ming decisions that we have expressed at a higher level.
Moreover, by using a single formalism in which both speci-
fications and algorithms can be expressed, we are in effect
using a calculus for deriving programs (cf. Dijkstra, 1976).
For the sort program synthesis the obvious choices and
programming strategies have led to known algorithms. How-
ever, there remains the hope that by gaining experience about
what choices are crucial for the derivation of known al gorithms,
new algorithms can be discovered by systematically investi-
gating alternative derivation paths.

4.1. Related work

A similar description and synthesis exercise for sort programs
has been done by Green and Barstow (1977). The major
difference of our approach is that the sort programs are derived
within a formal deductive system each step in the derivation
being a deductive step. For them, the actual program trans-
formations are performed by programs that embody both the
definition that we would make explicit in the specification,
and the ‘rules of programming’ of the kind that we have used
to guide the derivations.

Hogger (1977) shows how the four sort programs we have
considered can be derived in predicate logic from a formal
specification, However he does not view the specification as
a high level program, with the derivations a symbolic execu-

References
BuURsTALL, R. M. (1977).
hagen.

BURSTALL, R. M. and DARLINGTON, J. (1975). A transformation system for developing recursive programmes, JACM, Vol. 24 No.

pp. 44-67.

CLARK, K. L. and SICKEL, S. (1977). Predicate logic: a calculus for the derivation of programs, IJCAIS, 1977.
CLARK, K. L. and TARNLUND, S. A. (1977). A first order theory of Data and Programs. Proc. IFIPS Conference, Toronto, Canada.
CLARK, K. L. (1977). Synthesis and verification of logic programs, Research report, Dept. of Computing and Control, Imperial Colleg

London.
DARLINGTON, J. (1975). Application of program transformation to
Programs, Arc-et-Senans, France, pp. 133-144.

DARLINGTON, J. (1978). A synthesis of several sort programs, Acta Informatica, Vol. 11 No. 1, pp. 1-30.

DuksTRrA, E. W. (1976). A discipline of programming, Prentice-Hall, Englewood Cliffs, NJ.

GREEN, C. and Barstow, D. (1977). Program synthesis for efficient sorting, A.1. Lab, Computer Science Dept., Stanford University.
Hoarg, C. A. R. (1962). Quicksort, The Computer Journal, Vol. 5 No. 1, pp. 10-15.

Design considerations for a functional programming language, Proc. Infotech State of the Art Conference, Copen-

program synthesis, Proc. IRIA Symposium on Proving and Improvin

tion of this program, an approach which we think pays great
dividends. He has a more syntactically formal approach.

The work reported in Darlington (1978) approaches, a
similar task to the one reported here in a different way. There
six sorts are synthesised from a top level definition. First
the set of all permutations of a list is defined and three different
algorithms for its computation synthesised. The sort function
is then defined using a filter that rejects all but the ordered
permutation. Different ways of combining this filter with each
of the permutation algorithms, results in versions of six
sorting algorithms, Quick Sort, Merge Sort, Insertion Sort,
Selection Sort, Exchange Sort and Bubble Sort.

Lothar Schmitz (1978) has performed a similar exercise to
ours, this time deriving a family tree of transitive closure
algorithms. In a similar manner to ourselves, he has attempted
to do as much manipulation as possible on a high level speci-
fication written in formal language.

Acknowledgements
Special thanks are due to R. M. Burstall and R. Kowalski fi
their encouragement and help. g
The form and content of this paper have been much i
fluenced by the constructive comments of the referee. W&
should like to thank him for his efforts on our behalf.
The work was supported by the Science Research Council.

dnooiwdpeser sdpy woly pa

L0/ WS

L/gz/eneul

HoGGER, C.J. (1977).  Deductive synthesis of logic programs, Research report, Theory of Computing Research Group, Dept. of Computing

and Control, Imperial College, London.
MANNA, Z. and WALDINGER, R. J. (1975).

175-208.
Scumrirz, L. (1978).

Hochschule der Bundeswehr, Munich.

An exercise in program synthesis: algorithms for computing the transitive closure of a relation, Draft repo

()
Knowledge and reasoning in program synthesis, Artificial Intelligence, Vol. 6 No. 2, pps

Book review

The Social Impact of Computers by G. A. Silver, 1979; 341 pages.
(Harcourt Brace Jovanovich, £6-45)

The title of this book is perhaps misleading for a broad introduction
to computers and computing, incorporating as a final theme a
discussion of the social implications. As the author states in his
preface, instruction in computers has been virtually ignored for
‘students in the social sciences or liberal arts, to say nothing of the
layperson’, and he enthusiastically sets out to provide something to
fill the gap.

The book commences with a section covering basic definitions;
the history of computer development; computer hardware and
software, including the concepts of batch and interactive program-
ming and a summary of the main computer languages. A summary
of occupational trends and employment in computing is followed
by descriptions of computer applications in industry, government,
etc. The final sections (about 409 of the material) deal with the
social or ‘people’ aspects, including broad social issues (particularly
privacy), computers in education and effects on the business world

The Computer Journal
3

Volume 23 Number 1

20z 1udy 01 uo 1senb M?‘oze

(including crime).

A final conclusion is reached that there is a danger of developing™
an overdependence on computers and technology and that ‘means
will have to be developed to moderate the influx of new technology
to give people time to adjust to the changes about them’. The
format and style are particularly noteworthy. There are clear and
interesting diagrams and photographs and the material is inter-
spersed with extracts from newspaper reports and some amusing
cartoons. The style is clear, attractive and highly readable. Definitions
are simple and down-to-earth, and examples are up-to-date (1978).
The author finds it possible to cover a broad area in a relatively
short book without becoming superficial.

All-in-all, a well written, helpful and interesting book for those
outside the computer profession (and perhaps a refreshing second
look for the insider too). Students, particularly, would make use of
the exercises at the end of each chapter. A frustration for the British
reader may be that the example applications, statistics and legis-
lation quoted are American.

M. J. BLYTHE (Haywards Heath)

65





