References

BIRTWISTLE, G., DAHL, O-J., MYHRHAUG, B. and NYGAARD, K. (1973).

BRINCH HANSEN, P. (1973).

Hoarg, C. A. R. (1974).

KausiscH, W. H., PERROTT, R. H. and HoARE, C. A. R. (1976).
341-356.

Simula Begin, Student Litteratur, Auerbach.

Operating Systems Principles, Prentice Hall, Englewood Cliffs, NJ.
Monitors: an operating system structuring concept, CACM, Vol. 17 No. 10, pp. 549-557.
Quasiparallel Programming, Software—Practice & Experience, Vol. 6, pp.

O’KANE, P. C. (1976). The Operation of a Hospital Paramedical Department—A Quantitative Study, Ph.D. Thesis, The Queen’s University

of Belfast, N. Ireland.
PerrOTT, R. H. and RaJa, A. K. (1977).
WIRTH, N. (1971).

Quasiparallel Tracing, Software—Practice & Experience, Vol. 7, pp. 483-492.
The Programming Language PASCAL, Acta Informatica, Vol. 1, pp. 35-63.

Book reviews

Workshop on Reliable Software: Applied Computer Science by Peter
Raulefs, 1979, 281 pages. Carl Hanser Verlag

This book presents the proceedings of the workshop on reliable soft-
ware organised by the German Chapter of the ACM and held at
Bonn University in September 1978. Twenty-two papers were
selected for presentation and inclusion in the proceedings. Ten of
these papers were submitted by researchers from Germany, six from
the USA, and the rest from Italy, Austria, France and the UK. All
but three of the papers appear in English in the book ; for the sake of
completeness, it is a pity that the remaining three were not also
translated from German.

The general standard of presentation of individual papers is good
but there is a paucity of introductory material, both to put the over-
all purpose of the workshop into perspective and to give some back-
ground on the major themes covered. There are no reports of panel
discussions and audience responses so some of the possible benefits
of publishing the proceedings of a workshop seem lost. However, the
book is still of considerable interest because it contains a broad range
of material devoted to several different aspects of the very important
topic of software reliability. Papers are presented on program testing
and fault detection; systems for program development, software
design methodologies for industry, programming language concepts,
specification and documentation, and program verification. Thus,
there are papers with a theoretical emphasis—verification of while-
programs in a simple calculus, for instance—and others with a more
practical bent such as the application of new testing techniques to a
numerical algorithms library. The book should be of interest to both
the more theoretically inclined and to those with a practical concern
in the production of reliable software.

BriaN Forp (Oxford)

Reliable Software Through Composite Design by G. J. Myers; 1975;
159 pages. (Van Nostrand Reinhold, £5-20)

I am not sure why this book has only just come up for review—
although the review notice stated that it was published in 1979, the
book itself gives a 1975 date—perhaps having been produced in
America it is only now being distributed in the UK. It is written by
Glenford Myers who is already a well known authority on software
production. He is the author of many research papers and a number
of books and contributes to some of the ‘up-market’ seminars in this
area.

This particular book of his describes what Myers calls ‘composite
design’. This is a design methodology which draws on many of the
ideas often associated with Constantine, namely the functional
decomposition type of approach, to be contrasted with the data
structure methods of Jackson and others. Thus the book, after a
good preamble in which ‘program quality’ is defined, deals first with
the major attributes of modules—termed ‘strength’ for the internal
relationships within a module, and ‘coupling’ for the links between
modules. Other attributes of modules, such as size and predictability
are discussed, and for each recommendations are given on what one
should be aiming to achieve for a ‘good piece of software’. The actual
process of dividing a problem into modules is discussed under the
heading of composite analysis using some good examples to illustrate

146

the method. Concluding the part of the book specifically describing
‘composite design’ is a chapter which shows how it fits in with
structured programming, documentation and other aspects of soft-
ware production. There is then a chapter on modularity and virtual,
storage which I felt was a ‘poor mans’ version of his paper in one of
the IBM journals. The book ends for me, however, on a very stron,

note with a ‘model of program stability’ in which the attributes of &
piece of software are first quantified and then predictions can bg
made about the ‘ease of change’ of the software. Although some;
would see this venture as rather academic, the chapter does under=
line the reasons for aiming at good module design, and serves as &

good conclusion and summary of much of the rest of the book. &

The book is designed as a practical guide for experienced programs
mers and system analysts. It gives details of theories from the view%
point of their use for both application program and system progra
design. I believe the book succeeds in these objectives: it is clears
easy to read and understand, and is not too long. Myers, almos®
apologetically, states that ‘Composite Design is largely a collectioft
of guidelines’, and the book details these ‘guidelines’—‘not
rules’. As for reliability, this is discussed briefly in the introductiozob?
and then it is assumed that the reader can ‘see’ that employing thg
methods of ‘composite design’ will lead to reliable software. =

This is a useful guide for people engaged in the production of soft%i_
ware systems on how to design the internal structure of a programg-

DAvVID JACOBS (Leatherheadg

[\
Fortran, PL|I and the Algols, by Brian Meek, 1978; 291 pages;
(Macmillan, £12-:00)

¢8¢€/9

This book is not an introductory programming text for the lan®
guages in its title, nor is it yet another book on the comparative.
study of programming languages. It would seem that the book fall§
nicely between two stools. Indeed that was the reviewer’s opiniofy
before reading the book. Brian Meek has in fact identified a conigr
pletely empty stool and provided the appropriate book. B}

The book discusses six languages—ALGOL 60 (Revised and
Modified), ALGOL 68, FORTRAN IV, FORTRAN 77 and PL/I-¥
from the viewpoint of a user not the viewpoint of a ‘languag%
lawyer’. This provides a refreshing change. Indeed the book is ve
pleasant to read, being marred (for me) only by a galaxy of seeming?-%
irrelevant quotations; although I must admit to liking one quota-
tion from Aldous Huxley. Inevitably there are a few typographical
errors, but none of them will cause the reader any problem. They
will irritate the author more than the reader. I did not notice any
errors in the language details. I do disagree with some remarks
about Euclid’s Algorithm and Ackermann’s Function.

If you are involved with teaching a course on any of the languages
or a course on a comparison of languages, or are simply interested in
programming languages you should definitely read this book. The
book will also make excellent background reading for a student on
either course, but its choice of languages and its price suggest that it
is not suitable for use as the text book for a course on the comparison
of languages.

Regrettably the publishers chose to produce this book only in
hardback; a paperback edition would surely have been at a price
more attractive to students.

A. M. AppYMAN (Manchester)

The Computer Journal Volume 23 Number 2





