A simulation experiment using two languages

R. H. Perrott*, A. K. Raja* and P. C. O'Kanet

An experiment to test an operating systems simulation language SIMONE (based on PASCAL) on
a more normal simulation problem is described. The actual problem chosen was the Radiology
Department of a hospital, a model of which had already been constructed in FORTRAN. This
enabled not only an evaluation of SIMONE to be performed but also a comparison with the

FORTRAN model to be undertaken.

The comparison data showed a substantial reduction in the timings for the SIMONE model. The
advantages of using a language with appropriate simulation features, richer data and control
structures, good debugging and tracing facilities were also evident.

(Received April 1978)

1. Introduction

This paper reports on a project which concerns FORTRAN
and the PASCAL-based language SIMONE (Kaubisch,
Perrott and Hoare, 1976); the latter was originally developed
to simulate operating systems algorithms.

The extensions which were introduced to PASCAL (Wirth,
1971) enable a user to experiment with situations which involve
parallel actions, viz processes, monitors and condition
variables. Processes are those parts of a program which can be
executed in parallel; monitors (Brinch Hansen, 1973; Hoare,
1974) are used to control the interaction between processes and
condition variables (available within monitors only) are used for
process synchronisation by means of ‘wait’ and ‘signal’
operations.

The designers of SIMONE felt that the language had more
widespread applicability and so it was decided to apply it to a
more normal simulation problem. Fortunately, one of the
authors (O’Kane, 1976) had collected data and had constructed
a simulation model (in FORTRAN) of the radiology depart-
ment of a local hospital. Hence, data for a more normal
simulation problem already existed and a model was also
available for comparison purposes. The simulation model of
the radiology department was, therefore, rewritten in SIMONE
so as to test SIMONE’s features and also to compare the two
languages. The original logic of the FORTRAN model was
followed as closely as possible in order to facilitate the com-
parison. SIMONE was not found to be lacking in any features
and, in fact, was found to be very suitable for the construction
of such a simulation problem.

When the compilation and execution times were compared, the
difference in SIMONE’s favour was found to be great; even
taking into account the difference due to the FORTRAN
implementation. This clearly emphasised the need for using a
language which has features appropriate for simulation. The
clarity of the SIMONE model and its ease of construction can
be attributed to the richer data structures and structured pro-
gramming concepts inherited from the PASCAL language. In
addition, the compile time and run time checking, and tracing
facilities of SIMONE reduced the effort required for program
debugging.

The next sections describe the radiology department, the
language SIMONE (briefly), the SIMONE model and the
comparison of the two programs.

2. Problem
This section contains a description of the main characteristics
of the radiology department which was under investigation,

and identifies the parameters which are important for theo
simulation model.

popeojumo

1. The radiographers
A given number of radiographers was available for carrying out_.
examinations. In addition to the actual film taking, there wereS
a number of checking and clerical duties which radlographer&
were expected to carry out in relation to each patlent u>

Although the department provided a 24-hour service, the mam;n
organisational problems occurred during the ‘working day o
which has been defined as extending from 9.00 a.m. to 5.00 p. m.3
During this period, each radiographer is permitted three rest]
periods, the duration and times of which are specified but the%
latter could be varied if the work load demanded. The radlo-o
graphers worked a five day week.

/|ulWwoo/Wwoo

2. The examination rooms
Five rooms were available for examinations. These were not alﬂ
equipped in the same way and, thus, any given type of exami-3
nation could be performed in a subset of the rooms only. Whenw
a patient’s examination was completed in a given room, aN
certain time is necessary for preparation before another patlent,\,
is admitted to that room.

62928¢/

3. The examinations
There were 22 different types of examination and an c:mpmcalt<r
distribution was used to find the time required for a partlculatC
examination. The data indicated that relatively few patlentSv
had the same examination performed more than twice on a
single visit, or had combinations of more than two types o
examination. Hence, this information was incorporated into theé>
model.

As mentioned above, a particular type of examination couldv
only be performed in certain of the rooms; a priority ordermg
of the rooms for each examination was, therefore, established
beforehand.

4. The patients

Patients arrived in the radiology department from the casualty
department, the wards, a number of different outpatient
clinics and by appointment. A negative exponential inter-
arrival distribution was used for all of these sources except the
last for which predetermined times were available.

The patients on arrival were classified into one of eight
sources depending on the particular department or clinic from
which they originated (there were five clinics in the outpatients
department). Hence, the pattern of arrivals varied for each

*Department of Computer Science, Queen’s University, Belfast BT7 1NN, Northern Ireland
tDepartment of Business Studies, Queen’s University, Belfast BT7 1NN, Northern Ireland

142

The Computer Journal Volume 23 Number 2

source, from day to day, and even within a given source; a
source could, therefore, be active for only part of a day.

A single queue was formed by the patients from the eight
sources as they waited for a suitable room and a radiographer
to become available. An attempt was made to maintain a first
come first served discipline; however, a patient was passed over
in a search pass if the facilities it required were not available
immediately.

3. The SIMONE language

SIMONE is a discrete event simulation language which is based
on PASCAL (Wirth, 1971). The language was originally
developed to provide a teaching aid to support a course in
operating systems for students who were already familiar with
PASCAL; it soon appeared that the language had more general
applicability. This experiment is an attempt to use the language
on a problem which does not have the characteristics of an
operating system simulation, i.e. in an environment where the
identity of a process is important.

The language provides a quasiparallel programming facility
like that embodied in the process and class concepts of
SIMULA 67 (Birtwistle er al., 1973). The actual compilation,
testing and simulation (for reasons of efficiency) are carried out
in a normal fast batch environment.

Three basic features were introduced into PASCAL to enable
a user to experiment with quasiparallel programming, viz.
processes, monitors and condition variables. Processes are
those parts of a program which a user wishes to represent
parallel activity; each process can be imagined as an indepen-
dent sequential PASCAL program. All the processes progress
independently with respect to a simulated integer timescale
which is increased automatically when all activity at a par-
ticular time has been completed.

Monitors have been provided to control the interaction and
communication among the processes. A monitor consists of a
set of shared variables, together with their initialisation, and
the procedures or functions which manipulate them. In an
operating systems environment, the monitors are used to
isolate critical regions from the processes.

A process can access the variables of a monitor by calling one
of the monitor’s procedures or functions; simultaneous up-
dating of the shared variables is avoided by allowing only
one process at a time to enter a monitor; mutual exclusion is
thus guaranteed.

The third main feature is condition variables which enable
processes to co-operate and synchronise; they are used only
within monitors. When a process enters a monitor, it can
suspend itself on a condition variable pending the action of
another process. Hence, a condition variable identifies an
ordered queue of suspended processes. The queue may only be
manipulated by two operators ‘wait’ and ‘signal’; the ‘wait’
operator causes the process which invoked it to be attached to
the queue, while the ‘signal’ operator detaches (and causes
immediate resumption of) the process with the highest priority.
The ‘wait’ operator may have an integer priority value associated
with it to represent the importance of the process. If the
queue is empty and a signal operation is performed, the effect
is null.

The method used to manage store in the SIMONE language
is simple; it makes the naive assumption that all the processes
will be active simultaneously; hence, the determination of the
space required is static. A logical outcome of this decision is
that space recovery is unnecessary (since enough space has been
allocated for all the processes to run simultaneously, the space
will never be reused). Hence dynamic creation of processes is
not possible.

However, if there is a large number of processes in any
program such that the available store is insufficient to accom-

The Computer Journal Volume 23 Number 2

modate them, the user must set up the recycling of process
space. This was found to be necessary in the current experi-
ment. A more sophisticated store management algorithm, such
as scan mark garbage collection would avoid this problem.

Several other features enable the user to effect closer control
over the simulation under investigation. In particular, a system
integer variable ‘time’ contains the current value of simulated
time. The passage of time is achieved by using the standard
procedure ‘hold’, e.g. a process may represent some activity by
calling ‘hold(n)’ where the integer parameter represents ‘n’
units of time. Full details of the language are given in Kaubisch,
Perrott and Hoare (1976).

4. The SIMONE model

The model can operate for any number of working days and
consists of a number of processes interacting by means of
monitors. A main process is responsible for controlling the
daily cycle by initialising the conditions for each day. It also
maintains the information on the source arrivals.

umoQ

1. The patients
Each patient is represented by a process. The patients with
appointments on a particular day are first scheduled and th&l
the other patients are generated as dictated by the dlstrlbutlom
i.e. their arrival times, types of examination and correspondirig
times for examination are determined. As the day progresseE,
the processes are appropriately generated to have themr
examination.

If the system is simulated for many days, the number
patients can run into several thousand. Since each process
(representing a patient) requires 45 words of store and store ¥
not recovered by the SIMONE system (see last section),a

] egoe/

monitor patientgeneration;
var cycleq: condition; [* a queue of available processes */|
[*other data declarations *|
procedure suspend(/* distribution parameters */);
begin
cycleg.wait;
[* accept parameters of the generated arrival */
end suspend,
procedure activate(/* distribution parameters *[);
begin
[* assign parameters of the generated arrival *|
cycleq.signal [* release a patient into the system */
end activate;
begin
[* initialisation of monitor variables *|
end patientgeneration;
process patient ;
begin
while true do
begin
patientgeneration.suspend; [* patients wait for activation *|
[* enter the Radiology Department for examination *|
end
end patient;

202 1udy 60 U0 }sanb Aq 62928€/21 |/2/€z/a101ME/|ulod/wpo’

Each time an arrival is due, the main process generates a call
patientgeneration.activate(/* actual parameters */);

thus passing the parameters to the process released from the
‘cycleq’ queue in the monitor. After a process has completed its
examination in the radiology department, it rejoins the
‘cycleq’ queue—Ilater, it can assume the characteristics of a
different patient (if necessary).

Fig. 1 Generation of patients

143

procedure seekservice;
var found : boolean; patientqueue; condition;
serialno, patientno : integer;
begin
serialno := serialno + 1;
Dbatientno := serialno; [* patient’s priority *|
if neither a suitable room or radiographer is available then
repeat
repeat
patientqueue.wait(patientno);
[* patients wait in the order of their arrival *|
[* is a radiographer available *|
until radiographer available;
Sfound : = false;
if is room suitable
then found : = true
else patientqueue.signal /* release next patient in the queue *|
until found,
room := busy;
radiographer : = busy
end seekservice; -
The monitor procedure ‘seekservice’ is called by a patient after
entering the Radiology Department.

Fig. 2

procedure releaseroom;
begin
room : = free; patientqueue.signal
end releaseroom;
This procedure is called when a room becomes available.

Fig. 3

procedure freerad(var period : integer ; restflag : boolean);
begin
radiographer : = free;
if (all rest periods not utilised) and (rest period soon) then
begin
restflag : = true ; period : = restduration;
radiographer : = onset
end else
begin
restflag : = false ; room := 1;
while (patientqueue # empty) and (room < 5) do
begin
if room not busy then patientqueue.signal
room := room + 1
end
end
end freerad,
The above procedure is called when a radiographer finishes the
examination of a patient.

Fig. 4

severe store shortage could exist. To avoid this problem, an
estimate of the maximum number of processes that could be
active at any time was made; these processes were then reused
or recycled as required. This was achieved by means of a
monitor and a condition variable, as illustrated in Fig. 1 (only
sufficient variables and comments are given to enable an under-
standing of the technique and the features of the language).
When a patient enters the system, it is assigned a number
which represents its priority while it is in the system. The
priorities are increasing integer values with the lowest number
always representing the highest priority. In order to be
examined, a patient consults a monitor to see if a suitable room
and a radiographer are available. If either or both of these
requirements is not satisfied, the patient joins a waiting queue;

14

its position in the queue is determined by its priority (Fig. 2).
Whenever a room (Fig. 3) or a radiographer (Fig. 4) becomes
available, it causes the queue to be searched to find a suitable
patient; this involves removing a patient from the queue and
examining its parameters; if unsuitable it is reinserted at the
same place in the queue. This is continued until a suitable
patient is found or the complete queue has been searched.

2. The radiographers

A process was used to represent each of the radiographers. The
three rest periods caused some difficulty in organising the
radiographers’ activities since there was some flexibility as to
when a rest period could commence.

1. A radiographer would not start an examination if it would
cause an excessive delay in the start of the next rest period—
an excessive delay was arbitrarily defined as twice the dura-
tion of the rest period.

2. If there were no patients waiting and the next rest period
was due within five minutes, it could start immediately.

In fact, another process ‘restclock’ was associated with each of°
the radiographers in order to give the alarm when a rest perlod3
became due.

3. Other processes
Another process type was required to keep a room ‘locked’ for
the period when it was being prepared for the next exammatlon

y wouy papeo]

5. Comparison
The radiology department was simulated for 125 days with foura
radiographers working and five rooms available for exami-5
nations. The programs were executed on an ICL 1906S and the2
results are shown in Table 1. The timings for the compilatlong
of the programs are those given by the operating system and 3
include all operating system overheads; however, the execution3
time of each program was monitored by the program itself.
The original FORTRAN (A) program was used, as far as
possible, as a guide for the construction of the SIMONEo
program to facilitate comparison. The basic logic of bothis
models is similar and the output from both models is com- 3
patible. FORTRAN (A) passed all the data to its subroutines =
using parameters; this program was modified by introducingw
COMMON areas, wherever possible, to improve its perfor-
mance; this is referred to as FORTRAN (B). This causedN
only a slight improvement in performance, and reduction ing

LU peoe//:sdy

w

JE/uf

e
Table 1 a
[e]
SIMONE FORTRAN o
Original Modified with 5
model COMMON g
(A) areas (B) N
1. Compilation N
Time (seconds) 14-1 23:4 24-4
Store used 28K 31K 31K
Disc transfers 65 1107 1115
2. Execution
Time (seconds) 51-01 290-93 279-28
Store used 12-4K 18K 17-5K
3. Number of lines 672 1090 1183
of code

A comparison of either FORTRAN program with the
SIMONE program shows a remarkable improvement in
compilation time, transfers, execution time and storage used.
This is a much greater all round improvement in performance
than expected and some of the reasons for this will now be
offered.

The Computer Journal Volume 23 Number 2

the storage required. (Any improvement is a consequence of
using 1900 FORTRAN.)

1. Compilation
SIMONE is a one-pass compiler and, therefore, faster than
the multipass FORTRAN compiler. The multipasses in
FORTRAN are also responsible for the large number of disc
transfers used.

2. Subroutine/procedure calls

In SIMONE, the data areas are allocated dynamically on each
procedure call requiring extra instructions to be executed. In
the case of monitor procedure calls, additional instructions
are required. The example under study makes heavy use of
procedure calls (estimated at over 126000); hence the overhead
which results constitutes a substantial part of the SIMONE
execution time.

In the FORTRAN programs, there is no run time admini-
stration of the data areas required because all storage is
allocated statically. Hence subroutine calls do not contribute a
significant overhead.

3. Queue manipulation
In SIMONE, a patient can be delayed on one of three queues
as follows

(a) the sequencing stack—processes waiting to execute at the
current instant of simulated time

(b) the time queue—processes arranged in order of restart time

(c) a condition variable queue, with processes arranged in
order of their priority.

The queues are maintained and manipulated by the built-in
routines (machine language) in the run time system. Hence, the
manipulation of the queues is achieved in an economical
number of machine instructions.

In the FORTRAN programs, the user has to set up the
appending and removing of patients from a single queue
explicitly in FORTRAN, and this is a contributing factor to the
higher execution time.

4. Event selection

In SIMONE, the patients are arranged in chronological order,
Le. in the sequence in which they resume execution, by the
system. The run time routines are also responsible for the
passing of control from one process to another whenever a
change of state occurs. Hence, the overhead for selection of the
‘next event’ is very small and handled automatically by the run
time system.

On the other hand, the incorporation of a means for selecting
the ‘next event’ for execution in the FORTRAN programs
introduced many complexities, and is a major contributing
factor to the higher execution time.

5. Storage

The richer data structures of SIMONE were appropriate for
the representation of the composite data types which occurred in
the problem and led to a saving of storage. For example, the
data used to generate the time required for an examination
consisted of a pair of numbers; a real number to indicate the
probability and an integer to represent the time. In SIMONE,
this can easily be represented by a two field ‘record’, one field
being of type integer and the other real.

In the FORTRAN programs, this was represented by a two
dimensional array of type real with its corresponding storage
overhead. In fact, the FORTRAN programs made heavy use of
arrays of several dimensions (and the extra storage involved)
because a more flexible data structure, such as the record, was
unavailable. The enumerated data type of SIMONE also

The Computer Journal Volume 23 Number 2

Janguage.

enabled a more meaningful and readable representation of
many of the features in the model.

6. Tracing/debugging

SIMONE has, in addition to the normal PASCAL compile and
run time checking facilities, automatic tracing (Perrott and Raja,
1977) and statistic collecting features which help the user to
understand and to debug his program; these can be turned on
or off selectively but still contribute a time and space overhead
in either case.

In the FORTRAN model, there was no such overhead. In
fact, statements had to be inserted throughout the program to
catch such information; those statements took time to devise,
increased the size of the program, obscured its logic and
increased the debugging effort. However, the figures reported
have all such additional statements removed.

Hence, the difference in the execution timings can be attributed
to a combination of the above effects, in particular the lack of
queue manipulation and event selection features in the FOR-
TRAN model; however, we still did not expect that the dif-
ference would be as great as a factor of five in the executicﬁi
times.

There were other (less quantitative, but important) benefits
using a language such as SIMONE. The rich data structures,
programming and simulation concepts enabled the model to lge
designed and implemented in a systematic and structuregd
manner. This higher level of abstraction enabled the co@-
struction of the model in a shorter period of time, producing@
shorter program and thus reducing the chance of making errors.
This also increased the program’s clarity, readability and eaé’e
of understanding. The availability of compile and run time
checks plus tracing facilities reduced the debugging effort; tIE
statistics features made it easier to obtain the required resuItS

=

18Ul po

6. Conclusion
The original objective was to test the language SIMONE,
which had been specifically designed for the simulation of
operating systems, on a more normal simulation problem. Th&
main concern was that the need to obtain the identity of &
process, which is not so important in an operating syster
environment and therefore not so easily obtained in SIMON

would complicate the design and construction of a normaf
simulation where it is frequently required. Our experiment with
SIMONE in this different environment indicates that the
anonymity of processes is not a major drawback of tbg

bije/|uluwg

ou

The comparison of the languages would be more accurate if
the simulation was performed in FORTRAN and PASCAE
(or SIMONE and GPSS). In such a situation, it is unhke]y that
FORTRAN would fair so badly; however there is a com¥
siderable gap in the execution timings to be reduced. It must
also be appreciated that the emphasis of the two studies were
different and that they were performed by different program-
mers. The original objective was to obtain a working model
without regard to efficiency considerations. The comparison
reported here does, however, emphasise that for simulation
purposes, it is important to choose a language that has features
which are appropriate to the problem being solved.

The experiment also shows that substantial benefits can be
derived from using a language, such as SIMONE, which has
relevant simulation features, rich data and control structures
and good debugging facilities. A program can be designed and
written in less time, with less effort, requiring less coding,
resulting in less opportunity to make errors and, therefore,
requiring less time to find, diagnose and correct them. The
resulting model is also shorter and more readable.

145

References

BIRTWISTLE, G., DAHL, O-J., MYHRHAUG, B. and NYGAARD, K. (1973).

BRINCH HANSEN, P. (1973).

Hoarg, C. A. R. (1974).

KausiscH, W. H., PERROTT, R. H. and HoARE, C. A. R. (1976).
341-356.

Simula Begin, Student Litteratur, Auerbach.

Operating Systems Principles, Prentice Hall, Englewood Cliffs, NJ.
Monitors: an operating system structuring concept, CACM, Vol. 17 No. 10, pp. 549-557.
Quasiparallel Programming, Software—Practice & Experience, Vol. 6, pp.

O’KANE, P. C. (1976). The Operation of a Hospital Paramedical Department—A Quantitative Study, Ph.D. Thesis, The Queen’s University

of Belfast, N. Ireland.
PerrOTT, R. H. and RaJa, A. K. (1977).
WIRTH, N. (1971).

Quasiparallel Tracing, Software—Practice & Experience, Vol. 7, pp. 483-492.
The Programming Language PASCAL, Acta Informatica, Vol. 1, pp. 35-63.

Book reviews

Workshop on Reliable Software: Applied Computer Science by Peter
Raulefs, 1979, 281 pages. Carl Hanser Verlag

This book presents the proceedings of the workshop on reliable soft-
ware organised by the German Chapter of the ACM and held at
Bonn University in September 1978. Twenty-two papers were
selected for presentation and inclusion in the proceedings. Ten of
these papers were submitted by researchers from Germany, six from
the USA, and the rest from Italy, Austria, France and the UK. All
but three of the papers appear in English in the book ; for the sake of
completeness, it is a pity that the remaining three were not also
translated from German.

The general standard of presentation of individual papers is good
but there is a paucity of introductory material, both to put the over-
all purpose of the workshop into perspective and to give some back-
ground on the major themes covered. There are no reports of panel
discussions and audience responses so some of the possible benefits
of publishing the proceedings of a workshop seem lost. However, the
book is still of considerable interest because it contains a broad range
of material devoted to several different aspects of the very important
topic of software reliability. Papers are presented on program testing
and fault detection; systems for program development, software
design methodologies for industry, programming language concepts,
specification and documentation, and program verification. Thus,
there are papers with a theoretical emphasis—verification of while-
programs in a simple calculus, for instance—and others with a more
practical bent such as the application of new testing techniques to a
numerical algorithms library. The book should be of interest to both
the more theoretically inclined and to those with a practical concern
in the production of reliable software.

BriaN Forp (Oxford)

Reliable Software Through Composite Design by G. J. Myers; 1975;
159 pages. (Van Nostrand Reinhold, £5-20)

I am not sure why this book has only just come up for review—
although the review notice stated that it was published in 1979, the
book itself gives a 1975 date—perhaps having been produced in
America it is only now being distributed in the UK. It is written by
Glenford Myers who is already a well known authority on software
production. He is the author of many research papers and a number
of books and contributes to some of the ‘up-market’ seminars in this
area.

This particular book of his describes what Myers calls ‘composite
design’. This is a design methodology which draws on many of the
ideas often associated with Constantine, namely the functional
decomposition type of approach, to be contrasted with the data
structure methods of Jackson and others. Thus the book, after a
good preamble in which ‘program quality’ is defined, deals first with
the major attributes of modules—termed ‘strength’ for the internal
relationships within a module, and ‘coupling’ for the links between
modules. Other attributes of modules, such as size and predictability
are discussed, and for each recommendations are given on what one
should be aiming to achieve for a ‘good piece of software’. The actual
process of dividing a problem into modules is discussed under the
heading of composite analysis using some good examples to illustrate

146

the method. Concluding the part of the book specifically describing
‘composite design’ is a chapter which shows how it fits in with
structured programming, documentation and other aspects of soft-
ware production. There is then a chapter on modularity and virtual,
storage which I felt was a ‘poor mans’ version of his paper in one of
the IBM journals. The book ends for me, however, on a very stron,

note with a ‘model of program stability’ in which the attributes of &
piece of software are first quantified and then predictions can bg
made about the ‘ease of change’ of the software. Although some;
would see this venture as rather academic, the chapter does under=
line the reasons for aiming at good module design, and serves as &

good conclusion and summary of much of the rest of the book. &

The book is designed as a practical guide for experienced programs
mers and system analysts. It gives details of theories from the view%
point of their use for both application program and system progra
design. I believe the book succeeds in these objectives: it is clears
easy to read and understand, and is not too long. Myers, almos®
apologetically, states that ‘Composite Design is largely a collectioft
of guidelines’, and the book details these ‘guidelines’—‘not
rules’. As for reliability, this is discussed briefly in the introductiozob?
and then it is assumed that the reader can ‘see’ that employing thg
methods of ‘composite design’ will lead to reliable software. =

This is a useful guide for people engaged in the production of soft%i_
ware systems on how to design the internal structure of a programg-

DAvVID JACOBS (Leatherheadg

[\
Fortran, PL|I and the Algols, by Brian Meek, 1978; 291 pages;
(Macmillan, £12-:00)

cs8ele

This book is not an introductory programming text for the land®
guages in its title, nor is it yet another book on the comparative.
study of programming languages. It would seem that the book fall§
nicely between two stools. Indeed that was the reviewer’s opiniofy
before reading the book. Brian Meek has in fact identified a conigr
pletely empty stool and provided the appropriate book. E]

The book discusses six languages—ALGOL 60 (Revised an®
Modified), ALGOL 68, FORTRAN IV, FORTRAN 77 and PL/I-¥
from the viewpoint of a user not the viewpoint of a ‘languag%
lawyer’. This provides a refreshing change. Indeed the book is ve
pleasant to read, being marred (for me) only by a galaxy of seeming?-%
irrelevant quotations; although I must admit to liking one quota-
tion from Aldous Huxley. Inevitably there are a few typographical
errors, but none of them will cause the reader any problem. They
will irritate the author more than the reader. I did not notice any
errors in the language details. I do disagree with some remarks
about Euclid’s Algorithm and Ackermann’s Function.

If you are involved with teaching a course on any of the languages
or a course on a comparison of languages, or are simply interested in
programming languages you should definitely read this book. The
book will also make excellent background reading for a student on
either course, but its choice of languages and its price suggest that it
is not suitable for use as the text book for a course on the comparison
of languages.

Regrettably the publishers chose to produce this book only in
hardback; a paperback edition would surely have been at a price
more attractive to students.

A. M. AppYMAN (Manchester)

The Computer Journal Volume 23 Number 2

