The size of arrays for a prime implicant generating

algorithm
Y. lgarashi*

Computer Science Division, Department of Mathematics, The City University, London

EC1V 4PB

A number of interesting combinatorial problems have arisen by investigating a computer implementation
of a prime implicant generator called the star-algorithm. These problems have been motivated by the
necessity of estimating suitable sizes of arrays to store intermediate results when the algorithm is
written in a computer language such as ALGOL 60. B,(r) denotes the set of r-cubes of the n#-variable
Boolean algebra and (%) denotes the star-product. P(Bx(r)) = 4 ({b | be By(r)anda ® b # &}), where
3 () is the number of elements of set S, a is an arbitrary element of B.(r), and @ %) b # & means that
the star-product of a and b is a cube. The main combinatorial result in this paper is that for all 0 < ¢,
ki(n 334" < max{P(Bn(r)) | 0 < r < n} < k(334 + €)". where k1 and k- are constants independent

of n.
(Received June 1978)

1. Preliminary
In the main we employ definitions and notations used in
standard texts of switching theory (Harrison, 1965; Miller,
1965). If d is a real number, |d| denotes the largest integer &
such that k < d. The i-th Boolean variable is normally denoted
by x; or x}. The complement of x; is denoted by X; or x?, and is
occasionally called the negation of x; A literal means a
variable or negated variable. The universal upper bound and
universal lower bound of the Boolean algebra are denoted by I
and 0 respectively. For convenience we shall often identify a
Boolean formula with the Boolean function expressed as the
formula. If S'is a set, #(S) denotes the number of elements of
S.

Lete;, (1<j<n—r)beOor 1. Then xj!.. xj-ris called an
r-cube (or r-implicant) over n variables, where

iy _ {fi, ife;, =0
Y x; ife;, =1

1< ij<nandi # i ifs # t. We shall occasionally use the
following notation to express a cube: A cube of the n-variable
Boolean algebra is expressed as an element of S, = {z, . . .z,|
foreach 1< i< nz;e {0,1,2}} U {0}. The interpretation of
0, 1 or 2 at the i-th position of z = z, . .. z,is X;, x; or X; Vv X,
respectively. For convenience we shall often identify a cube
with its corresponding expression in S,.

forj=1,...,n—r,

Definition 1

Relation € and < on n-variable Boolean formulae are defined
as follows: ) < I.a < bmeansa < bora = b, where g and b
are in {0, I'}. For a pair of n-variable Boolean formulae fand g,
f < g if and only if for all (a,, ..., a,) € {0, I}" f(ay, . . .,
a,) <ga,,...,a,).f < gmeansthat f < g and for at least one
@,...,a,}e{0,1}"f(ay,...,a,) <ga,...,a,, where
q(ay, . . ., a,) is the evaluation of Boolean formula g when x; is
settobe a; (1 < i< n).

Definition 2

A cube p is called a prime implicant of an n-variable Boolean
formula E if and only if p < E and there does not exist a cube w
such that p < w € E.

Definition 3

Let P be a partially ordered set. A subset R of P is called an
antichain of P if and only if for any pair of @ and b in R(a # b)
there is no relation between a and b. An antichain Q of P is
called a maximum sized antichain if and only if for any anti-
chain B of P #(B) < #(Q).

O
Kleitman, Edelberg and Lubell (1971) have shown that for an§
partially ordered set there exists a maximum sized antichaig
which is invariant under any automorphism on the partiall
ordered set. From this result Chandra and Markowsky (197
have derived the next lemma.

Lemma 1
The set of [(n + 1)/3]-cubes is a maximum sized antichain

e%sduq wou

uRpeo

;‘s a corollary of the above lemma, an upper boun

jol|

" 21@n+ D3] for the maximum number of prim
([(2n + 1)/3]) h " primg
implicants of n-variable Boolean formulae is derived (Chandrg
and Markowsky, 1976). This is the best upper bound know@
for it. The best lower bound known for the maximum numbeg
of prime implicants of n-variable Boolean formulae is
n!f(n/31N(n + DB3JER + 2)/3]) + g, |(n + 2)/3] — 2) £
g(n, [(n + 1)/3] — 2), where g(n, r) is evaluated by the following
recursive procedure: g(n, r) = 0 forr < 0, g(n, 0) = 1 an
g, r) = n!/(Ir/2)'|(r + D/2]Yn —r)!) + g(n, [(r + 1)/2] — 2§
for 1 < r (Igarashi, 1977). This is a marginal improvement o
Dunham and Fridshal’s lower bound (Dunham and Fridshalg
1959), and is conjectured to be optimal (Igarashi, 1977).

2. The star-algorithm
There are various algorithms for generating all the prim
implicants of a given Boolean formula (for example Reuterg
1976). Our interests in this paper are not the algorithms them--
selves. We are interested in combinatorial problems for decid=
ing the size of arrays to store intermediate data. The idea of the.
star-algorithm is primarily based on the work of Roth (1958)33
and its full description is given in Miller (1965). If a Boolean~
function is given as a disjunction of minterms, the process of
the star-algorithm is essentially the same as the Quine-
McCluskey algorithm. However, in many cases, Boolean
functions are expressed as disjunctions of cubes which are not
necessarily minterms. In these cases the star-algorithm will be
more desirable than the Quine-McCluskey algorithm.

The following definition of the star-algorithm is from Miller
(1965).

(o]
(&)
N
(=2
<
«Q
c
&

Definition 4

Let C, = a,...a,and C; = b, . .. b, be a pair of cubes
over n variables. The star-product (denoted by ®) of C, and
C, is defined as follows:

1. For a pair of co-ordinate values, the star-product is defined

*Now at Department of Computer Science, University of Gunma, Kiryu-city, Gunma-prefecture, Japan.

The Computer Journal Volume 23 Number 1



in the next table, where y is a new symbol not in {0, 1, 2}.

® |01 2

0 0y 0
1 y 1 1
2 01 2

2. If for more than one i, a; ® b; = y,then C, ® C, = &.If at
most one y appears in the products of co-ordinate values,
then

C.®C,=ma ®by)...ma,® b,
where m is a mapping from {0, 1, 2, y} to {0, 1, 2} defined as
m(0) = 0, m(1) = 1 and m(2) = m(y) = 2.
Given an n-variable Boolean function f as a disjunction of
cubes, the star-algorithm will produce the set of prime impli-

cants of f. Suppose that S, is the given set of cubes for f. Then
the star-algorithm is described as follows:

1. iis set to be 1.

2. S, is set to be S; ® S, where for sets 4 and B of cubes
A®B={c®d|ced,deBandc®d # &}.

3. S;issetto be {C| Ce S; and there does not exist an element
D in S; such that C < D}.

4. iissettobei + 1.
5. If i is not greater than n, then go to (2).

6. Stop. (S, is the set of prime implicants of the given Boolean
function.)

3. A computer program for the star-algorithm

In this section we give a complete program in ALGOL 60 for
the star-algorithm to show how combinatorial problems arise.
For the purpose of this paper the program is a straightforward
translation from the star-algorithm rather than a sophisticated
program for it. A cube is expressed in the program as an integer
vector over {0, 1, 2}, i.e. each component of a cube is stored in
an entry of an integer array. Since only a 2-bit memory is
sufficient to store 0, 1 or 2, this information representation is
obviously inefficient from a memory space viewpoint. However,
our purpose here is to describe clearly a straightforward
program for the star-algorithm. We therefore do not use the
well known packing technique of small integers.

The program consists of the initial part, three procedures and
the main program. The three procedures are named CUBE,
REDUCE and STAR respectively. Input data is given in the
following form:

m, n,
mlam2 ¢ amn
where n is the number of variables, m is the number of cubes of

the given Boolean formula, and the disjunction of a,,
...,and a,, ... a,,is the given Boolean formula.

allalz “ e al,,, (121022 “ e azn, « sy

R

Example 1

Letf(x,, X3, X3, X4) = X1X3X3 V X X3X4 V X1X3X4 V X1X3X4 V
X,X3X4 V X;X3X,. Then the input for f to the program is

6, 4,

1102, 1021, 0121, 0211, 2110, 1210

!
THE FOLLOWING PROGRAM IS FOR THE STAR-

ALGORITHM TO PRODUCE ALL THE PRIME
IMPLICANTS OF THE GIVEN BOOLEAN FORMULA.

INITIAL PART OF THE PROGRAM: SA, WHICH
WILL BE INITIALLY READ FROM THE INPUT
DATA, DETERMINES THE ACTUAL SIZE OF ARRAY

74

A. NVAR IS THE NUMBER OF VARIABLES. IN THIS
PART THE VALUE OF SIZE WILL BE COMPUTED.
IT WILL BE NVAR!/(|2*NVAR + 1)/3]!|(NVAR +
1D/3]H*21[(2*NVAR + 1)/3] WHICH IS AN UPPER
BOUND OF THE MAXIMUM NUMBER OF PRIME
IMPLICANTS GIVEN BY CHANDRA AND
MARKOWSKY. THE SIZE OF ARRAYS A AND B
WILL BE [1:2*SIZE, 1:NVAR] IN ORDER TO STORE
INTERMEDIATE RESULTS.

BEGIN INTEGER I, J, K, SIZE, NVAR, SA, SB, IND;

READ (SA, NVAR);
I:= K :=1;IND := (NVAR + 1)/3;
FOR J := 0 UNTIL IND-1 DO
BEGIN I := I*(IND-J);
K := K*(NVAR-J)
END;
SIZE := K/I*1((2*NVAR + 1)/3));
BEGIN INTEGER ARRAY A, B [1:2*SIZE, 1:NVAR];

PROCEDURE COMB IS TO COMBINE TWO LISTS OF g
CUBES. SA AND SB ARE POINTERS TO INDICATE =
THE NUMBERS OF MEANINGFUL CUBES STORED g
IN ARRAY A AND ARRAY B RESPECTIVELY. IF &
COMB (A, B, SA, SB) IS CALLED, THE LIST IN B WILL &
BE MERGED INTO A. SOME CUBES IN A MAY BEi
DUPLICATED AFTER EXECUTION OF THIS PRO-Z
CEDURE. ANY DUPLICATED ELEMENT WILL BE £
ELIMINATED BY CALLING PROCEDURE REDUCE.

PROCEDURE COMB (A, B, SA, SB);
VALUE B;
BEGIN FOR I := 1 UNTIL SB DO
FOR J := 1 UNTIL NVAR DO
A[SA + 1,J] := B[1,J];
SA :=SA + SB;SB:=0
END;

PROCEDURE REDUCE IS TO DERIVE AN ANTI-
CHAIN FROM THE GIVEN LIST SUCH THAT THE
DISJUNCTION OF CUBES IN THE ANTICHAIN 5
EXPRESSES THE SAME BOOLEAN FUNCTION 5
EXPRESSED AS THE DISJUNCTION OF CUBES OF g
THE GIVEN LIST. THAT IS, REDUNDANT CUBES ©
ARE ELIMINATED BY CALLING REDUCE.

Z/31Pnue/|ulwos/wod dno olwspese,

PROCEDURE REDUCE (A, SA, NVAR);
BEGIN INTEGER IND2, IND2; INTEGER ARRAY
RI[1:SA];
FOR I := 1 UNTIL SA-1 DO
FOR J :=1 + 1 UNTIL SA DO
BEGIN INDI := IND2 := 0;
FOR K := 1 UNTIL NVAR DO
IF A[1, K] = A[J, K] THEN
BEGIN IND2 := INDI + 1;
IND2 := IND2 + 1

20z 1dy 01 Uo 3s8nb Aq

END
ELSE IF A[I, K] = 2 THEN INDI := INDI1 +1
ELSEIF A[J,K] = 2THENIND2 := IND2 + 1;
IF IND1 = NVAR THEN RI[J] := 1
ELSE IF IND2 = NVAR THEN RI[I] := 1
END;
I:=1;
FOR K := 1 UNTIL SA DO
IF RI[K] = 0 THEN BEGIN FOR J := 1 UNTIL
NVAR DO
All J]1=A[K, J];
I:=1+1

The Computer Journal Volume 23 Number 1



END;
SA :=I-1
END;
!

PROCEDURE STAR (A, B, SA, SB) IS TO PRODUCE
THE STAR-PRODUCTS OF CUBES IN ARRAY A,
AND ITS RESULT WILL BE STORED IN ARRAY B.
WHENEVER SB BECOMES GREATER THAN SIZE,
PROCEDURE REDUCE IS CALLED TO ELIMINATE
REDUNDANT ELEMENTS.

PROCEDURE STAR (A, B, SA, SB):
VALUE A, SA:
BEGIN INTEGER ARRAY Z[1:NVAR];
SB := 0;
FOR I := 1 UNTIL SA-1 DO
BEGIN
FORJ :=1 + 1 UNTIL SA DO
BEGIN IND := 0;
FOR K := 1 UNTIL NVAR DO
IF A[I, K] = A[J, KJORA[J,K] =2
THEN Z[K] := A[], K]
ELSE IF A[I, K] = 2 THEN Z[K] := A[J, K]
ELSE
BEGIN Z[K] := 2;
IND :=IND + 1
END;
IF IND = 1 THEN
BEGIN SB := SB + 1;
FOR K := 1 UNTIL NVAR DO
B[SB, K] := Z[K]
END
END;
IF SB > SIZE THEN REDUCE (B, SB)
END
END;

!
THE FOLLOWING IS THE MAIN PART OF THE
PROGRAM. THE GIVEN CUBES ARE READ INTO
ARRAY A. PROCEDURE STAR IS CALLED NVAR
TIMES, AND THE LIST OF PRIME IMPLICANTS OF
THE GIVEN BOOLEAN FORMULA IS PRINTED OUT.

b

FOR I := 1 UNTIL SA DO
FOR J := 1 UNTIL NVAR DO
READ (A[L, 1]);
FOR I := 1 UNTIL NVAR DO
BEGIN STAR (A, B, SA, SB);
COMB (A, B, SA, SB);
REDUCE (A, SA)

END;
FORI := 1 UNTIL SA DO
BEGIN NEWLINE;
FOR K := 1 UNTIL NVAR DO
PRINT (A[L, KJ)
END
END
END

Our PROCEDURE STAR does not produce the star-product
of cubes a and b such that a ®) b < aor a ® b <b. This is the
reason why COMB is called after STAR in the main program.
This situation is formally described as follows:

A®A=A4 v AS,
where AS = {a® b|aecAd,beAd,a<a®bandb < a® b}.
When STAR(4, B, SA, SB) is executed, 4 does not change and
AS is stored in B. Then 4 and AS are combined by calling
COMB(4, B, SA4, SB).

The Computer Journal Volume 23 Number 1

4. Consideration of SIZE ’
In INITIAL PART of the program, SIZE is set to be

(l n _:l_ 13 J) 212n+1)/3]1 Ag described in Section 1, this value
is the maximum size of antichains of S,. Even if we frequently
call REDUCE, SIZE positions are required to store inter-
mediate results for some input data. For example, if all the n-
variable minterms are supplied as input data, then all the
[(n + 1)/3}-cubes are produced at the [(n + 1)/3] th loop in
MAIN PART of the program. Since the number of [(n + 1)/3}-

b -variables i " 2L2n+1)/3] SI7ZE is the
cubes overnvanab €S 1S ([(Zn + 1)/31)

necessary array size to store intermediate results for the star-
algorithm.

The size of array A and B in our program is designed to be
2*SIZE. Therefore at least a half of the array space is prepared
for temporary storage of redundant cubes which will be
eliminated later by calling REDUCE. In PROCEDURE
STAR of the program, AS = {a® b|laed,beB,a<a®b
and b < a® b} is temporarily stored in B. Whenever the actual
size of B (i.e. the value of SB) exceeds SIZE, REDUCE is calg
led to eliminate redundant cubes in B. Obviously 2*SIZE ig
sufficiently large as the size of B for our program. It is interests
ing to ask whether it is possible to reduce the size of B withouf
changing the remaining program. With this motivation some’
combinatorial problems will be formulated, and these probi
lems will be discussed in this section. 5

eoe//:sdy

Definition 5
IfC< S,andae C,thenP(C,a) = #{b|becCanda® b #
&}and Q(C) = #{{i,j}|ieC,jeCandi®j # &}. PMX =
max{P(C, a) | C < S,, C is an antichain with relation <, an¢
ae C}. OMX(n) = max{Q(C) | C < S, and C is an antichaiff
with relation <}. S

B,(r) denotes the set of r-cubes over n variables. For any paig
of aand b in B,(r) P(B,(r),a) = P(B,(r), b). P(B,(r)) denotes.
P(B,(r), a), where a is an arbitrary element of B,(r). Fronx
Definition 5 a necessary size of array B for our program is at
most SIZE + PMX(n). Therefore if PM X(n) is considerabl§,
smaller than SIZE, and if its value can be easily evaluated, thef
SIZE + PMX(n) will be a better size for array B. This modifiy
cation of the size of B does not need any change of the remains;
ing part of the program, and does not increase the computing
time of it except additional computing time for evaluating
PM X(n). The size of array A can also be reduced with a mino¥
change of the program, but the modified program will ca@
REDUCE more frequently and will require more computing.
time. In general QM X(n) is much larger than 2*SIZE. If cor&
memory resource restriction is not a serious problem compared
with computing time, the size of array B may be changed tag
QM X(n) to reduce computing time. That is, if the size of arraﬁ
B is QMX(n), then the statement IF SB>SIZE THENS
REDUCE(B, SB) in PROCEDURE STAR can be removed
and then REDUCE(B, SB) is added at the end of the scope of
STAR. For this modified STAR, REDUCE is called only once
during executing PROCEDURE STAR. However, changing
the size of B to QM X(n) is not practical unless # is small.

P(B,(r) = ZO () 77) + - ’)Z (€}
()
Proof

Without loss of generality we may choose @ = 1"7" 2" to

5



evaluate P(B,(r)) = P(B,(r), a), where w* means the con-
catenation of k w’s. Then for be B,(r)a® b # & if and only if
b contains at most one 0 in the first n — r positions. The num-
ber of elements b in B,(r) such that b does not contain any 0 in

the first n — r positions is ((r) (n r_ l) ) The number of
Z : i
i=0

elements b in B,(r) such that b contains exactly one 0 in the

first n — r positionsis (n — r) ( z ((:) (" —ri - 1))
=0

Hence the lemma holds.
Corollary 1

P(B,(r)) can also be expressed as Z

27 )G)) -
o= (X (757 ()2)

i=0

Proof
The number of elements b in B,(r) such that b does not contain
any 0 in the first » — r positions can be expressed as

Z <(" 7 r) ( :)2‘) The number of elements b in B,(r) such
i=o

that b contains exactly one O in the first n — r positions is

n-r ( z (" - : - 1) <:) 2")) . Hence the corollary

i=0
holds. O

Lemma 3
Forany0< r< n Q(B,(r)) = (P(B,(r)) + 1) (’:) gn=r-1

Proof
Since #(B,(r)) = (’r') 2"=" and P(B,(r)) = P(B,(r), a) for any a

n
B,(r), Q(B,(r)) = (P(B,(r)# (B,(r)) — #(B,(r)))/2 + #(B,(r)).

= (PP + 1) ('j) 2o, 0

Hall’s Theorem can be stated as a property on bipartite graphs
as follows (for example, see Bondy and Murty, 1976). We
assume that a graph G is bipartite. That is, G can be partitioned
into two sets, X, and X,, such that no two vertices in the same
set are adjacent. Then there exists a matching of size #(X,) if
and only if for all subsets N = X, the number of vertices in X,
jointed directly to the vertices of N is at least 4 (N).

The next theorem can be derived as a corollary of Hall’s
Theorem.

Theorem 1

Let P be a partially ordered set, and let R be a maximum sized

antichain of P. Then for any antichain Q of P there exists a

mapping ffrom Q to R satisfying the following two conditions:

1. For any element @ in Q f(@) < a or a < f(a), and

2. for any palr of elements @ and b in Q (@ # b) f(a) # f(b),
where < is the relation of P.

Proof
We draw a bipartite graph G associated with R and Q as

76

follows: Let the two antichains R and Q be combined. If an
element v is in both R and Q, then two vertices named v are in
the join of R and Q (one is in group R and the other is in group
Q). Vertices a and b are jointed if and only if a € R (or a € Q),
b e Q (or b € R) and there is a relation between a and b (i.e.
a < borb < a). Let G be a graph constructed in this way. Then
G is bipartite. That is, G can be partitioned into two groups R
and Q, and no two vertices in the same group are adjacent.
Suppose that there does not exist a mapping satisfying the
conditions in the theorem (i.e. we suppose that there is no
matching of size #(Q) on G). Then from Hall’s Theorem, for
some N  Q #(M) < #(N), where M is the set of elements b
in R such that b is jointed to an element of N. (R — M) U N is
an antichain and #(R) < #((R — M) u N). Therefore R can-
not be a maximum sized antichain. O

Corollary 2

Let A4 be an antichain of cubes with relation < over n variables.
If for any element @ in A there exists an |[(n + 1)/3J-cube b such
that @ < b, then P(4, ¢) < P(B,(I(n + 1)/3])), where c is an
arbitrary element of A.

Proof
From Lemma 1 B ([(n + 1)/3]) is a maximum sized antlcham
of S,. Therefore there is a mapping f from 4 to B,(|(n + 1)/3])3

9pEOJUMO(]

o
=

satlsfymg the conditions described in Theorem 1. For any pair>
of aand b (@ # b)in 4 f(a) # f(b), a < f(@) and b < f(b)U

Therefore, if a @ b # &, then f(a) ® f(b) # &. Hence for an<
arbitrary c in 4 P(4, ¢) < P(B,(I(n + 1)/3])).

The next theorem is straightforward from the definitions ofs
PM X(n) and Corollary 2.

Theorem 2
max{P,(r)| 0< n}
PMX(n).

A function g(n) is said to be O(f(n)) if and only if there exists a5

r< n} = max{P,(r)||(n + D3I r<

N
UJOO/LUOO'an'i)!LU

[___]o

=

e/

)

constant k such that g(n) < kf(n) for all n but some finite set of:

non-negative integers. g(n) ~ f(n) 1f and only if there exists
constants k, and k, such that g(n) < k,f(n) and f(n) < kzg(n)
for all n but some finite set of non-negative mtegers For a

(')

N

~

r\(n — S

fixed n, P(B,(r)) =Z<(z)( r )) ”"")z((i) 2
53 iz o o

n-= : - takes its maximum value when r = |[(n — 1)/21'5

The proof of this fact is rather complicated. It is strai ghtforward®

o
=}

o

from a simple combinatorial argument that Z ( (r) (n - ') )A
l r >
i=0 g

=

N
takes its maximum value when r = |n/2], and that (n — r) Z§

i—o
((:) (" - : B 1)) takes its maximum value when r =
|(n — 1)/2). Hence, P(B,(n)) takes its maximum value when

= |n/2] or r = [(n — 1)/2]. This weaker fact is enough to
prove the next theorem.

Theorem 3

For all 0 < ¢, k,(n3%*)" < max{P(B,(r)) | 0 < r < n} <
k,(n? 33M*) < k4(3%* + ¢)", where k,, k, and k; are constants
independent of n.

Proof
Since O(P(B,(|n/2])) ~ O(P(B,(|n — 1)/2])),from the argument
described above this theorem

The Computer Journal Volume 23 Number 1



max{P(B,(r)) | 0 < r < n} ~ P(B,(|n/2))

w3 (= DY = DN2] = )Y )
= nf3(n ~ DY) = D — D)
le (@~ Y]~ D2 = DY) @
Since for 0 < i < |n/4], (|n/2] — i — |(n — 4i)/2]) = i and
(n—l)—(n—4i)—3z,
S (@ = DY) - D) — DY)
~£0' (@ =i = 0] = i = k23 @

Fig. 1(a) may be helpful for the reader to understand relation
(3) above. Since for [n/4] + 1 < i < |nf2], i — i — |n/2))
= |n/2] —iand (n — i) — 2i — |n/2]) = n + |n/2] — 3,

3 = G2 = 2] = )
(n/2] 2i — (n/2)

2 ((U ((n =i = B — k)32~ @

i=|nf4) +1 k=
Fig. 1(b) may be helpful for the reader to understand relation
(4) above. From (1)-(4) above, n 3*"* is O(max{P(B,(r)) | 0
< r< n}) and max{P(B,(r)) | 0 < r <n})is O(n* 3°™*). Hence,
the theorem holds.

5. Conclusions and open problems

The estimation of the value of PM X(n) seems to be difficult. A
trivial upper bound of PMX(n) is SIZE which is O(3"/\/n)
(Chandra and Markowsky, 1976). For almost all n
P(B,(l(n — 1)/2])) is much smaller than SIZE. For example,
P(B, (7)) = 502,379 whereas SIZE for 15 variables is 3,075,075.
In general, max{P(B,(r)) | 0 < r < n} is not equal to PM X(n).
For example, P(B¢(2)) = 141 whereas P(B¢(3) u {002222}
— {000222, 001222}, 002222) = 150. However, for most cases
SIZE + P(B,(|(n — 1)/2))) is large enough for the size of array
B in our program. It is a preferable modification from the
memory space viewpoint to change the size of array B to be
SIZE + P(B,(|(n — 1)/2])), and to insert an additional
REDUCE in order to call REDUCE whenever the actual size

References
Bonpy, J. A. and MurTy, U. S. R. (1976).
CHANDRA, A. K. and Markowsky, G. (1976).
DunHAM, B. and FrIDSHAL, R. (1959).
HARRISON, M. A. (1965).
IGArAsHI, Y. (1977).

Studies, University of Leeds, Technical Report No. 98.
KLEITMAN, D. J., EDERBERG, M. and LuUBELL, D. (1971).
MILLER, R. E. (1965).
REUTER, B. (1976).
RorH, J. P. (1958).
VALIANT, L. G. (1978).

Switching Theory, Vol. 1, John Wiley.

Personal communication.

Graph Theory with Applications, Macmillan Press.

On the number of prime implicants, IBM Research Report, RC 6108.
The problem of simplifying logical expressions, J. Symbolic Logic, Vol. 24, p. 17.
Introduction to Switching and Automata Theory, McGraw-Hill.

Analysis of Dunham and Fridshal’s formulas consisting of large numbers of prime implicants, Centre for Comput@

X J

3i n-i

(a) O0siz|[n/4}

>0

3n/2)-3i n-i
(b) |n/4) +1=i<n/2|

Fig. 1 Illustration of relations (3) and (4)

of-array B (i.e. SB) exceeds this modified size. This modification
does not cause a big increase in computing time since the added
REDUCE is seldom called.

In general, flexible arrays or extensible arrays are less efficie
from the computing time viewpoint, and for many combg
natorial problems both computing time and memory space arg
serious factors restricting input size. Therefore, even if we writg
a program in a more powerful language such as ALGOL 68, ii
may be preferable to use fixed sized arrays whenever the array
size can be properly estimated. There are, of course, a numb
of ways to reduce computing time for our program. Feai'
example, if we employ suitable data structure of mtermediat&
results stored in arrays, it is possible to eliminate a consnderablg
amount of unnecessary computation in PROCEDURE
REDUCE and PROCEDURE STAR. Since these techniqué
are well known, we do not discuss them in this paper. We mvntg
the reader to consider the following open problems:

1. Find a better lower bound or upper bound of PM X(n).
2. Find a nontrivial lower bound or upper bound of QM X(n

J,JE/|UFDJOO/LUOO'

Acknowledgements
The author would like to thank Leslie G. Valiant for suggestmg
the proof of Theorem 1 (Valiant, 1978), William F. McColl for
his comments, and Jean V. Scott for pointing out errors in af
earlier draft of this paper. The program in Section 3 wag
tested on the DEC System 10 at Leeds University.

| uosenb Aq zG69/

Maximal sized antichains in partial orders, Discrete Mathematics, Vol. 1, p. 4'15

¥20

On the generation of prime implicants, Computer Science Dept., Cornell University, Technical Report TR 76-266. =
Algebraic topological methods for synthesis of switching systems, I, Transactions of AMS, Vol. 88, p. 301.

The Computer Journal Volume 23 Number 1



