Algorithm classification through synthesis

K. L. Clark and J. Darlington

Department of Computing and Control, Imperial College of Science and Technology,

180 Queen’s Gate, London SW7 9BZ

In recent, separate, work on program transformation and synthesis (Darlington, 1975; 1978;
Clark & Sickel, 1977; Clark, 1977) the authors have discovered that a structure of a class of
algorithms can be exposed by synthesising each algorithm in the class from a common high level
specification, building up a ‘family tree’ of algorithms. In this paper we would like to illustrate
this technique by a simple example outlining how four common sorting algorithms, Merge Sf)rt,
Quick Sort, Insertion Sort and Selection Sort, can be synthesised from a common specification.
We hope to encourage others to undertake this exercise for other domains.

(Received June 1978)

1. Language and transformation rules

The transformation and synthesis system developed by Burstall
and Darlington (1975) uses first order recursion equations as
the common language for specification and program, with
specialised transformation rules. Clark (1977) uses first order
predicate logic as the common language, with equivalence and
equality substitution as the basic transformations. These
languages are of course quite close, and for this exposition we
choose a relatively informal notation (basically a sugared
version of predicate logic) to present the essentials of the
synthesis classification without too much burden to the reader.
We shall explain the notation and the transformations used as
we develop the example.

2. Formal specification of the Sort function
A sorted version of a list x is an ordered permutation of x.
We take this as our top level definition, which we formally
express as:

sort(x) < y s.t. perm(x,y)&ord(y) 1)
The ‘<=’ should be read as ‘is’. Thus the definition reads: ‘for
any list x the sort of x is a list y which is ordered and is a
permutation of x’.

Of course, the onus is now upon us to define the perm relation
and the ord predicate. Lists x and y are permutations of each
other iff everything in the list x appears the same number of
times in the list y, and vice versa. In other words, for every-
thing, its frequency of occurrence in x, its count in x, equals
its count in y:

perm(x,y) <= Yu [count of u in x = count of u in y] ?2)

We shall say that y is ordered iff for all pairs of elements v and
v, if u is before v in y then it is less than or equal to v:

ord(y) <= YuVv [u before vin y —» u < v] 3)

We must again descend down a level to define the count
function and the before than relation. Note that we are building
up a structured formal specification, i.e. a very high level
program for the sort function. We can accept it as obviously
correct because our ‘programming language’ enables us to
express directly a natural definition of each function and
relation.

We have now reached the point where we need to talk about
the empty list, unit lists and lists with more than one element;
for we need to distinguish these cases in giving the next batch
of definitions. These will be recursive specifications, with the
definitions for the empty list ni/ and any unit list [u] as the
base cases. But how shall we refer to more general lists?

To every recursive specification there is an implicit inductive
characterisation of the domain, i.e. a characterisation of the

The Computer Journal Volume 23 Number 1

domain as a set which includes certain base elements and is
closed under one or more constructors. Since the set of lists2
can be characterised as the set which includes the empty list=
and all single element lists, and which is closed under con-
catenation, our recursive specifications can refer to a generalc
list as the concatenation x< >y of a pair of lists:

count of ¥ in nil <= 0

count of uin [u] <= 1

countof uin [v] = 0ifu # v

count of uin x< >y <= count of uin x + countof uiny (4)

u before v in nil < false

u before v in [w] < false

u before v in x< >y < u before v in x or u before v in y
or uex & vey

ope

peoe//:sdny wouy

The definition
u before v in nil < false
tells us that for any v and v, u before v in nil is false, i.e. thato

Ie/|ulwoo/woo dno-olwe

there are no pairs of things in the before relation on the%
empty list. =
Our last definition is for the membership relation, &, which2
we have used in the definition of the before relation. It is: g
uenil <= false 2

ue[v] <= u=v o

<

ug(x < >y) < Uex or ugy S)a

The sets of definitions (1), (2), (3), (4) and (5) constitute our &
specification of the sort function. Since we have left as unde-S
fined the constant nil, the functors [] (unit list constructor)S
and <>, and the < relation, we have a specification for the{?
sort function for any chosen representation of lists and for]
any < relation of the list elements. It is a specification of an S
abstract sort function. In consequence the sort programs we
will synthesise from this specification will be abstract pro-
grams, characterising the essential steps and structure of a
computation, but opaque to certain details of representation
and implementation.

To be completely formal we should add axioms that constrain
the < relation to be a partial ordering, and we should define
the equality relation for the list data structures. However, as
we shall see, such axioms will play no part in the synthesis
derivation, so we have not included them in the specification.
Note that a more comprehensive set of axioms would constitute
a first order theory within which the sort function can be
defined. Clark and Tédrnlund (1977) show how such a set of
axioms, which includes Peano style axioms for the data
structures, can be used to develop a theory of programs and
their properties within first order logic.

61

3. Program syntheses

3.1. General strategy

We have already said that we might view our specification of
sort as a very high level program. There exist interpretive
systems capable of running such a ‘program’ (for example,
NPL Burstall, 1977). But even if we could run our specification
as it stands, its computation would be very inefficient. The
process of deriving from this specification more obviously
algorithmic versions of ‘sort’ can be viewed as improving or
optimising this original highly inefficient program in different
ways. For more details of this improvement process see Burstal
and Darlington (1977) and Darlington (1975). To make these
improvements we investigate possible ‘execution paths’ of the
specification. We do this not for particular input values, but
rather for symbolic inputs nil, [#] and x < >y, which cover all
the actual input cases.

The symbolic execution is in effect a step-by-step expansion
and reformulation of the s.t. condition

perm(x,y) &ord(y) (A)
in the definition of sort. At each step we either simply re-express
the condition via a definition substitution or logical manipula-
tion, or we strengthen it. That is we replace it by a condition
on x and y which logically implies (A). At any stage, an x and
y that satisfy our reformulated s.t. condition, must have y the
sorted version of x. In the case of the symbolic executions for
nil and [u] we shall expect to reduce the condition on y to the
explicit identifications y = nil and y = [u]. However, for the
general case x < >y we shall be looking for a recurring pattern
of evaluation. We hope to factor out from some reformulation
of the condition

perm(x < >y,z) & ord(z)
that characterises the sorted version of x< >y, one or more
new instances of thé conjunction (A), each of which charac-
terises a value of the sort function for an argument ‘smaller’
than x < > y. If we can do this, we have discovered the descrip-
tion of a recursive algorithm that is guaranteed to terminate.

3.2. Some lemmas

Some of our reformulations of the sort definition will make use
of certain general facts about permutation and orderedness.
We could have added them to the specification, but they are
already implicitly there. Each is derivable as a lemma, indeed
each is virtually an immediate consequence of the definitions
of permutation and orderedness that we have given. They are:

(a) ord(nil) (the empty list is ordered)
(b) ord([u]) (the single element lists are ordered)
(¢) perm(x,x) (perm is reflexive)

(d) perm(x,y) &perm(y,z) — perm(x,z)
(transitivity of perm)

(e) perm(xl, yl) &perm(x2,y2) — perm(x1 < >x2,yl1 < >y2)
(a strong condition for permutation to
be preserved by concatenation)

(f) ord(x< >y)eord(x) &ord(y) & VuVv[uex & vey —» u < v]
(an alternative definition for
ord(x< >y))

(g) perm(x, y) — [uexeruey]
(permutations have exactly the same

members)
Anticipating that such facts will be useful, and using them at

the appropriate time, is where some of the cleverness comes
into the program synthesis.

3.3. The base cases
To evaluate the definition of sort(x) for the case where x is
the empty list, we substitute nil for x in the definition; or in

62

more technical terms, we instantiate the definition for x = nil.
We get: sort(nil) <= y s.t. perm(nil,y) & ord(y)
Anticipating the obvious, we strengthen the condition by
adding to it the condition y = nil
sort(nil) <= y s.t. perm(nil,y) & ord(y) &y = nil
which is equivalent to
sort(nil) < y s.t. perm(nil,nil) & ord(nil) &y = nil
Lemmas (a) and (c) allow us to simplify this to
sort(nil) < y s.t. y = nil

which finally reduces to

sort(nil) <= nil (6)
For our second base case we instantiate the sort (x) definition

for x = [v], an arbitrary unit list. The symbolic execution
follows the path of the x = nil case. Briefly it is:

sort([v]) < y s.t. perm([v],y) & ord(y)
< y s.t. perm([v],y) & ord(y) & y = [v]
< y s.t. perm([v],[v]) & ord([v]) & y = [v]
< y s.t. y = nil (using lemmas (b) and (¢))
Thus,
sort([v]) < [v] Y
The derived equations (6) and (7) are the base cases for all thel
sort programs. The differences in the synthesis derivationsy
emerge in the structure case evaluation for x< >y which wﬁ
will now consider.

pEDjUMOQ

eoe//:sdny

3.4. The structure case
We now come to the main part of our syntheses, the synthesis>
of general recursions for Merge Sort, Quick Sort, InsertionZ.
Sort and Selection Sort. As we shall see Insertion Sort ando
Selection Sort can be derived as special cases of Merge Sort
and Quick Sort respectively. We therefore present the synthesis
of the more general sorts, Merge Sort and Quick Sort first. &

The first part of the synthesis is common to both Merge Sorg
and Quick Sort. In each case we start with the sort deﬁmtxon%
instantiated for input list x1 < >x2, and output list z1 < >z2._
Aanticipating that the output will be a concatenation structurez
when the input is such a structure obviously makes senseg
however this assumption involves no loss of generahty This i$;
because every list is a concatenation of some pair of lists. Thusﬁ

sort(x]1 < >x2) <« (z1 <>z2)s.t. perm(x1<>x2, z1<>22)3
& ord(z1 < >22).

To find the sorted version of x1 < >x2 we have to generate q:
z1<>z2 whichis a permutatlon of x1 < > x2 but which is alsd_s
ordered. A useful programming strategy is to introduce axg
intermediate result. The fact that perm is a transitive relatiorr,
(lemma (d)) invites this strategy, for to guarantee the permu-j>
tation condition on the output we need only ensure that the
intermediary list structure yl<>y2 is a permutatlon of thco
input x1 < >x2, and that the final output z1<>z2isa permuﬁ;J
tation of yl <>y2. We can then ‘divide’ the ord(zl < >z2)
condition into a condition on the intermediate result yl1 < >y2
and a relation between yl < >)2 and z1 < >z2. The way that
we do this division is the crucial difference between Merge
Sort and Quick Sort.

In formal terms the intermediate result y1 < > y2 is introduced
by using lemma (d) to replace

perm(xl < >x2,z1 < >22)
by the conjunction
perm(xl < >x2,yl < >y2) & perm(yl < >y2,z1< >22)

which implies it. This gives us

sort(xl < >x2) <= zI < >z2 s.t. perm(x1 < >x2,yl < >y2) &

perm(yl < >y2,z1<>22) &
ord(zl < >z2)

The Computer Journal Volume 23 Number 1

The syntheses of Merge Sort and Quick Sort now diverge.

Merge sort

Let us concentrate for the moment on the condition perm
(x1<>x2, yl < >y2). Lemma (e) tells us that we can guarantee
this if only x1 is a permutation of y1 and x2 is a permutation
of y2. That is we can again strengthen the s.t. condition to
obtain:

sort (x1 < >x2) <= z1 < >22 s.t. perm(x1,yl) & perm(x2,y2) &
perm(yl < >y2z1<>22) &
ord(zl < >2z2)

We now divide the ord(z1 < >z2) condition into the condition
ord(yl) & ord(y2)
on the intermediate result, and the relation
[ord(y1) & ord(y2) — ord(zl < >2z2)]

between the intermediate result and the final value. Together
these two imply ord(z1 < >z2). This gives us the transformed
equation:

sort(x]l < >x2)<=z1 < >z2s.t.perm(x1,y1) & perm(x2,y2) &
perm(yl<>2,z1<>22) &
ord(yl) & ord(y2)&
[ord(y1) & ord(y2)—ord(z1 < >z2)

In this last step we have strengthened the condition that the
intermediate result y1 < >y2 must satisfy and, as a compen-
sation, weakened the relation perm(yl<>y2,z1<>z2) &
ord(zl < >z2) between the intermediate result and the final
value. It is a divide and conquer strategy that has a most
happy consequence. What we have managed to do is to
reformulate our definition of sort (x1 < >x2) so that the sort
function specification has reappeared as the condition that
characterises the relation between x1 and yl and between x2
and y2. For we have both perm(xl,yl) and ord(yl) and
perm(x2,y2) and ord(y2) in the s.t. condition, which is
precisely the reason we factored the ord(zl < >z2) condition
in the way we did. We have thus found a recurring evaluation
pattern. That is, our symbolic execution could now proceed
by applying the sequence of transformations we have just
performed to the subformulae

perm(x1,y1) & ord(y1)
and
perm(x2,y2) & ord(y2)

However, what we really want to do is to capture this re-
curring pattern of evaluation in a recursive formulation. To
do this, we simply replace these subformulae by the con-
ditions y1 = sort(x1) and y2 = sort(x2) which they define:

sort(xl < >x2)<=z1 < >22 s.t. perm(yl < >y2,z1< >22) &

[ord(y1) & ord(y2)—ord(z1 < > 22)]

where yl = sort(x1)

& y2 = sort(x2)
This technique of introducing recursions by discovering in-
stances of the right hand sides of equations or definitions is
called ‘folding’ by Burstall and Darlington (1975). It was
discovered independently by Manna and Waldinger (1975).
Trying to rearrange a symbolically evaluated expression in
order to make a fold possible is the primary goal of a structure
case evaluation and we call it ‘forcing a fold’. The partial
correctness of the recursive formulation is guaranteed by the
fact that it is equivalent to the unfolded expression. This, in
its turn, was derived from the specification of sort(x1 < > x2)
by a sequence of intermediate formulations each of which
implied the preceding one. Thus, any z1< >z2 that satisfies
the above recursive condition must be a sorted version of
x1<>x2. The fact that the recursive ‘calls’ apply to proper

The Computer Journal Volume 23 Number 1

substructures x1 and x2 guarantees the termination of the
recursive evaluation pattern that our latest formulation
records, it ensures that we have derived a computationally
useful characterisation of the sorted version of x1 < > x2.

Our program synthesis strategy was to look for and apply
these ‘fold’ substitutions. This enabled us to discover the
recursive structure of an algorithm for sorting lists, in fact
the recursive structure of the Merge Sort algorithm. But it
has done something else besides; it has left us with a residual
specification

perm(yl< > y2,z1< > 22) & [ord(y]) & ord(y2)
—ord(zl< > 22)]

of the relation between the intermediate results yl and y2 of
the recursive calls and the final output zl< >2z2. This is, of
course, the specification of the Merge function that must be
applied to yl and »2, a specification that has been thrown up
as a side-effect of our search for the recursive pattern. To
proceed, we now factor out this merge function specification,
rewriting our derived equation for sort(xl< >x2) as thé

pair of equations: §
sort(xl< >x2) < merge(sort(xl),sort (x2)) 8
merge(yl, y2) <= zs.t. perm (Yl <> y2, 2) oy
[ord(yl) & ord(y2) — ord(z)] g

We could now engage in a series of symbolic executions of th%
merge(yl,y2) specification and derive a recursive formulation®
or recursive algorithm, for the merge operation. We do nog
pursue this derivation here, leaving the interested reader té.
try it for himself. It is in this subsidiary synthesis that we shoul&ﬁ_
need to make use of the lower level functions, e.g. count of thé,
sort specification. 5

Quick sort
We now return to the point where our syntheses diverged:

sort(xl < >x2) <= zl< >z2 s.t. perm(xi< > x2, yl<>y2) &
perm(yl< > y2, z1< > 22)
ord(zl < >22)

gz/a&henu[woowood

In the derivation of the Merge Sort we expanded the condition;
perm(xl < >x2,yl < > y2) to the pair of conditions perm(xl,yl)5
perm(x2,y2). This amounted to a ‘programming’ decision that}
the intermediate result should be structurally similar to the:
input. Suppose instead that we use lemma (e) to amend the>
other perm constraint perm(yl< >y2,z1 <> z2) to .the paip
of conditions perm(yl,zl),perm(y2,22). This corresponds to the}
programming decision that the output should be structurally
similar to the intermediate result. Thus,

sort(xl < >x2) <= z1< >2z2 s.t. perm(xl<>x2, yl<>)2) &
perm(yl,zl) & perm(y2,z2)
ord(zl< >z2)

VZO?!JdV (0]

As before we now switch our attention to the ord(zl< >2z2)
condition. We want to factor this into some condition on the
intermediate result yl< >y2 and a relation between yl< >y2
and zl<>2z2. But just as importantly we want to find some
recurring pattern of evaluation to enable us to apply our fold
substitutions. We already have the ‘half’ specifications
perm(yl,zl), perm(y2,z2) for zI and z2 to be the sorted
versions of yl and y2 respectively. If we add the ord(zl),
ord(z2) that we need for the folds we can weaken the condition
ord(zl < > z2) to the condition

VuVv [uezl & vez2 - u<v]

This is because lemma (f) tells that this, together with the
ord(zl) and ord(z2) we have introduced, implies the ord(zl < > z2)
condition that we must satisfy.

63

Thus

sort(xl< >x2) <= zI<>2z2s.t. perm(xl<>x2, yl<>)2) &
perm(yl, zI) &
perm(y2,22) &
ord(zl) & ord(z2) &
YuVo [uezl &
vez2 —» u<vl.

We have now reached the position where we can introduce
recursive calls. However, we have not yet succecded in
distributing some of the load of the ord(zl< >2z2) condition
on to the intermediate result yl<>y2. To do this we must
observe that in the presence of the conditions perm(yl,zl),
perm(y2, z2) the conditions uez2 are respectively equivalent
to ueyl, uey2. This is our lemma (g). Rewriting the implication

VuVv [uezl & vez2 — u<v]

making use of these equivalences, and rearranging the equa-
tion, gives us:

sort(xl< >x2) <= zl<>z2 s.t. perm(xl< >x2, yl< >y2) &
VuVo [ueyl & vey2 - u<v] &
perm(yl,zl) & ord (z]) &
perm(y2,z2) & ord(z2)

A fold and definition introduction gives us:

sort(xl < > x2) <= sort(yl) < >sort(y2)
s.t. partition(xl < > x2,yl,y2)
partition(x, yl, y2) <= perm(x, yl<>y2) &
VuVov[ueyl & vey2 — u<v]
That is, we are left with the top level structure of the Quick
Sort algorithm and a residual specification of the partition
operation.

At this stage we would like to point out an interesting
symmetry between Merge Sort and Quick Sort. In fact they are
duals of each other. Merge Sort does the computation con-
cerned with orderedness ‘on the way up’ from the recursion,
whereas Quick Sort does it ‘on the way down’. Both sorts
have the same schematic structure, viz

sort(x) <= h(sort(first(k(x))), sort(second(k(x)))

-+ where h maps a pair of lists on to a list and k maps a list on to
a pair of lists. Thus 4 is the function involved coming up the
recursion and k the one involved going down. For Quick Sort
h is append and k partition and for Merge Sort 4 is merge and
k the non-deterministic function that splits a list up into two
lists that appended together make the original list. Thus k for
Merge Sort is the inverse of h for Quick Sort and 4 for Merge
Sort is, almost, the inverse of k& for Quick Sort. In the latter
case the exact situation is that the 4 for Merge Sort, merge,
is a subfunction of an arbitrary merging function,

m(ll, 12) <= e s.t. perm(/l< >e2,]),

It is the subfunction given by restricting e to ordered lists. The k
for Quick Sort, partition, is the subfunction of the inverse of
m derived by restricting the output to pairs of lists for which all
elements of the first list are less than or equal to all elements
of the second.

Neither of the authors was aware of this symmetry between
two supposedly different algorithms before we started this
synthesis. The origin of this difference can be most clearly
seen in the versions of Merge Sort and Quick Sort just after
the folds are made to introduce the recursive calls of sort. In
Merge Sort the residual condition concerned with ord related
the intermediate variables and the output variables whereas the
corresponding condition in Quick Sort relates the input and
intermediate variables.

An interesting speculation is why, if our analysis shows
Quick Sort and Merge Sort to be so closely related, does
Quick Sort have such a superior performance ? We suspect that

64

it is because our Quick Sort is not quite the one described by
by Hoare (1962). His algorithm uses a discriminating element
to partition the list. Thus for a list of n elements, recursion
takes place on k and n-k-1 elements, whereas our version
recurses on k and n-k elements as does Merge Sort. It may be
this removal of one element at each level of recursion that
gives Quick Sort its edge.

Insertion Sort and Selection Sort
Our final equation for Merge Sort was

sort(xl < > x2) < merge(sort(xl),sort(x2))

This is an equation that holds for all xl, in particular for some
unit list [#]. Thus

sort([u] < > x2) < merge(sort([u]),sort(x2))
We know from the base case equations that sort([u]) < u, so
sort([u] < > x2) < merge([u],sort(x2))

Now, merge is only required to deal with a unit list as_ﬁrst
argument. Specialising the merge definition for this case gives:

merge([u],y2) <= zs.t. perm([u]<>y2,z) &
[ord([u]) & ord(y2)
— ord(z)]

which can be further simplified to

merge([u],y2) < zs.t. perm([u]<>y2,z) &
[ord(y2) — ord(z)]

Thus we would introduce a specification for the insert operation?

insert(u,y2) <= z s.t. perm([u] < >y2,2) &
[ord(y2) — ord(z)]

and rewrite the above sort equation as
sort([u] < > x2) <= insert(u,sort(x2))

sdyy wouy pepeojumoq

Selection Sort
Our final equations for Quick Sort were

sort(xl < > x2) < sort(yl) < >sort(y2)
s.t. partition(xl < >x2 yl,y2)=

partition(x,yl,y2) <= perm(x,yl< >y2) &
VuVo[ueyl & vey2 — u<v]

[woo/woo dno olwapeoe)/

This time we specialise the equations for intermediate variable
y1 to some unit list [#]. The sort equation reduces to

sort(xl < >x2) < [u] < >sort(y2) s.t. partition

q 116929/L9/L/€C/a1o0 €/ U

()
<
—_

,\
fa¥
A
\
*
)

NG
N

and the corresponding definition of partition simplifies to
partition(x,[u],y2) < perm(x,[u] < >)2) & S
Vo[vey2 = u<v]z
Thus we introduce a specialised version of partition, called%:?_
select, that selects a # from x that is less than or equal to allJ
the other elements N

select(x,u,y2) < perm(x,[u] < >y2) &
Vo[vey2 —» u < v]

01senb A

[}
N

and have

sort(xl < >x2) <= [u] < >sort(y2) s.t.
select(xl < > x2,u,y2)

4. Final remarks

We hope that the small example has demonstrated that
interesting relationships between algorithms can be exposed
by a synthesis derivation tree. We are not claiming that the
relationships between the sort algorithms that we have devel-
oped are new or startling, although neither of the authors had
such a clear perception of them before they engaged in the
synthesis exercise. What we think is significant is that certain
choices and steps in the synthesis derivations reflect program-

The Computer Journal Volume 23 Number 1

ming decisions that we have expressed at a higher level.
Moreover, by using a single formalism in which both speci-
fications and algorithms can be expressed, we are in effect
using a calculus for deriving programs (cf. Dijkstra, 1976).

For the sort program synthesis the obvious choices and
programming strategies have led to known algorithms. How-
ever, there remains the hope that by gaining experience about
what choices are crucial for the derivation of known al gorithms,
new algorithms can be discovered by systematically investi-
gating alternative derivation paths.

4.1. Related work

A similar description and synthesis exercise for sort programs
has been done by Green and Barstow (1977). The major
difference of our approach is that the sort programs are derived
within a formal deductive system each step in the derivation
being a deductive step. For them, the actual program trans-
formations are performed by programs that embody both the
definition that we would make explicit in the specification,
and the ‘rules of programming’ of the kind that we have used
to guide the derivations.

Hogger (1977) shows how the four sort programs we have
considered can be derived in predicate logic from a formal
specification, However he does not view the specification as
a high level program, with the derivations a symbolic execu-

References
BuURsTALL, R. M. (1977).
hagen.

BURSTALL, R. M. and DARLINGTON, J. (1975). A transformation system for developing recursive programmes, JACM, Vol. 24 No.

pp. 44-67.

CLARK, K. L. and SICKEL, S. (1977). Predicate logic: a calculus for the derivation of programs, IJCAIS, 1977.
CLARK, K. L. and TARNLUND, S. A. (1977). A first order theory of Data and Programs. Proc. IFIPS Conference, Toronto, Canada.
CLARK, K. L. (1977). Synthesis and verification of logic programs, Research report, Dept. of Computing and Control, Imperial Colleg

London.
DARLINGTON, J. (1975).
Programs, Arc-et-Senans, France, pp. 133-144.

DARLINGTON, J. (1978). A synthesis of several sort programs, Acta Informatica, Vol. 11 No. 1, pp. 1-30.

DuksTRrA, E. W. (1976). A discipline of programming, Prentice-Hall, Englewood Cliffs, NJ.

GREEN, C. and Barstow, D. (1977). Program synthesis for efficient sorting, A.1. Lab, Computer Science Dept., Stanford University.
Hoarg, C. A. R. (1962). Quicksort, The Computer Journal, Vol. 5 No. 1, pp. 10-15.

Design considerations for a functional programming language, Proc. Infotech State of the Art Conference, Copen-

Application of program transformation to program synthesis, Proc. IRIA Symposium on Proving and Improvin,

tion of this program, an approach which we think pays great
dividends. He has a more syntactically formal approach.

The work reported in Darlington (1978) approaches, a
similar task to the one reported here in a different way. There
six sorts are synthesised from a top level definition. First
the set of all permutations of a list is defined and three different
algorithms for its computation synthesised. The sort function
is then defined using a filter that rejects all but the ordered
permutation. Different ways of combining this filter with each
of the permutation algorithms, results in versions of six
sorting algorithms, Quick Sort, Merge Sort, Insertion Sort,
Selection Sort, Exchange Sort and Bubble Sort.

Lothar Schmitz (1978) has performed a similar exercise to
ours, this time deriving a family tree of transitive closure
algorithms. In a similar manner to ourselves, he has attempted
to do as much manipulation as possible on a high level speci-
fication written in formal language.

Acknowledgements
Special thanks are due to R. M. Burstall and R. Kowalski fi
their encouragement and help. g
The form and content of this paper have been much i
fluenced by the constructive comments of the referee. W&
should like to thank him for his efforts on our behalf.
The work was supported by the Science Research Council.

dnooiwdpeser sdpy woly pa

L0/ WS

L/gz/eneul

HoGGER, C.J. (1977). Deductive synthesis of logic programs, Research report, Theory of Computing Research Group, Dept. of Computin§

and Control, Imperial College, London.
MANNA, Z. and WALDINGER, R. J. (1975).

175-208.
Scumrirz, L. (1978).

Hochschule der Bundeswehr, Munich.

()
Knowledge and reasoning in program synthesis, Artificial Intelligence, Vol. 6 No. 2, p%‘

}

An exercise in program synthesis: algorithms for computing the transitive closure of a relation, Draft reporg

Book review

The Social Impact of Computers by G. A. Silver, 1979; 341 pages.
(Harcourt Brace Jovanovich, £6-45)

The title of this book is perhaps misleading for a broad introduction
to computers and computing, incorporating as a final theme a
discussion of the social implications. As the author states in his
preface, instruction in computers has been virtually ignored for
‘students in the social sciences or liberal arts, to say nothing of the
layperson’, and he enthusiastically sets out to provide something to
fill the gap.

The book commences with a section covering basic definitions;
the history of computer development; computer hardware and
software, including the concepts of batch and interactive program-
ming and a summary of the main computer languages. A summary
of occupational trends and employment in computing is followed
by descriptions of computer applications in industry, government,
etc. The final sections (about 409 of the material) deal with the
social or ‘people’ aspects, including broad social issues (particularly
privacy), computers in education and effects on the business world

The Computer Journal Volume 23 Number 1

3

20z udy Q| uo 1senb

(including crime).

A final conclusion is reached that there is a danger of developing™
an overdependence on computers and technology and that ‘means
will have to be developed to moderate the influx of new technology
to give people time to adjust to the changes about them’. The
format and style are particularly noteworthy. There are clear and
interesting diagrams and photographs and the material is inter-
spersed with extracts from newspaper reports and some amusing
cartoons. The style is clear, attractive and highly readable. Definitions
are simple and down-to-earth, and examples are up-to-date (1978).
The author finds it possible to cover a broad area in a relatively
short book without becoming superficial.

All-in-all, a well written, helpful and interesting book for those
outside the computer profession (and perhaps a refreshing second
look for the insider too). Students, particularly, would make use of
the exercises at the end of each chapter. A frustration for the British
reader may be that the example applications, statistics and legis-
lation quoted are American.

M. J. BLYTHE (Haywards Heath)

65

