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1. Introduction

Over the past few years computers have been designed and
developed which possess a number of processing units, thus
giving facilities to increase the throughput of computation
(Ramamoorthy and Gonzalez, 1969).

Methods have been formulated and implemented by which a
programmer may indicate where parts of his program may be
executed on different processors at the same time (i.e. in
parallel) (Anderson, 1965). This, although useful in some
circumstances, raises three main problems:

1. The onus is on the programmer to detect and express all
possible parallelism in his program.

2. Small changes in the program may mean that the program-
mer has to reorganise all the parallelism he has written in to
the program.

3. Programs already in existence will have to be rewritten.

It would be beneficial to be able to examine automatically
programs and indicate the relationships between parts of the
code. Methods of converting serial FORTRAN programs into
a form suitable for execution in parallel have been investigated
by Kuck et al. (Kuck, 1975; Towle, 1976). In this paper we
shall develop a means of locating parallelism in algorithm
type languages (ALGOL) using a notation as developed by
Bernstein (1966) in an extremely informative paper.

2. Usage of private and shared memories

In 1965 Wilkes introduced the idea of using a slave memory of
fast core to save on the fetch time from main memory. Although
such time delays are now of less significance it is possible to
apply this concept to a multiprocessing environment by allow-
ing each processor to have a private memory, which can be
used in the same manner as Wilkes’ slave memory.

Thus there are two types of memory structures that can be
used in parallel processing, either (a) all processors use the same
main memory or (b) each processor has attached to it a private
memory in which information that is currently being processed
can be stored. Usually when the process has finished the
information is returned to main memory.

This difference can be emphasised by considering two proces-
sors A and B operating in parallel, and A alters location / before
B fetches it. Then, with shared memory B will fetch the value
altered by A4, whereas using private memory B will fetch the
value that was there previously.

3. Relationships between segments of code

We define the following notation which is used extensively in
this work. Bernstein (1966) defines four categories (W, X, Y
and Z) corresponding to the four different ways that a sequence
of instructions, or a subprogram, P, can use a memory location.
They are as follows:

W—‘The location is only fetched during the execution of P’.
(3.1a)

X— ‘The location is only stored during the execution of P’.
(3.1b)

Y— ‘The first operation involving this location is a fetch. One
of the succeeding operations of P stores in this location’.
(3.1¢)

Z— ‘The first operation involving this location is a store. One
of the succeeding operations of P fetches from this
location’. (3.1d)2

Bernstein also developed conditions to test if two P’s can beS
executed in parallel using this notation.

Stanza

We need to define a term that will be similar to P with which E
the relationship between different parts of a program can be®

described. Since ALGOL-type languages are being consndered
in this report an equlvalent to P could be: ‘A group of com-
pound statements appearing adjacently in a program’. The
term ‘block’ is suitable for this definition but because of its5
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specxﬁc meaning in ALGOL-type languages the term ‘stanza’ u

is used instead.

Classes of relationships
Let us now consider the relationships between two stanzas
executed one directly after the other if the program was being 2
executed serially. We shall call these two stanzas S; and S|, ,,
1 < i < N, where N is the total number of stanzas in the
program.

Five possible relationships that can exist between two such
adjacent stanzas are:

1. Prerequisite(PR) Stanza S; must fetch what it requires
before S;, , stores its results.
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2.

Conservative(CV) Stanza S; must store its results before%
S;, does. (3.2b)g>

Commutative(CM) Stanza S; may be executed before or 2
after S;,, is executed but not at the same time. (3202

Contemporary(CT) Stanzas S; and S, ; can be executed atg
the same time and the locations used may be accessed in any o

order. (3.2d)

5. Consecutive(CC) Stanza S; must store its results before
S+, fetches what it requires. (3.2¢)

For completeness, let us define a sixth relationship, which
cannot exist within a serial program.

6. Synchronous(SN) Stanzas S; and S;, ; must both have the
same inputs, i.e. S; (or S;,;) cannot store its results until
Si+1 (or S;) has fetched its inputs. (3.2f)

For each stanza (S;) we can form Bernstein sets such that:

W represents the set of all locations that are only fetched dur-
ing the execution of S;. (3.3a)

X, represents the set of all locations that are only stored during
the execution of S;. (3.3b)
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Y, represents the set of all locations for which the first opera-
tion is a fetch, and one of the succeeding operations of S| is
a store. (3.3¢)
Z; represents the set of all locations for which the first opera-
tion is a store and one of the succeeding operations of S;
fetches that location. (3.3d)
To reduce some of the complexities of this work we shall use
the following abbreviations:

WY, represents the set of all locations that fetch values not

set in S;.
Thus:
WY =W, uY, (3.3¢)
X YZ, represents the set of all locations that receive a new value
in S;.
Thus:
XYZ, =X, vY vZ (3.3)

We shall also introduce a set ¥ that represents all locations that
are fetched before being stored, after S; and S;,, have been
executed. The calculation of V will, in general, be a nontrivial
matter, so ¥ may be considered to be the full set of variables,
which are assigned to within both stanzas S; and S|, ;.

Using this notation we can redefine the relationships given
earlier.

1. Private memories
1.1. Prerequisite
Stanza S; must fetch what it requires before S;,, stores its
results,

ie. WY, nXYZ,,,#90 (34
(where @ is the null set).
Stanza S;,, must not require information computed in S,
since S; will not necessarily be completed,

ie. XYZ,AnWY =90 3.5)
Locations that are modified in both S, and S;,, must not be
used elsewhere without being reset first, since the values of such
locations are undefined,

ie. XYZ,nXYZ;,, nV =20 3.6)

Thus, (3.5) and (3.6) are the conditions to be satisfied for S; and
S;+1 to be prerequisite.

1.2. Conservative
Stanza S; must store its results before S;, ; does

iie. XYZ,nXYZ,,, nV#£0 3.7
Stanza S;,; must not require information computed in S;.
i.c. XYZi (a) WYl'+1 = 0 (3.8)

This is the condition that needs to be satisfied for S; and S;, , to
be conservative.

1.3. Commutative
Stanza S; may be executed before or after S;, ;. The inputs of
S;+1 (S;) must not coincide with the outputs of S; (S;,,)
i.e. WY‘ N XYZ"+1 = 0 (3.9)
XYZi N WYi+1 = 0 (3.10)
Locations that are modified by S; and S;,, must not be used

elsewhere without being reset first, since the value of such
locations are undefined,

ie. XYZ,nXYZ;,, nV=20
However in view of (3.9) and (3.10)
XYZ, v XYZ,'.'.I = (Xl v Yi UZ,) N (Xi+1 v Yi+l v
Ziy) = (X; VZ) 0 (Xiyy U Ziyy)
SO (X‘ UZ') f\(XH_l UZ,'+1) (@) V=o (3.11)
Thus the conditions for S; and S;, ; to be commutative stanzas
are (3.9), (3.10) and (3.11).
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1.4. Contemporary

Stanza S; and S;,, can be executed at the same time and the
locations used may be stored and fetched in any order. There
must be no dependencies between the inputs and outputs of S;
and S;, ,,

i.e. WY‘ N XYZ"+1 = 0 (3.12)
XYZ, AWY,y,, =0 (3.13)

Locations that are modified by both stanzas S; and S;,, must
not be used elsewhere without being reset first, since the value
of such locations are undefined,

iee. XYZ,nXYZ;,, nV =20
However in view of (3.12) and (3.13)
XYZ,nXYZ,,=(X;, VY, UZ) "Xy, YV Y, U
Ziv) = (X; VZ) N (Xipy YU Ziyy)
SO XivZ)n(Xipy, VZiu ) V=0 (314

Thus the conditions for two stanzas to be contemporaries are
(3.12), (3.13) and (3.14).

eojumoQg

1.5. Consecutive
Stanza S; must store its results before S;,, fetches what it2
requires

ol p

ie. XYZ, AWY, #0
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Now let us consider how these relationships exist with shared?®
memory.

2. Shared memory

2.1. Prerequisite

Stanza S; must fetch what it requires before S;,; stores it
results,

Bno-oiwepeoe)/

woo

ie. WY,nXYZ,, #0 (3.16)3

Since both stanzas are now using the same memory for storing%
into and fetching from this means that the last fetch of .S; must2
be completed before the first store of S, ,, and so the relation-2
ship degenerates into a consecutive one.

2.2. Conservative
Stanza S; must store its results before S;, ; does,

D
ie. XYZ, AnXYZ,, "V #0 (3.17)3
This becomes the last store of .S;, must be completed before theS

first store of S;,, can be done and so this relationship alsoc
becomes a consecutive one.

£9/99/1/€C/
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2.3. Commutative
Stanza S; may be executed before or after S;, ;. The inputs toZ
stanzas S;(S;,,) must not be altered by the outputs of S, l(Si)%

WY, nXYZy, =90 (3.18)3
.X}’Zl N WY".,.I = 0 (3.19)

Locations that are modified by S; and S;,, must not be used
elsewhere without being reset first, since the value of such
locations are undefined,

ie. XYZ,NnXYZ,,, nV =0 (3.20)
However in view of (3.18) and (3.19)
XYZ,nXYZi,y, =(X; VY, UZ) n(Xj4, VY U
Zi) = (X; VZ) N (Xipq Y Ziyy)
S0 X, vZ)n Xz, VZi) 0"V =0 (321
Thus the conditions for S; and S;,, to be commutative are
(3.18), (3.19) and (3.21).

2.4. Contemporary
Stanzas S; and S;,, can be executed at the same time and the

67



locations used may be stored or fetched in any order.
There must be no dependencies between the inputs and out-
puts of stanzas S; and S, |,

ie. WY, AXYZ,, =90 (3.22)
XYZ, AWY =0 (3.23)

Partial results being prepared by S,(S;,,) must not be over-
written by S, ,(S)).

ie. Z, NnXYZ,,, =90 (3.24)
XYZ,nZi ;=90 (3.25)

Combining (3.22) and (3.24)
WY, vZ)NnXYZ,,, =0 (3.26)

Combining (3.23) and (3.25)
XYZ, n(WY,, UZ) =90 3.27)

Locations that are modified in both S; and S,,, must not be
used elsewhere without being reset first, i.e.

XYZ, nXYZ;,, nV =0
However, in view of (3.26) and (3.27)
XYZ,nXYZ ,=(X; VY, UZ) n(X;y, VY, U
Ziy) = Xi 0 Xiyy (3.29)
S0 XinXy  nV=290 (3.30)

Thus, the conditions for two stanzas to be contemporary are
(3.26), (3.27) and (3.30).

(3.28)

2.5. Consecutive
Stanzas S; must store its results before S;,, fetches what it
requires

XYZ,AnWYy, =0 (3.3

It is possible to expand on the relationships previously defined
for two stanzas to cover n stanzas, which exist in a serial order
{Sll SZa ey Sn}

3. Expanded relationships

3.1. Prerequisite

Stanza S, must fetch what it requires before S,,, stores its
results for all k such that 1 < k < n.

3.2. Conservative
Stanza S, must store its results before S, , does for all k such
that 1 < k < n.

3.3. Commutative
The set of stanzas {S;, S;, ..., S; } may be executed in any
possible order of the set {i, i,, . . ., i,}, which is any permuta-
tion of the set {1, 2, . . ., n}, providing S;_is completed before
S;,+, commences.

3.4. Contemporary
Stanzas {S,, S,, ..., S,} can be executed at the same time, the
ordering of fetching and storing being of no consequence.

3.5. Consecutive
Stanza S, must be completed before S, , commences for all k
such that 1 < k < n.

Again for completeness a sixth relationship can be defined,
which, however, cannot exist within a serial program.

ojumoQg

3.6. Synchronous

Stanzas {S,, S, . . . , S,} must all receive the same input set?é

p

Using the Bernstein type of notation as before we can shows
what conditions are necessary for a relationship. These valueé
can be seen in Table 1. =1

peoe//:sd

4. Assignment stanzas
A stanza which just contains assignment statements can be cal-3
led an Assignment stanza or an As-stanza Figs. 1(a) and 2(a) are;
examples of As-stanzas. The Bernstein sets formed from theses
expressions are shown in Figs. 1(b) and 2(b), respectivelys

Assume that the two stanzas are written so that Fig. 1(a) isg\
executed immediately before Fig. 2(a). Then by carrying out theg
tests, on the Bernstein sets (see Fig. 3), as given in Table 1 wes
see that if private memory is available to each processor then
these stanzas are prerequisite, if the processors need to use>

main memory then they are consecutive.

Table 1
Two stanzas

n stanzas
Private memories Shared memories
XYZ, n (WY v same as consecutive
... UWY) =0t
XYZ, n(XYZ,, v
.UXYZ)n V=0t
XYZ, n (WY, v same as consecutive

.U WY, = 0t

Xy VZ) N (Xes1 v

Zii) U ...
-V (X, vZ,)
N V=0t

same as commutative

No conditions necessary as this implies

Private memories Shared memories
Prerequisite XYZiAn WY =0 same as consecutive
(PR) XYZ, nXYZi,, NV
=0
Conservative XYZ, A" WY; =0 same as consecutive
cv)
Commutative WY inXYZ,,, =0 WYinXYZ,, =0
(CM) XYZi('\WYH.1=0 XYZ,(\WYH.I =®
(Xi VZ) N (Xiyy v (XivZ) n(Xiy, v
Z"+l)nV=0 Zi+1)ﬁV=0
Contemporary same as commutative wY,vz)
(CT) NXYZ,,, =90
XYZ, n(WY,,
UZi) =10
XivYu)nV=20
Consecutive
(CO) XYZ, A WY,y #0

tfor all k such that 1
+ifor all £ such that 1

k<n

N IN

<
k< nandforall /suchthat 1 </ <nand! # k

20z Iudy 60 U0 }sanb Aq |£69.29/99/1/€2/

WY, n XYZ = 0tf
X v Z) 0 (Xisr

Zii1) V...
.u(X, vuZ)
NnV=0t
(WY, vZ)
N XYZ = 0tt
Yo n(Xesy U ...
uUX,)nV =0t
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Code Bernsteinrepresentation
Al « Bl + CI; W B1, B2
A2 « Al * Bl; X A2
Cl « Bl + B2; Y Cl

Z Al

Fig. 1(a) Fig. 1(b)

A3 « Bl + B2; w Bl1, D1
B2 « B1/Dl; X D2
D2 « A3 — DI; Y B2
Z A3

Fig. 2(a) Fig. 2(b)

Result

XYZ, n WY, =X, vY vZ)n(W, Y, =
XYZ nXYZ,nV=X,vY, vZ)n(X,uY,UuZ)
NV=290
WY, nXYZ, = (W, vY)nX, uY, uZ)#0
where V = 1
Fig. 3 Example 1

5. Loops

Let us now consider a stanza which is also the body of a loop,
i.e. Do-stanza. This stanza will be executed a number of times
(the exact number depending on the control variable initially
considered to be a constant step size). If each iteration is
considered as a separate stanza, and we construct each stanza
such that the relationship for each iteration can be formed.
Then for the case where each iteration will only vary in loca-
tions accessed via the control variable certain short cuts are
available which can be recognised by carrying out these tests in
the following order.

1. Total independence

If every assignment is to members of arrays indexed by the
control variable, and any mentioned array assigned to within
the loop, does not at any stage have any member fetched, then,
each iteration of that loop is completely independent of each
other.

2. Total dependence

If the relationship between the first iteration (7;) and the
second iteration (I,) of the loop is consecutive; then all itera-
tions of the loop must be done sequentially, see (Evans and
Smith, 1977).

3. Partial dependence

The relationship between the first iteration (I;) and the
(k + 1) iteration (I ,) is the same as that between I, and
I, (provided that k + n is not greater than the number of
iterations in the loop), and that the step size is constant for the
loop.

Note for the loops being considered the only difference
between two iterations will be the elements of arrays accessed
by the control variable. Otherwise the loop would have been
found to be totally dependent.

Thus, by establishing relationships between I, and I, (k > 1
and k£ < N). For all k until one of the following is satisfied, i.e.

(a) the relationship is consecutive

b k=N

From which we can state:

(@) We have established that I, I,, . . ., I, can be executed by
the series of relationships found and the next & iterations

must be done sequentially after these—but within that
group they bear the same relationship to each other as the
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previous k do to each other.

(b) The whole loop is computed using the relationships already
established.

Nested loops

Let us now consider a Do-stanza of which the execution is
controlled by more than one control variable. The previous
tests for single loops can be expanded provided that any array
that is indexed by a control variable is not later indexed by the
same control variable in a different subscript position (see
later).

The extensions to the tests are:

1. Total independence
If this test is true for each of the loops, then all iterations will be
contemporary.

2. Total dependence
For each loop Ly, L, ..., L establish the relationship for 7,
and 7,. If this is consecutwe then for that particular loop each
of its iterations must be executed consecutively.

peojumo(

3. Partial dependence
For each loop L, L,, . . ., L, for which total dependence ha§
not been shown we need to establish relationships between I
and [, (for k > 1 and k < N) as described above for one looé

The handlmg of both types of loops is discussed in moré,’
detail in Williams (1978). In Appendlx 1 an example of hovsg
potential parallelism may be detected in a nested loop is glveng

"oIWap

Variate positioning of control subscrtpts
If an array is indexed by a given control variable in one sub°
scrlpt position and is later indexed by the same control variable,
in a different subscript position, it becomes difficult to predlcg
the usage of a particular element of the array. This practic&
does not appear to be very common. However, this situatioé-
can be coped with adequately by calculating for all the affected
loops, the relationships (3.5)-(3.15) between all iterations of alf?

such loops. S
6. IF stanzas S
Let us consider a simple ALGOL-type IF statement, th&
variables used here can be divided into three following catex

gories and are those used
1. in testing the condition
2. if the condition is true
3. if the condition is false.

For an IF stanza Sy we can represent these categories by thre
Bernstein sets, i.e.

Wye The variables tested in the conditional
(NB These will only be fetched variables—so there is n
need for a X, Y or Z set).

\W50 uo 3senb Aq |

20z 1ud

The variables used, if the condition is true

Zyr i
WNF
XNF
YNF
ZNF
Thus for any execution of an IF stanza the variables used will
be given by the sets,

Wye U Wyr U Xyr U Yyr U Zyr

The variables used, if the condition is false

or
Wye U Wyp U Xyp U Yyp U Zyp,



depending upon the value of the condition.
Let us now look at the ways we can establish the relationship
between:

(@) An assignment stanza Sy_, and Sy
(b) Sy and an assignment stanza Sy, ;.

1. Sy_, and Sy
(a) Test that the variables used in the condition of Sy are not
assigned to in the stanza Sy_,, i.e.

XYZN—l N WNC = 0 (6.1)

Otherwise the stanzas Sy_, and Sy would need to be
executed consecutively.

(b) If the relationship (6.1) is true then test the relationships
between stanzas Sy_,; and Syr and stanzas Sy_, and Syg
in the manner described previously for adjacent assignment
stanzas in Section 4. Given two relationships as formed
above, say, R, and R,, then it is possible to ascertain if the
condition of Sy is true, then the relationship between Sy_
and Sy is R, otherwise it is R,.

2. Sy and Sy,

Again we need to establish the relationships R; and R,
between Syr and Sy, . In addition, we will also need to include
with both Sy, and Sy the variables used in Sy when establish-
ing relationships R, and R,, as this test will be carried out
whether or not Sy or Sy is executed. So the input set for Syr
now becomes:

(Wnr © Yyr U Wyo)
and similarly the input set for Sy; becomes:
(Wnp U Yyp U Wi) .

So the commutativity test between Sy and Sy, ; using private
memory (see Section 3) becomes:

(Whr O Yyr U W) N XYZyy =0 6.2
(Wyr O Yyr UZyr) " W3y =0 (6.1
(Xnr U Zyr) 0 (Xney U Zysy) =0 (6.3

so again, it is possible to calculate the two relationships, R,
and R,, and to state if the condition of Sy is true then the
relationship between Syr and Sy, , is R;, otherwise it is R,.

Multiple adjacent IF stanzas
When two adjacent IF stanzas are considered we examine four
possible relationships (see Fig. 4) although only one of these
will be used for any particular pass through these statements.
In general the path to be taken will not be known until run
time (Evans and Smith, 1977).

Since the number of paths through » adjacent IF stanzas is 2",

A
w
n
v

Y

A

A
NG
G2

3.
> I

Fig. 4 Example of adjacent IF stanzas

70

then for practical purposes it will be necessary to limit the
number of adjacent IF stanzas considered at any one time.
However for two adjacent IF stanzas the extra work is not
onerous and the gains should be worthwhile.

Appendix 2 gives an example of how parallelism may be
detected between two IF stanzas.

7. Procedures
In ALGOL, a procedure is defined before it is called. In the
body of the procedure we can use three types of variables:

1. Local variables
2. Global variables
3. Parameters

1. The local variables will have no effect on parallelism since by
definition they cannot be used elsewhere.

2. The global variables are affected by the external environment
and must be included in the Bernstein sets for this procedure.

3. The actual variables forming the parameters are not known
until the procedure is called. However from the procedure
declaration we will know if a variable is called by ‘name’ or by 3

O|UN\OC|

o

‘value’. Those parameters that are called by ‘value’ are of3

Bernstein type W, since they cannot be assigned to and those=
that are called by ‘name’ provide data to the procedure and can
accept a result which can be considered to be of type Y. So for
a procedure S;, we can form the two Bernstein sets:

Wis, Xip, Yip, Z;5—global variables (body)

Wips Yip —parameters

3

=

=

no-oIWwapeoe)/:

Thus for each time a call is made to that procedure the W,p andD

Y;p sets are formed and added to the body variables, checkmg
that if the same variable appears again it is placed in the

Q

3

appropriate set (e.g. if a variable is in X;3 and W;p and W, lt3

should be putin Y;). Then this new Bernstein set which has beenS
formed can be used in comparison with what appears adjacent?
to the procedure call, in the same manner as described earlier.

8. Additional considerations
Robinson and Torsun (1976) have found that more than 859 /,
of ALGOL 60 program statements are assignments, procedure <

calls, simple FOR loops and IF conditionals; we have indicated 3

3
m

(')

9/L/€Z/

\‘
[Ce]

for all these areas where potential parallelism may be found. &
The next largest area found in Robinson and Torsun (1976)@

were declarations (73%,). Although there is some potential fors
parallelism here, its feasnblllty will depend on how a partlcular
machine configuration is able to allocate storage.

Other areas that should be considered are uncondmonal

('D

O

jumps (e.g. GOTO), loops which are iterated a condmonali

number (e.g. the step size or control variable may be assigned to
within the body of the loop and WHILE clauses) and multiple’®

case statements (e.g. SWITCH).

9. Implementation
Using the theory already outlined it is envisaged that it will be
feasible to add two stages to an existing multi-pass compiler to
detect potential parallelism. To this end two ALGOL 68-R
programs have been constructed, copies of which are available
from the authors.

1. Analyser

This program divides a given ALGOL-type language (Williams,
1978) into stanzas. Analyser arbitrarily limits the size of a
stanza to be a specific program construct (e.g. a loop) or a col-
lection of statements using not more than fifteen different
variables. The variables used within a stanza are classified as
belonging to the sets W, X, Y and Z depending on their usage.
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Stanza S, W; X; Y; Z;
al « bl *b2; b1, b2 al — —
a2 « al *bl; bl, b2 a2 — al
cl «al + cl; bl,b2 a2 cl al

Fig. §

Fig. 5 illustrates how these sets are formed for a stanza consist-
ing of three assignment stanzas.

We believe that a thorough analysis of programs and parallel
computers would be necessary to ensure the optimum size of a
stanza and offer the above merely as a guideline.

2. Detector

This program will take the stanzas produced by the Analyser
and carry out the tests described earlier to determine which
parallel relationship if any exists between stanzas. The present
version of the Detector program examines the relationship
between pairs of stanzas or within a loop for a parallel computer
system with private memories.

With the information from the Analyser and Detector pro-
grams it will be possible when compiling a serial program to
identify parts of program that may be run in parallel. Williams
(1978) details the programs described here and discusses pos-
sible extensions to these techniques. She also explains how some
of the tasks carried out by the Analyser and Detector can be
‘fitted’ into a multi-pass compiler.

10. Conclusion

In this paper methods of finding parallelism within ALGOL-
type programming languages have been discussed. Obviously,
we may combine the techniques for handling two structures
(e.g. a conditional in a loop or a loop in a conditional) and so
will be able to handle most ALGOL-type programming
situations. The way a program is written may greatly affect the
location of parallelism, but by concentrating our efforts on the
most frequently used programming structures it is hoped to
find a large proportion of all possible parallelism occurring in a
program.

Appendix 1 Example of Nested DO stanza
FOR il « 1 STEP 1 UNTIL 10 DO 7]
FOR i2 « 1 STEP 1 UNTIL 10 DO ]
FOR i3 « 1 STEP 1 UNTIL 10 DO L1
BEGIN L2
a[il, i2, i3] « b[il, i2, i3 + 2]; L3

b[il, i2, i3] « d;
c[il, i2,i3] « b[il + 3,i2,i3 + 3]
END 4
Bernstein Sets for the loop body
W d

X a[ ) ]’ c[ ) ]

Y of,,]

zZ 9
The whole of the loops are not totally independent as one array
(b) appears both on the righthand side and lefthand side of
expressions within the body of the loop.

Loop-L3

W d, b[il + 3,i2,i3 + 3], b[il,i2,i3 + 2]

X d[il,i2], c[il, i2], b[il, i2, i3]

Y o

z 0
Since b[il, i2, ] appears in W and X then the loop L3 is not
partially independent.

Bernstein’s sets when i3 « 1
w, d,b[il,i2, 3], b[il + 3,i2, 4]
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X, a[il, i2, 1], Bil, i2, 1], c[il, i2, 1]
0

Y,
zZ, 9

Bernstein’s sets when i3 « 2

w, d,b[il,i2, 4], b[il + 3,i2, 5]

X, alil,i2, 2], b[il, i2, 2], c[il, i2, 2]

Y, 0

z, 0
carrying out the relationship tests gives that these two itera-
tions are contemporary.

Bernstein’s sets when i3 « 3
W, d, b[il,i2, 5], b[il + 3,12, 6]
X, a[il,i2, 3], b[il, i2, 3], c[il, i2, 3]
Y, 0
again, carrying out the relationship tests gives that iteration 1
and iteration 3 are consecutive.
So for the whole of loop L3 the iterations can be carried out i/
pairs that are contemporaries, and each set of pairs must b
executed consecutively. Using the notation where CC stands

for consecutive, CT stands for contemporary and L3y is the
N jteration of L3 we can write the relationship as: 3
CC(CT(L3, L3,), CT(L33, L3,), . . ., LT(L3y, L310)) 3

g

Loop-L2 2
W d, b[il + 3,i2] §

X a[il,i2], c[il, i2] 3

Y b[il,i2] e

4 2

Since all arrays indexed by i2 only appear once loop L2 is

/IO

partially independent (NB b[il, , ] is a different array t
blil + 3,,]).
ie. CT(L2, L2,,..

[woo

L L210)

Loop-L1
W d, blil + 3]
X d[il], c[il]
Y b[il]
zZ 0

Not partially independent because b[ ] appears in both W an
Y.

q 9€69.9/99/1/€2/3101E/|u

Bernstein’s sets when il « 1
W, d,b[4]
X, a[l], c[1]
Y, b[1]
Z, 0

20z Indy 60 uo 3senb A

Bernstein’s sets when il « 2

W, d, b[5]

X, a[2], c[2]

Y, b[2]

zZ, 0
carrying out the relationship tests gives that these two iterations
are contemporary.

Bernstein’s sets when il « 3

W, d,b[5]
Xy al3], c[3]
Yy 3]
A

carrying out the relationship tests gives that the first and third
iterations of loop L1 are contemporary.

[4)



Bernstein’s sets with il « 4 Wi eb

W, d,b[6] Wyr ab
X, a[4], c[4] Xor f
Y, b[4] Yor y
Z, 9 Z,r 0
carrying out the relationship tests gives that the first and Wi ab
fourth iterations of loop L1 are consecutive. Xop )
So the relationship is Yor 9
CC(CT(L,, L1,, L13), CT(Ll,, L1s, L1) Zr 0
CT(L1,, L1, L1,), L1,,) 1. S,r and S, (using private memories)
So assuming an availability of 60 processing units, the 1000 (Xyr v Yir VZip) 0 Wy
iterations can be executed in the time taken to execute 20 (guduc)n(ed) =290

iterations of the loop sequentially. .".not inherently consecutive.

Appendix 2 Example of two adjacent IF stanzas  (a) S,; and S,

IF @ = b THEN ] (X,r U Y;r UZ;p) o (War U Yap)
BEGIN (guduc)nab)uy) =90
¢« d + 2*a; .".consecutive.

g<c (Xir V Yi7 U Zi1) 0 (Xor Y Yor U Zsy) o
END S guduvn(fuyud) =190 g
ELSE 1 .".prerequisite. 5
BEGIN (Wir U Yir U Wio) 0 (Xpr U Yor U Zyg) §
c—d+a+b; daouvdu@n)n(fuyuvud) =290 o
e—f—c .".contemporary S
END - i.e. S;r and S, are contemporary. >
IF ¢ = b THEN 7 8
BEGIN (b) Sy and Syf 5
featy; (X171 V Y7 UZip) 0 (Wyp U Yyp) §
y«b s guoduc)n(adb) ud =90 g
END 2 .".conservative &
ELSE (Xir U Yir U Zi1) 0 (Xop U Yo U Zyy) é
BEGIN guduv)n((»ewdud =90 g
y «a— b; .".prerequisite 3
e—a+b (Wir v Yir U Wip) 0 (Xop U Yop U Z5yp) %
END - (da)vdv@d) n((»auwdud=0 =
.".contemporary 2
Bernstein sets for S, and S, i.e. S;r and S,y are contemporary. g
Wic ab B
Wir d, a 2. Syrand S, =
Xir g (X1p O Yir U Zyp) 0 Wy &
Y;r 0 (euduc)nieb) #0 3
Zy ¢ ..S;r and S, are inherently consecutive. &
;i//l F g’, a b, f So the possible relationships are g
Y;: 0 CT(S,1, S;) or CC(Sif, S;) %
FoC depending whether S, ¢ is true or false. 5
>
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