Journal, Vol. 10, pp. 282-289. oy
PiTTEWAY, M. L. V. (1972). The impact of computer graphics, Nature, Vol. 235, pp. 83-85.

STEIN, J. (1967). J. Comp. Phys., Vol. 1, pp. 397-405.
StockTON, F. G. (1963). Algorithm 162, CACM, Vol. 6, No. 4.

THOMPSON, J. R. (1964). Straight lines and graph plotters, The Computer Journal, Vol. 4, No. 3, p. 227.

output routine only, and will not apply to all other output
which is routed through the usual (unchanged) output routine.
In this way, the additional central processor overheads
necessary for the compression will only apply to the time
spent in generating curves rather than the time to generate
the complete graph. As the former is 10% (on average) of the
total central processor time spent in code generation, the over-
heads introduced thus apply only to this 10%. The overall
increase in the central processor time for this modification is
therefore of the order of 2%,.

4. Conclusions

Line tracking by compression of repeated patterns gives a
significant compression of the information required for the
graph (~49%) for those cases using straight lines only, and
more importantly, gives a significant decrease (~20-40%) in
the overall central processor time needed to generate the lines.
These algorithms have been incorporated into a general
purpose graphics system (Earnshaw, 1976).

The algorithms presented in this paper can readily beo
extended to cater for incremental plotters with more than=
eight vector modes.

5. Acknowledgements
The author would like to thank John Boothroyd and David
Holdsworth for helpful discussion and the referee for con-
structive suggestions.

sdyy wouj pepeojumo

Wwoo/woo dno olwapeoe)/:

o

[

|u

I

Book review

SIMULA BEGIN (Revised Edition) by G. M. Birtwistle, O-J. Dahl,
B. Myhrhaug and K. Nygaard, 1979; 391 pages (paperback).
(Input Two-Nine, £6-50)

This book is ‘an introduction to system description in the program-
ming language SIMULA’ according to its preface. It is not very
clear to what audience the book is directed—the preface states that it
is based on material developed from SIMULA courses given at the
Norwegian Computing Centre. Clearly, it is of not much use on its
own, but requires a context of a fairly solid course in software
engineering.

SIMULA is rather a strange language: its origins are ALGOL 60
(indeed when the reviewer was participating in the revision of
ALGOL 60, SIMULA was proposed as a potential standard). It has
incorporated ideas from ‘ALGOL-W’, but placed side-by-side with
languages such as ALGOL-68 and Pascal, it seems to be very
incomplete. As its name implies, SIMULA is mainly used as a
simulation language, but this book is not a book on SIMULA as a
simulation language, but, again, its intention is unclear.

The would-be reviewer always faces the problem of trying to under-

52

dy 60 uo ysenb Aq ££89/9/2S/1/€C/AI0

stand the way in which the book is presented to its putative audience ;=
as a rule, the reviewer is not in this audience, and a certain amount of 3
imagination has to be employed. The reviewer found it very difficult®™®
in this case: presuming himself to be in the situation of giving a
course based on this book, he would have given up in despair! The
contents of the book, taken as a whole, are very useful but the
sequence is confusing, and at times, misleading. The reader is intro-
duced to SIMULA concepts in an erratic way: odds and ends of
SIMULA are thrown into the text in a completely unstructured way
and the SIMULA class concept and co-routines only emerge late in
the book.

However, the examples provided in Chapter 7 onwards are excel-
lent and, indeed it might be a good idea to start reading the book at
this point (page 209, more than halfway through). There are many
exercises, with over 30 pages of solutions, though the commentary is
highly variable.

The book is attractively presented with ample inner margins. The
examples are both in rather broadly spaced printing with strop-words
in italics (difficult to read) and computer printed output (with rather
erratic tabulating conventions). R. M. DE MorGaN (Reading)

The Computer Journal Volume 23 Number 1





