The use of character sets and character mappings in

Icon*
R. E. Griswold

Department of Computer Science, The University of Arizona, Tucson, Arizona 85721, USA

This paper describes the properties and use of character sets and character mappings in the Icon
programming language. Examples of programming techniques based on these features are given to
illustrate paradigms for solving a variety of nonnumerical problems. Such solutions are charac-
terised by efficiency and compact data representations.

(Received April 1979)

SNOBOLA4 (Griswold, Poage and Polonsky, 1971) has an
operation for mapping strings according to correspondences
between sets of characters and it has pattern matching opera-
tions that deal implicitly with sets of characters. SNOBOLA4,
however, has no character set type per se, although typical
implementations of SNOBOL4 support character sets inter-
nally (Griswold, 1972; Gimpel, 1974). The emergence of
character sets in the Icon programming language (Griswold,
Hansonand Korb, 1979) represents the linguistic elevation of an
implementation mechanism to full status as a source language
feature. The consequences of this elevation have exceeded the
mechanisms for which they were originally developed, however.

The character set and character mapping facilities in Icon,
used in conjunction with its string processing facilities, support
a number of unusual programming techniques that can be used
to advantage in a variety of non-numerical programming
problems. °

This paper describes the features of Icon that are important to
these techniques and characterises their usage. Examples are
given to illustrate the major paradigms.

1. An overview of Icon
Icon is a programming language that is intended primarily for
non-numerical applications with an emphasis on string
processing. While Icon resembles SNOBOL4 in the level of its
language features and in its support for ease of programming, it
has a modern syntax and traditional control structures. An
example is
if el then e2 else e3

where el, €2, and e3 are arbitrary expressions. Control struc-
tures such as if-then-else and while-do are driven by conditional
expressions that signal success or failure as in SNOBOL4.
Relational expressions are typical:

ifx<=ythenz := xelsez :=y

As a result of executing this construction, z is assigned the
value of x or the value of y depending on whether or not x is
less than or equal to y.

One iterative control structure is

every el do e2

where el is a generator that produces a sequence of values. One
commonly used generator is

itojbyk
which generates the integer values from i to j in increments of k.

This generator, used in the every-do control structure, produces
the effect of the familiar for statement of ALGOL:

every n := i to j by k do e2

For other examples of generators, see Griswold, Hanson and
Korb (1979).
Icon has a large repertoire of string operations. Some

representative operations are:

size (s) number of characters in s
sl]]s2 concatenation of sl and s2
repl (s, i) concatenation of i copies of s

s[i] ith character of s
substr(s,i,j) substring of s starting at i of length j

String-valued keywords provide some useful constants:

&lcase string of lower case letters
&ucase string of upper case letters

An Icon program is composed of a sequence of procedures
An example of a procedure is

procedure max (i,)
if i > j then return i else return j
end

The return expression returns the value of the procedure call, a@
indicated.
Procedures may have local identifiers. Local identifiers areg
ordinarily dynamic (automatic) and exist only during am8
invocation of the procedure. Local identifiers may be declare
to be static, however, in which case they survive from ones
invocation of the procedure to the next. Procedures may alsés
have an initial clause that specifies expressions to be executed’
on the first invocation of the proccdure Uses of these feature%
of procedures are illustrated in subsequent examples.

olwepe:m//:sdnq wouy papeowv\oq

0o'd

¢8¢/L0L/

2. Character sets’
There are a variety of character sets in use on different kinds oﬁ
computers. They differ in size, in the relationship between the
internal representations of characters for control functions ang
external graphics, and (hence) in collating sequence. The mos§
commonly used character sets are ASCII (American Nationab
Standards Institute, 1977), EBCDIC (IBM Corporation, 197633
and various forms of BCD (Control Cata Corporatlon 1971)>
Internally, a character is simply an integer in the range from &
to one less than the size of the character set. Thus in ASCIID
there are 128 characters with internal representations from 0 te*
127 (decimal), inclusive.

Most of the programming techniques described in this paper
depend on the use of characters within a program, rather than
their input or output. Where graphic representations are
important, upper and lower case letters are useful, but not
essential. Any of the common collating sequences suffice. The
size of the character set is significant, however, since in a
number of applications individual characters are used to
represent or label other objects.

The internal character set of Icon has 256 members. This
character set is independent of the size of the character set for
the host computer on which Icon runs. The internal character
set and the host character set are interfaced only by input and
output routines. Although its character set has 256 members,

*This work was supported by the National Science Foundation under Grants MCS75-01307 and MCS79-03890.

The Computer Journal Volume 23 Number 2

107

Icon is ASCII based and the first 128 characters have ASCII
interpretations. The usefulness of the remaining characters is
illustrated in subsequent examples. It is assumed for ease of
presentation that both upper and lower case letters are avail-
able on the host machine. This assumption is not essential,
however, since Icon provides escape conventions for the literal
representation of any internal character, regardless of input
limitations that may be imposed by the host computer
(Griswold and Hanson, 1979).

Character sets in Icon, called csets for short, may have from
0 to 256 members. The value of the keyword &cset is a cset
containing all 256 characters.

Csets are constructed from strings using the built-in function
cset(s), which produces a cset consisting of the characters in the
string s. While a string may contain duplicate characters, a cset
cannot, of course. Similarly, the order of characters in s is
irrelevant to the resulting cset. Thus

cset (‘armada’)

cset (‘ramada’)

cset (‘drama’)

cset (‘dram’)
all produce equivalent csets.

Aside from type conversions, there are four built-in operations
defined on csets:

~c complement with respect to &cset
¢ ++ ¢, union

¢ * e, intersection

¢ —— ¢y difference

The creation of a cset from a string may be considered to be
type conversion. Conversely, a cset may be converted to a
string using the built-in function string(c). In this operation, the
resulting string is alphabetised, that is, the characters of ¢ are
placed in the string according to their relative position in the
collating sequence. For example,
alpha := string (&cset)

assigns to alpha a string consisting of all the available characters
in order of their collating sequence. This string has a number of
computational uses and is referred to from place to place
throughout this paper.

As a consequence of the properties of these conversions, the
result of

s, := string (cset(s,))
is a string s, that contains every distinct character of s,
arranged in alphabetical order. This transformation can be
used to advantage, as is described in later sections.

Icon also supports implicit type conversions, coercing argu-
ments to expected type as the context demands. For example,
if ¢; and ¢, are csets, ¢, || ¢, produces a string that is the
concatenation of the results of converting ¢, and ¢, to strings.

3. Character mappings

Icon has a built-in function for mapping the characters in a
string, map (s, S,, 53). This function produces a result in which
every character of s, that appears in s, is replaced by the cor-
responding character in s5. For example, the result of

map (‘retroactive’, ‘aeiou’, ‘----- ")
is ‘r-tr- -ct-v-’. Different characters can also be mapped dif-
ferently. The result of
map (‘retroactive’, ‘aeiou’, ‘AEIOU”)
is ‘rEtrOActIVE’.

3.1 Properties of character mappings

The description of the map function given above is superficial.
In order to use the full capabilities of this function, a more
precise description is necessary. In the discussion that follows,
the form of the operation is

108

3. Asillustrated by

54 := map (sy, 3, 53)
1. The length of s, is the same as the length of s,, regardless of
the values of s, and s,. In Icon terms, this is stated as

size (s,) = size (s,)
To remain in the domain of Icon as much as possible, this
terminology is used subsequently.

2. The relative order of characters of s, and s is significant,

since it establishes the correspondence used in the mapping.
Thus the two expressions

map (s,, ‘aeiou’, ‘AEIUO’)

map (s,, ‘uoiea’, ‘UOIEA’)
produce the same result regardless of the value of s,, but the
two expressions

map (s,, ‘aeiow’, ‘AEIOU’))

map (s,, ‘uoiea’, ‘AEIOU’) 2
produce quite different results, in general.

Maps may be visualised as correspondences between
characters in s, and s,. The map for expression (1) is

i

Expression (2) has the map

NERRE

Note that only the relative order is important. Thus the
map

S

is equivalent to the previous map. The expression
map (s,, ‘aeiouw’, ‘UOIEA’)
is also equivalent to expression (2).

map (‘retroactive’, ‘aeiow’, ‘----- ")

s; may contain duplicate characters. This results in a
mapping that is illustrated as follows

202 udy 60 U0 189n6 Aq ZGHZ8E/201/2/€Z/310M4e/|uf00/W0d"dno"oIWepEDR//:SARY W) PAPEo|UMOQ

S2

S3

4. Duplicate characters in s, are permitted. In this case the last

(rightmost) correspondence between s, and s; holds. For
example, the map for

map (s,, ‘acioua’, ‘AEIOU-")
is

The Computer Journal Volume 23 Number 2

i

For the purposes of discussion, it is convenient to deal with
the reduced forms of s, and s;, in which there are no
duplicate characters in s,. This leads to the concept of
canonical forms in which s, is in reduced form and in
alphabetical order and s; is rearranged accordingly. The
expression above in canonical form is
map (s,, ‘aeiow’, ‘-EIOU")

The symbols 8, and 3, are used for the canonical forms of s,
and s,, respectively. See the end of Section 3.4 for a method
of computing canonical forms. In practice, it is often more
convenient or efficient to use values of s, and s, that are not
canonical or reduced. The map function can be thought of
as performing the necessary canonicalisation.

5. Characters of s, that do not occur in s, appear unchanged in
their respective positions in s,. The map function can be
thought of as establishing automatic correspondences
between such characters and themselves, but such detail is
cumbersome and is omitted from maps shown in this paper.
It is worth noting that

map (sy, 52, 53)
and
map (sy, alpha || 5,, alpha || s,)
are equivalent.

6. s5,, 55, and 53 may be of any size, provided that the sizes of
s, and s; are the same. Hence size (8,) = size (8;) < size
(alpha). Furthermore, as noted above, size (s, = size (s,).

3.2 Substitutions

The use of map (s, 5,, §3) in which s, and s; are fixed and s,
varies is called a substitution for s,. As a consequence of the
properties listed in Section 3.1, the following condition holds:

Substitution inverse condition:
For fixed s, and s, and varying s,, the substitution

54 := map (sy, 2, 53)
has an inverse if and only if 8, is equal to = (8,) for some
permutation 7. An inverse is

51 t= map (54, 33, 35)
The classical use for this kind of mapping occurs in crypto-
graphy. Substitution ciphers, which by definition must have
inverses, are used to substitute for characters of a message.
The form of substitution given above is directly applicable to
monoliteral substitutions. See Griswold (1975) for an extended
discussion and for programming techniques in SNOBOL4
that can be directly employed in Icon.

3.3 Permutations

The map function was originally designed to perform sub-
stitutions and its use for this purpose is obvious. Its use to
effect permutations (rearrangements) is less obvious.

A simple example illustrates the technique. Suppose that the
order of the characters of a string is to be reversed, end-for-end.
As a specific case, suppose size (s;) = 6. Then

2 = ‘123456’
sy := ‘654321’
84 1= map (sy, 5, 53)
produces the desired result. In this expression, the mapping
between s, and s, depends on the particular characters in s5. If

The Computer Journal Volume 23 Number 2

53 consists of characters C1 C2C3C4C,C,, then the map is
S2
C C3 Cq

The desired permutation is accomplished, since the characters
of s, are mapped through s,, by relative position, into those of
S5, as illustrated by the following diagram.

S| 6 5 4 3 2 |

S3

S2

O -foum —
O <
O uum O
O guum p
O G O

(¢]

O o O

Kupese;/:sdny woy MBpeojumog

S3

o

Sa Ce Cs Cqg Cz Co

From the example above, it is clear that the techmque can
used to perform any permutation, provided s; is not long
than size (alpha). Specifically:

Permutation property:
If = is a permutation on a string of size n <= size (alpha) an
s, is a string of n distinct characters, then the result of

Sq4 1= map (7‘(52), §2, S3)
is s, = m (s5). Furthermore, an inverse to the permutation i

§3 = map (Sz, T (SZ), S4)

Note that for constant values s, and = (s,), the first expressmg;
above applies the permutation # to all strings s of size n.
An application of fixed permutations applied to a set 0‘3
strings occurs again in classical cryptography, where varloug
transposition ciphers (route transposition, columnar transs
position, and so forth) can all be seen as instances of thig
paradigm (Griswold, 1975).

/Z/QZ/QO!UE/IU[LUQ/LUOOUnO

€/L

60 UO 188

3.4 Positional transformations

Permutations are a restricted case of more general positionat

transformations (G1mpel 1976). A positional transformatlom
p (s) of a string s is a rearrangement of the characters of s ug

whnch

1. Any character in a specific position in s may appear in zero
or more fixed positions in p ().

2. Additional constant characters, independent of the charac-
ters in s may appear in p (s) at other fixed positions. These
characters are called nulls.

For example, (abc) (cba) is a positional transformation of abc.

The same positional transformation applied to xxy produces

(xxy) (yxx). In this example,the parentheses are nulls.

Positional transformation property:
If p (s) is a positional transformation, then the result of

54 := map (p (s3), 52, 53)
is 54 1= p (s3). , _ |
Obviously not all positional transformations have inverses.

For example
54 := map (‘f’, LI, 55)
produces a two-character string consisting of the first and last
characters of a seven-character string s;.
One form of positional transformation that always has an
inverse is the permutation, as described in Section 3.3. The

class of positional transformations with inverses is more
general, however.

Positional transformation inverse property:

Given a positional transformation p, the mapping
S4 := map (P(Sz)a $25 53)

has an inverse if and only if

1. All the characters in s, are distinct.

2. All characters in s, appear at least once in p (s,).

If these conditions hold, the inverse is

§3 1= map (SZ’ P (SZ)’ S4)
In the first place, if there is a duplicate character in s,, only the
last correspondence with s; will hold, and a character of 55 will
be deleted in the transformation and hence cannot be restored,
in general, by any mapping.

Similarly, it is easy to see that if p (s,) does not contain some
character in s,, then the corresponding character in s will not
appear in s, and hence cannot be restored by any mapping. It
is also easy to show that characters of s, can occur more than
once in p (s,) and that nulls in p (s,) do not affect the inverse
mapping (Griswold, 1978).

Note

The canonical forms in the substitution paradigm can be
obtained as follows:

§, := string (cset (s,))

map (§21 §25 S3)

This mapping is the inverse of the positional transformation
that maps $, into s,.

Positional transformations with inverses appear in classical
transposition ciphers, such as grilles (Griswold, 1975), in which
null characters are added to the cipher to obscure the trans-
posed message. It is interesting to note that message characters
can be duplicated in the cipher without interfering with the
inverse deciphering process.

33 =

4. Applications and examples

As mentioned above, many of the models for substitution and
positional transformation are found in classical enciphering
techniques. While classical enciphering is no longer of practical
interest, there are a number of important related applications
that are of interest. The examples that follow illustrate tech-
niques that may be useful in such cases. For brevity, program
solutions are reduced to their essentials. Tests for the validity of
arguments and so forth are deliberately omitted; these com-
ponents can easily be added.

4.1 Substitutions
Example 1: Case folding
One of the common uses for substitution is to establish
equivalences between characters by mapping one set into
another. For example, it is often convenient to consider upper
and lower case letters to be equivalent. Instances of this
situation arise in command processors that are insensitive to
case. To simplify processing, therefore, the input is ‘folded’
into a single case. The following procedure maps upper case
letters into lower case ones:

procedure fold(s)

return map(s, &ucase, &lcase)
end

110

Example 2: Displaying card decks

Another application of substitution is illustrated by the
problem of manipulating and displaying a deck of playing
cards. Here a standard deck of playing cards can be represented
by 52 distinct characters. Although any 52 distinct characters
can be used, it is convenient to use the upper and lower case
letters, since their graphic representations facilitate program
development and debugging. Therefore

deck := &ucase || &lcase

provides a ‘fresh’ deck. Since individual characters are used to
represent the cards, shuffling can be done easily by character
exchanges (Knuth, 1969):

procedure shuffle (deck)
local m
every m := size (deck) to 2 by —1 do
deck [random(m)] :=: deck[m]
return deck
end

(The operator : = : exchanges the subscripted characters.)

In order to display a shuffled deck, it is necessary to deter-3

mine the suit and denomination of each card. The suits can be

jumoQ

o
Q.
(0]

determined by a substitution in which the first 13 characters of’ =

an image of the deck are mapped into the character C (for
clubs), the second 13 into D (for diamonds), and so on. The
third argument to map in this case is

suits := repl (‘C’, 13) || repl (‘D’, 13) || repl (‘H’, 13)
|| repl (‘S’, 13)

o
3

=
f=o

jwapeoe//:sd

Similarly, the denominations can be identified by associating?
the first character of each 13-character group of an image ofs
the deck with A4 (for ace), the second character in each group by3

2, and so on. The third argument of map in this case is
denoms := repl (‘A23456789TIQK’, 4)

ulwooyw

A simple display of a deck of cards is then provided by theg
following procedure. The necessary constants are assigned to2
static identifiers in the initialisation that occurs during the first))

call to the procedure.

procedure display (deck)
local static deckimage, suits, denoms
initial {
deckimage := &lcase || &ucase
suits := repl (‘C’, 13) || repl (‘D’, 13) || repl (‘H’, 13)
|| repl (‘S°, 13)
denoms := repl (‘A23456789TJQK’, 4)

write (map (deck, deckimage, suits))
write (map (deck, deckimage, denoms))
return

end

This procedure displays the deck with the suits on the first line
and the denominations directly below. For example, if the
shuffled deck begins with the 3 of clubs, the ace of hearts, and
the 8 of spades, and so on, the display has the following form:

CHS...
3A8...

A refinement to this display is given in Section 4.2.

Note that the technique used above is independent of the
character set of the host computer on which Icon runs. Even if
the host character set is BCD, the procedures above will work
properly, since Icon supports a larger character set internally.
Thus it is not necessary to change deckimage if the host
character set does not contain lower case letters. The interface
between the internal character set only occurs when the (upper
case) results are written out.

The Computer Journal Volume 23 Number 2

20z Indy 60 uo 3senb Aq zG128e/L0L/2

Example 3: Masking characters
In order to isolate characters of interest from those that are not
of interest, it is useful to map all ‘uninteresting’ characters into
a single ‘null’ that is not in the set of interest. The following
procedure substitutes the one-character string s; for all
characters in s, that are not contained in Ss.

procedure mask (s, s,, 53)

return map (s,, ~s,, repl (s;, size (~s,)))

end

For example,
mask (‘Watch for spooks’, ‘aeiou’, *-’)

produces -a----- 0----00--.

An alternate form of coding that uses duplicate characters
rather than character-set complementation is

procedure mask (s,, 55, 53)

return map (s,, alpha || s,, repl (s, size (alpha)) || 53)

end
Here a correspondence between each character of alpha (the
string of all characters) and s; is first established and then
the correspondences of characters in s, with themselves are
appended to override their earlier correspondences with s;.

Example 4: Extracting and displaying suits

In card games like bridge, it is customary to sort hands into
suits and to order the suits by denomination. All the cards in
the same suit can be ‘extracted’ by substituting some null for all
characters that are not in the desired suit. Standard ‘templates’
for the suits can be set up as follows:

blanker := repl (“’, 13)

denom := ‘abcdefghijklm’

clubs := denom || repl (blanker, 3)

diamonds := blanker || denom || repl (blanker, 2)

hearts := repl (blanker, 2) || denom || blanker

spades := repl (blanker, 3) || denom
The mapping to get the clubs, for example, is

suit := map (hand, deckimage, clubs)

The identifier denom is used to associate the cards of each suit
with the same denominations, regardless of suit. For example,
the 2 of clubs and the 2 of hearts are both mapped into b. In
each case, all characters that do not correspond to a given suit
are mapped into a blank. Note that it is essential to select a
nul‘li that is not among the characters used to represent the
cards.

If the suit above is converted to a cset and back to a string,
the result is an (alphabetised) version of the suit with a single
instance of the null. A further substitition can be performed to
get the correct visual representation of each card:

map (cset (suit), denom, ‘AKQJT98765432’)
If the hand contains the ace, queen, ten and two of clubs, the
result would be AQT?2.

Note that the null used here is ‘invisible’ in printed output,
although it is actually the first character in the string produced
above (because of the ASCII collating sequence). It can be
removed easily, if desired. The final mapping to get the desired
visual representation is done after the formation of the cset,

since the visual representations are not in alphabetical order
according to suit rank.

Other substitution applications

A number of other interesting uses of substititon are given in
Gimpel (1976). Two examples are the translation of Roman
numerals to a higher ‘octave’ in the conversion of Arabic
numerals, and the use of ten’s-complement arithmetic to effect
symbolic subtraction by addition. Bit-string operations can
also easily be simulated by mappings on strings composed of
zeroes and ones (Griswold, 1978).

The Computer Journal Volume 23 Number 2

4.2 Positional transformations

Example 5: Reversal

The reversal of the order of characters in a string, as described
in Section 3.3, is not of interest in itself, since there is a built-in
function in Icon for performing this operation. The solution of
the problem, however, serves as a model for a number of other
positional transformations.

The approach is to provide, by conventional means, general
templates for the transformation. The second argument of map
serves as a labelling for the third argument, while the first
argument is the desired permutation. The terms image and
object are used to refer to these two strings, respectively. The
following procedure uses a pair of strings chosen for visual
clarity.

procedure reverse(s)
local static image, object, rvsize
initial {
image := ‘abcdefghijklmnopqrstuvwxyz’
object := ‘zyxwvutsrqgponmlkjihgfedcba’
rvsize := size (image)

if size(s) <= rvsize then
return map (substr (object, rvsize -size(s) + 1, sizes(s)),
substr (image, 1, size(s)), s)
else
return reverse (substr (s, rvsize + 1, size(s) -rvsize))
|| map (object, image, substr (s, 1, rvsize))
end

peoe//:sdny wolj papeojumoq

5]

If s is not longer than the image template, the reversal is done ig.
one mapping. In this case, specific templates of the correc§
length are selected from the general ones. Note that the ﬁrs!(;
part of image is used, while the last part of object is used. If
is too long, it is divided into two portions. One portion is
. . . . o
reversed by a recursive call, while the other is reversed using the
full templates. This process can also be done iteratively at th§
expense of some complication of the code. =
Note that the templates can be chosen in any conveniend
fashion, as long as the object is the reversal of the image. For
maximum efficiency in reversing long strings, the templates’
should be as long as possible: alpha and its reversal. Thes&
strings can be formed as follows: &

(3R]

image :=
every i := 1 to size (alpha) do
image := alpha[i] || image
Alternatively, these strings can be obtained by bootstrappin
replacing the initialisation section of the procedure by

20z Iudy 60 uo $Benb Aq zG+z8

initial {

image := ‘ab’

object := ‘ba’

rvsize := size (image)
object := reverse (alpha)
image := alpha

rvsize := size (image)

}

This technique has the advantage of using the most elementary
characterisation of the positional transformation as well as
avoiding possible errors in constructing the two long strings by
other methods.

It is reasonable to question the usefulness of map to effect
this permutation, since it can be more easily coded by con-
catenation as illustrated above. Both the concatenation method
and the mapping method are approximately time linear in
size(s) if secondary effects such as storage management anoma-
lies are ignored. The conventional method is clearly linear. The
map function itself is time linear in the sizes of its first and
second arguments (see Section 6.2). In the procedure above,

M1

concatenation

time

mapping

1 2 3 4 5 6 7 8
characters ———»
Fig. 1 Timings of string reversal methods

these two sizes are the same. Hence the mapping method is also
time linear in size(s). Results of actual timings are shown in
Fig. 1.

The interesting fact is that the (measured) constant of propor-
tionality for the iterative method is nearly 8.5 times that of the
mapping method. Furthermore, the crossover point is at two
characters! That is, the two methods take about the same
amount of time for two-character strmgs and the relative
performance of the mapping method 1mproves rapidly there-
after. Although the space requirements in terms of transient
storage are dependent on the details of internal storage
management, the mapping method has the clear advantage of
creating fewer intermediate strings. Part of the cost of transient
allocation is shown in the relative constants of proportionality,
but part is deferred in the form of garbage collection that may
occur at unpredictable times to the detriment of the conven-
tional method. These observations apply in general to the
relative efficiency of effecting positional transformations by
conventional means versus mapping.

Example 6: Displaying a card deck
The display of the deck of cards as described in Example 2
produces an unattractive result. A more attractive display is
obtained if the suit and denomination of each card are adjacent
and there are separators (say blanks) between each card. Here
there are 104 objects to be labelled (52 suit characters and 52
denomination characters) and some 156 characters in the result
if one separating character is placed after the representation of
each card. While the result can be obtained with a single map
using long image and object strings, for purposes of exposition
it is more reasonable to divide the result into sections, say four
sections of 13 cards each. Convenient image and object strings
are
image := ‘ABCDEFGHIJKLMabcdefghijklm’
object := ‘Aa Bb Cc Dd Ee Ff Gg Hh Ii Jj Kk L1 Mm’
The upper case letters label the suits and the lower case letters
label the denominations. The suit and denomination strings are
then concatenated before mapping. A procedure is
procedure display (deck)
local i
local static image, object, deckimage, suits, denoms
initial {
image := ‘ABCDEFGHIJKLMabcdefghijklm’
object := ‘Aa Bb Cc Dd Ee Ff Gg Hh Ii Jj Kk L1 Mm’
deckimage := &lcase || &ucase

112

suits := repl (‘C’, 13) || repl (‘D’, 13) || repl (‘H’, 13)
[l repl (°S’, 13)
denoms := repl (‘A23456789TIQK’, 4)

every i := 1to 52 by 13 do
write (map (object, image, map (substr (deck, i, 13),
deckimage, suits)))
end

Example 7: Directed graphs
While it is customary to represent directed graphs by list
structures or adjacency matrices, they can also be represented
by character strings in which a distinct character is associated
with each node and in which the arcs are represented as
character pairs. Consider the graph shown in Fig. 2.
This graph has arcs AB, AC, CD, BD, and DD. As a single
string, this graph is represented by

= ‘ABACCDBDDD’

(If nodes without connectmg arcs are allowed, a string con-
tammg all the nodes may be kept separately). This representas’
tion is very compact and with the string processing operatlonsz
of Icon, many graph operations can be performed economlcallyg
For example a procedure to compute the number of arcs in aﬁ
graph is simply
procedure arccount(g)
return size(g)/2
end
An example of the use of this representation is given by
procedure to determine the transitive closure of a node in
graph:
procedure closure (n ,g)
local st, sn
sni=n
while (tn := sn + + successors (sn, g)) ~= == sn do
sn = tn
return In
end

The procedure successors (sn, g) returns all direct successors int3
g of nodes in the cset sn. Definition of this procedure is left as®
an exercise. The operation x ~= = = y succeeds if x and y areS
different csets, so the loop continues until nothing new 150O
added to the cset. It should be noted that all direct successorSJ>
of the nodes in the evolving cset are added at each step. '\’

Although the representatlon used above is compact and easy<
to manipulate, it is not suitable for display purposes. AC
positional transformation can be used to produce a much more”

/ap!ueuu[LUOO/LUOO'dnoogu?ép@oe//:sdnu wouy

the display of the graph becomes
A-B,A-C;C->D;B-D;D - D;

It is a straightforward matter to generate longer image and
object strings and to write a general purpose procedure for
producing the display. Translation between various formats for

o

attractive display. Using an image and object of the form 2
image := ‘12’ i

object := ‘1 - 27 El

N

o

N

Fig. 2 A simple directed graph

The Computer Journal Volume 23 Number 2

input, output, display and internal manipulation are easily
derived in this manner.

Other applications of positional transformations

Gimpel (1976) and Griswold (1975) provide numerous examples
of positional transformations ranging from the reformatting of
dates to the generation of pig latin. Conversion among binary,
octal and hexadecimal representations of characters can also be
accomplished with such techniques (Griswold, 1978).

5. Implementation

The techniques used to implement string and cset operations
are of interest here only to the extent that they affect the
efficiency of the programming techniques that have been
described. See Hanson (1978) for a description of dynamic
storage management in Icon and the details of data layout.

5.1 Character sets

Character sets are represented as bit strings, with the bit in the
position of the character in collating sequence, set to 1 if the
character is in the character set and set to 0 otherwise. The
amount of space required for a cset depends on the size of the
internal character set (256 in Icon), not on the particular
characters the cset contains. In any event, csets require com-
paratively little storage space.

The construction of a cset from a string involves processing
the characters of the string in sequence, setting the correspond-
ing bit in the cset. This process is time linear in the size of the
string. Constructing a string from a cset involves the converse
process and is also time linear in the number of characters in
the cset.

Complementing a character set is time linear in the number of
characters not contained in the character set, but is a com-
paratively fast operation compared to those that involve
accessing characters. The other built-in character set operations
are also time linear and correspondingly efficient.

5.2 Mapping

Map (sy, $,, §5) is performed by first building a table of cor-
respondences between the characters of s, and those of s3. This
table contains one entry for each possible character (256 in
Icon) and it is initialised by having each character correspond
to itself. Then the entry for each character is s, is replaced by
the corresponding character in s;, working from left to right.
Thus if there are duplicate characters in, s,, the last (right-
most) correspondence results naturally. Once the table is built,
the result is constructed by indexing the table with successive
characters of s,.

The amount of time required to build the table of correspon-
dences is proportional to the size of s, and the amount of time
required to do the actual mapping is proportional to the size of
s;. Thus the total time required for the mapping is approxi-
mately

a x size (s;) + b x size (s;) + ¢

where ¢ is constant overhead that includes the initialisation of
the table of correspondences.

The table of correspondences is static. The only storage
allocation required for mapping is for the resulting string.
Furthermore, if map is called successively with the same
values of s, and s, the previous table of correspondences is
used without reinitialisation.

6. Conclusions

The character set and string processing facilities of Icon make
programming techniques feasible that otherwise would
require entirely different approaches. The main advantages of
these techniques are the compactness of the data representations

The Computer Journal Volume 23 Number 2

and the comparative efficiency of the operations.

This efficiency is largely obtained by the internalisation of
processes that would ordinarily involve loops at the source
language level. Specific examples are identifying distinct
characters, sorting them using cset(s), and the substitution and
positional transformation of long strings using a single map-
ping operation. Given appropriate computer architecture,
character sets can be manipulated as bit vectors, with the
potential improvement in efficiency that can be obtained from
parallel operations (Aho, Hopcroft and Ullman, 1976).

The main limitation on the programming techniques des-
cribed in this paper are imposed by the limited size of the
character set. In positional transformations, this is usually more
of an annoyance than an actual limitation, since most positional
transformations (such as the reversal of a long string) can be
decomposed into a sequence of shorter transpositions. How-
ever, if the scope of the transposition requires more labels than
there are characters in the character set, a different technique
has to be used. The really serious limitation occurs in the use
of characters to label objects. The representation of a deck aﬁ
playing cards in this way works nicely, but that is merely a
convenient coincidence. In the case of graphs, the representas
tion used clearly limits the cases that can be handled. Furthe(%
more, since the methods specifically rely on character operas.
tions, there is no way to extend the techniques if the size of thg
character set is inadequate. I

It is interesting to note that csets are useful in their role as sets
independent of their relationships to specific characters, despite
the limitation on the number of objects that can be represente
At the same time, csets provxde an economical facility, largelg
because they are limited in size.

There is no inherent reason why a language character sg
should be restricted to the character set of the host machine;
Indeed, in the CYBER 175 implementation of Icon, the
language character set is four times the size of the (standard
host character set and on the DEC-10 it is twice the size of the'
host character set. Character sets larger than those normall§;
supported by any computer could easily be 1mplementeq%
increasing the scope of the string processing facilities.

The problem of supporting a language character set that i
different from the host character set is not as difficult as 1@
might appear. In Icon, the size of a character (and hence og
character sets) is an implementation parameter. Icon wa§
originally designed for 128 characters and later changed to 256
characters to allow more flexibility. The change was easily¥
accomplished in less than an hour. Furthermore, an mtema‘%
character set that is independent of the host character set is at®
advantage, especxally for enhancing portability, since the bulk of
the system is written in machine independent form with knowB
collating sequence (ASCII in the case of Icon). For exampleé>
the lexical analyser is machine independent, whereas if the,
internal character set varied according to the host character sa§
of the target computer, there would be many complications.

The penalty for a larger character set is primarily in the space
required for representing csets and strings. Doubling the size of
the character set approximately doubles the amount of space
required for storing a cset proper, although there is some
storage overhead that is independent of the size of the character
set. Similarly, the larger the character set, the more space is
required for each character of every string. The time for some
operations is increased also. The larger size of strings may
require more time in data movement and the number of items
that have to be processed is increased for cset operations and
the correspondences established in map.

On the other hand, such ‘super character sets’ would extend
the domain of applicability of the techniques described in this
paper. Although it is beyond the scope of this paper, a poten-
tially more important advantage of very large character sets

Ricz/

o=

13

lies in their capacity to provide internal representations for
larger sets of graphics than are supported by the host character
set and hence in the processing of data for devices like photo-
typesetters.

Acknowledgement

Morris Seigel first called my attention to the use of mapping in
SNOBOLA4 to reverse strings and to the corresponding use of
the translate instruction on the IBM 360 (Seigel, 1969;

References
AHO, A. V., Hopcrorr, J. E. and ULLMAN, J. D. (1976).
AMERICAN NATIONAL STANDARDS INSTITUTE (1977).
CoMPUTER UsAGE CoMPANY (1966).
CoNTROL DATA CORPORATION (1971).
GIMPEL, J. F. (1974).
GIMPEL, J. F. (1976).
GriswoLD, R. E. (1972).
Freeman.
GriswoLD, R. E. (1975).
GriswoLD, R. E. (1978).
Department of Computer Science, The University of Arizona.
GriswoLD, R. E. and HansoN, D. R. (1979).
of Computer Science, The University of Arizona.
GriswoLD, R. E., HansoN, D. R. and Kors, J. T. (1979).
pp. 18-31.
GRISWOLD, R. E., PoAGE, J. F. and PoLoNsKY, 1. P. (1971).
Hanson, D. R. (1978).
ment of Computer Science, The University of Arizona.
IBM CORPORATION (1976).
KNuTH, DONALD, E. (1969).

SEIGEL, M. M. (1969). Letter to author.

Reference Manual for the Icon Programming Language, Technical Report TR 79-1, Departmen
The Icon programming language ; an overview, SIGPLAN Notices, Vol. 14 No. 4

The SNOBOL4 Programming Language, 2nd ed, Prentice-Hall.
A Portable Storage Management System for the Icon Programming Language, Technical Report TR 78-16, Depart

System|370 Reference Summary, Form GX20-1850-3.
The Art of Computer Programming, Vol. 2, Addison-Wesley, p. 125.

Computer Usage Company, 1966). I am indebted to Jim
Gimpel for introducing me to the full range of transformations
that can be performed by mapping. Students in my classes have
served in an exemplary manner as guinea pigs for various
experiments with the use of character sets and mappings. In
addition, David R. Hanson and John T. Korb have provided
helpful suggestions on the presentation of the material in this

paper.

The Design and Analysis of Computer Algorithms, Addison Wesley.
USA Standard Code for Information Interchange, X3.4-1977.
Programming the IBM/360, John Wiley & Sons, p. 208f.
SCOPE Reference Manual, Publication Number 60307200.
The minimization of spatially multiplexed character sets, CACM, Vol. 17 No. 6, pp. 315-318.
Algorithms in SNOBOL4, John Wiley & Sons, pp. 46-51.
The Macro Implementation of SNOBOL4,; A Case Study in Machine-Independent Software Development, W. H.

String and List Processing in SNOBOLA4, Techniques and Applications, Prentice-Hall.
Programming Techniques Using Character Sets and Character Set Mappings in Icon, Technical Report TR 78-15a, o

UMO(

to

J'pape

Book reviews

The Phenomenon of Science; A Cybernetic Approach to Human
Evolution by V. F. Turchin, 1977; 348 pages. (Columbia
University Press, £17-50)

Cybernetics is the science of control and communication. Systems
having internal communications which form feedback loops may
display self-organising properties, and nowhere more so than in the
phenomenon we call ‘life’. Dr Turchin considers evolution in this
cybernetic sense, from its beginnings, through the emergence of

Reference
DARLINGTON, C. D. (1979). Feedback and Evolution, Kybernetes.
Vol. 8 No. 4, pp. 275-284.

Aq ZG¥28€1.01/Z/SZ/010M B/ ufwod/woo dno-olwepede;/:sdhy wo

Business Systems Hangbook by Robert W. Gilmour, 1979; 229 pages:
(Prentice-Hall, £14-55)

1senb’

In the author’s words: this is a ‘working’ handbook. It is intended to3

provide a basis for an organisation to develop their own documenta{3
tion and procedures. It is not claimed for the book that it helps w1tlﬁ>
the techniques of analysis and design and where these are dlscussed“
it is at a very superficial level. Sections dealing with forms desxgnO
writing style and presentations are treated in great detail. N

mankind, to the intellectual structures which have evolved at an
increasing rate during recent centuries up to the present decade. A
central theme of his discussion is the notion of a metasystem. This is
essentially the same idea as iteration which can lead to exponentially
increasing rates of evolution; as for example when tools are used to

make more powerful tools, or when common language is used to
make the powerful languages of symbolism, including many
branches of mathematics.

Thus natural selection does not merely favour survival of the geno-
type itself, but selects for the appearance of selectable features; and
so iteratively in a hierarchy of loops. The molecular biology of how
this may happen has been outlined in a recent article by Professor
Darlington (1979) who, approaching this question as a biologist,
follows arguments that are generally consonant with those of Turchin
from his general systems standpoint.

Turchin’s conclusions are rationalistic and optimistic. He sees
science and reason as the the true path for mankind, and believes
that aesthetic and moral values have in the long run the formidable
support of the mechanisms of evolution. His book is a product of
deep thought, and therefore a provoker of it, well worth its reading
and study.

P. B. FELLGETT (Reading)

114

The advice given by Mr Gilmour on documentation and procedures
is well illustrated and is basically sound, although a certain naivety
shows through. The suggestion that a systems analyst should arm
himself with a timepiece and indulge in DIY time study, albeit
informing supervisors and employees before doing so, might well see
the end of systems work in an organisation for a very long time. This
contrasts oddly with the author’s stringent standards for those called
upon to give presentations to management. Although, in this con-
text, the recommendation that the presenter should break up the
monotony of his delivery by making gestures, amongst other
activities, makes one wonder what the author has in mind.

Although useful, I would not regard this book as being amongst the
frontrunners as far as value for money is concerned. An organisa-
tion on the brink of adopting standards would do better, in my view,
to look to some other text. Preferably the one that originated not a
million miles from Eindhoven.

C. D. EasteAL (London)

The Computer Journal Volume 23 Number 2

