Dynamic resource allocation and supervision with the
programming language MODULA

I. C. Wand
Department of Computer Science, University of York, Heslington, York YO1 5DD

The programming language MODULA was designed by Wirth to be suitable for programming in
areas previously the preserve of Assembly code. Examples of these areas are process control systems,
computerised laboratory equipment and input/output device drivers. Experiments with MODULA have
shown that the language is quite successful for coding single programs that run on dedicated computer
systems, but that it is less successful in applications that require dynamic resource management, both of
storage and of processor time.

In this paper we define extensions to MODULA that enable the language to be used for the coding of
storage allocators and process supervisors. At the same time an exception handling mechanism is
introduced for the convenient handling of the error situations that arise during such programming. The
exception handling mechanism turns out to have other uses, such as variable initialisation and process
exit code. The consequences of an exception handling mechanism suitable for interactions L2tween
processes are examined.

Finally, some estimate is made of the further complexity introduced into an existing simple language,

both into its definition and into the compiler. Possible areas of use are mentioned.

(Received December 1978)

MODULA is a simple programming language proposed by
Wirth (1977a) for use in programming areas still dominated by
Assembly code, such as process control, computerised labora-
tory equipment and input/output device drivers. Coding
exercises in MODULA by Wirth (1977b) and others (Holden
and Wand, 1978) have shown that the language is quite success-
ful in these areas of application and is particularly good for the
expression of single programs that will run on dedicated
computing equipment.

However the language does have a number of drawbacks if it
is to be used for the coding of operating systems kernels or for
the writing of any software component where supervision plays
an important part. In particular these difficulties centre upon

(a) a process supervising other processes
(b) a storage allocation process and

(c) the general handling of error conditions at both the process
and module level.

It is interesting to note that these are all requirements of the so-
called ‘Ironman’ language (1977).

This paper examines extensions to MODULA which attempt
to overcome these drawbacks. A new storage mechanism is
proposed based upon a declared type called a region which is
very similar to the implicit heap in PASCAL. For references
into such storage, PASCAL-like pointers are proposed. In
addition it is proposed that processes and their storage must be
allocated within a region, although it is not suggested that
device processes should be included in this new mechanism.
Thereafter references to ordinary processes must be made via
pointers, and, furthermore, when a process is run it can be
executed for a given number of signal occurrences (usually
originating from a device process) under the supervision of a
parent process. By this mechanism supervisory processes can
be constructed which can then make sure that a process can
only run for a limited period and can subsequently terminate
that process if necessary. An exception mechanism is proposed
for transmitting error conditions; however the mechanism can
be used quite generally.

We suggest that these extensions will cause moderate compli-
cations in the language definition and in the compiler. The
major run time complication is in the storage allocation
mechanism which implies a PASCAL-like heap within every
region, although with the simplification that any region is
allocated within the storage space of the parent process. In

The Computer Journal Volume 23 Number 2

Wiy papeojumoq

conclusion we suggest that the facilities proposed will enable x
MODULA-like language to be used for the coding of basig

operating system components. N
o
g
Pointers 3

In its present form MODULA takes a very static view of
storage. If some upper limit on recursion depth is assumed, th&é
storage requirements of all processes can be calculated af
compile time and hence the mapping of most storage can b
predicted. Clearly such a rigid scheme is not acceptable in

(a) operating systems, where the number of processes and theii:
storage requirements may vary from time to time, and

(b) compilers, where internal data structures, such as thé
dictionary, need a varying number of components———manﬁ
of differing size. =

The usual technique of referencing data structures whosé

number and size vary on allocation is by pointers. For thi$3

reason we propose that PASCAL-like pointers should b&

introduced into MODULA, that is (and using the notation of

the PASCAL User Manual, Jensen and Wirth, 1975)

type (identifiery = 1 {type identifier)
denotes a pointer type identifier that can only be used in thez
subsequent declarations of pointers. These pointers can onl
reference instances of that type allocated within a region (see.
below). Legitimate type identifiers that can be used in such a3

type declaration are R

integer, Boolean, bits, char, signal, region, process
and exception

together with user declared types. Note that type declarations
and procedure parameter lists are the only contexts in which the
type process can be used. There are no restrictions on the
contexts where objects of type region and exception can be
declared.

Anitem of a given type can be allocated within a specific region
using the standard procedure new.

Ulwodpui

oI

o)senb

new (r,p) allocates a new variable within the region r and
assigns the pointer reference of that variable to
the pointer variable p.

new (r, p, x) allocates the storage space for the process x with-
in the region rand assigns the pointer reference of
x to pointer variable p. Thereafter all references

147

to this instance of process x will be made via p.
Note that any parameters used by x must be
made in the call to new, for example
new (r, p, x (a, b))
If a process is referenced using new, the initialise exception is
raised after the storage for the process is allocated. Any code
supplied for the exception handler (see below) within the
allocated process is executed at this point. If there is insufficient
storage available for the variable or process to be allocated, the
exception insufficientstorage is raised.
Any item, process or otherwise, that is referenced by a pointer
can be erased from its region using dispose.
dispose (p)
will perform the ‘inverse’ of new (r, p). If the item referenced by
P is a process, the terminate exception is raised in that process
before its storage is reclaimed.
Note that it is not proposed in this paper to introduce
PASCAL variant records, although clearly to satisfy (b) above
some kind of facility of this type might be desirable.

Regions

The basic type region is proposed so that the working space for
individual processes, or groups of processes, together with any
other variables, can be allocated within a given storage area. A
region is declared in the usual way, for example

var r: region;

Space for a particular region is allocated within the storage area
of the parent process using the standard procedure generate

generate (r, i) allocate a region r of size i in the storage area
of the parent process. i is interpreted in an
implementation dependent fashicn and could,
for example, be the number of bytes or words
required by r.
The effect of calling generate more than once, naming the same
region, is to make further allocation impossible within any
region other than the most recently generated, although
reference to previous regions via existing pointers can continue.
If insufficient storage is available the exception insufficient-
storage is raised.

Note that regions can be declared and passed as procedure or
process parameters in just the same way as any other type;
however no other operations (including assignment) are defined
for regions.

A standard function

howmuchleft (r)

is available. It returns in implementation dependent units and
in a manner consistent with generate, the amount of storage
left in region r.

Processes

In MODULA it is assumed that the initialisation and running
of a process are one and the same action. It is proposed here
that these two actions should be separated and that, as alluded
to above, the initialisation should be carried out at the same
time as the allocation of the process in its region. Therefore in
the following process

process p;
var i: integer;

upon initialise do i := 1 end;
begin

{main body of process}
end p;

the initialisation of i would be carried out when the instance of
the process is allocated using new. The separation of initialisa-
tion and the subsequent running of a process is considered

148

necessary so that initialisation of any local variables can take
place at the same time as storage allocation and therefore is
independent of any subsequent scheduling of the process.

In the same manner, the terminate condition is raised when a
process is the target of dispose, so that any tidying up operations
can be carried out by a process before it is removed from its
region. If a process does not supply initialisation or termina-
tion code, a process heading of the form

upon initialise do end;

terminate do end;
is assumed.

Note that there are no restrictions on the points in a program
where new may be called with a process as its target—this
removes the restriction in the present language in which process
calls can only be made in the main program. It is still proposed
that processes should only be declared at level 0, that is, they
cannot be nested or be local to procedures. However it is sug-
gested that process parameters should only be of type const.
This will remove any problems that may arise with parameters
having shorter lifetimes that the process to which they are2
passed.

The scheduling of processes
A new standard procedure run is proposed

procedure run (pn: p; t: signal; n: integer): code;
where

type p = 1 process;
and

type code = (finished, completed, waiting);

Procedure run makes that process instance described by png
runnable for a period of time such that the signal ¢ is sent ns
times. The process will be made unrunnable if it waits upon a
signal within the period defined by r being sent n times. Thes
procedure run returns

finished if it runs to the end of the period, or
completed if it completes during the period, or
waiting if it waits on a signal during the period.

The parent process, that is the process calling run, is halteds
until the call of run is completed, upon which the process3;
continues at the statement following the call to run.

U
E

dnoo!Luepeoe//:sdnu wioJ} pepeoju

3
8

=)

1Ly LIg/ec/a1o1e)| LU

w
I\)

An example scheduler is now presented. The scheduler relies2

upon a device module clock which sends a signal every line2
frequency cycle. The scheduler process simply runs the runnable®
processes held in a circular queue for a multiple of the lineS

C
(2]

=}

frequency cycle. No effort is made to handle error situationss
arising in the supervised process. ti?

S
A process scheduler N

device module clock[6];
{The Device Module clock provides the signal tick which is
‘sent’ every line frequency cycle.}

define tick;
var tick: signal,
process kw11/[400B];
var csr[177546B]: bits;
begin
loop
csr[6] := true;
doio;
csr[6] := false;
while awaited(tick) do send(tick) end
end
end;

The Computer Journal Volume 23 Number 2

begin
kwlll
end clock;

interface module queue;

{‘queue’ maintains a crude list of runnable processes.
Processes are inserted into the queue using ‘setup’.
The next process to be run is found using ‘next’ and
a process is removed from the queue using ‘erase’.}

define setup, next, erase;
type p = 1 process;
var i, index: integer,
bn: array 0:31 of Boolean;
pn: array 0:31 of p;
a: region;
procedure setup(pp: process; var pr: p): Boolean;
var i: integer;
upon insufficientstorage do setup := false end;
begin
i:=0;
loop
when i > 31 do setup := false exit;
when not bn[i]

do
new(r, pn[l:], pp);
pr .= pn[i];

bn[i] := true;
setup := true
exit;
inc(i)
end
end setup;

procedure next(var pr: p) Boolean,
var i: integer;
begin
i: = index;
loop
= (i + 1) mod 32;
when bn[i] do pr := pn[i],; next :=
when i=index do next := false exit
end
end next;

procedure erase(pr: p);
var i: integer;
begin
i:=0;
loop
when i > 31 do exit;
when p=pn[i] do bn[i] :=
inc(i)
end
end erase;
begin
i:=0;
repeat
bn[i] := false; inc(i)
until i > 31;
index := 0;
generate(a, 1024*100) {100K storage say}
end queue;

false; dispose(pr) exit;

process scheduler;

{The scheduler process runs the next available process
Jor 2 clock ticks. If no runnable process is available
the process waits until the next line cycle starts and then
looks for a runnable process again.}

The Computer Journal Volume 23 Number 2

true; index := i exit;

use tick, next, erase;
const numberofticks = 2;
var pn: 1 process;
begin
loop
if next(pn)
then
if run(pn, tick, numberofticks) = completed
then erase(pn)
end
else wait(tick)
end
end
end scheduler

Exception handling

It is clearly desirable to incorporate an exception handling
mechanism into a language like MODULA. Such a mecha-
nism could be used for:

)
(a) the handling of rarely occurring error situations (see stack 2
module example below),

(b) the handling of process termination statements which may & 8
be necessary when a process is prematurely terminated from =
outside (using dispose in the above proposal), and

(c) a more structured approach towards handling conditions
that arise infrequently.

Exceptions occur synchronously and should be distinguished g
from interrupts which occur asynchronously and in MODULA & 2
are handled by device processes. As we have already shown the 2 5
mechanism can also be used when a process is initialised or 2
terminated for any special action that may be required at these S 3
times. 3

Exception handling mechanisms have been examined in detail S
by Goodenough (1975) and Levin (1977), and a simple scheme%-
for error handling has been proposed by Bron et al. (1976). 5
The scheme proposed here is relatively straightforward and 5
follows Levin in suggesting that the exception is defined
(normally) with the abstract type it is monitoring (see stack 2
example below) and the handler, which is set up declaratively, = 5
is then associated with the use of the abstract type.

The proposed scheme is based upon the declaration of &
instances of type exception, together with their assoc1atedoo
handlers. Normally these will be associated with an abstractcr
type and will define errors or situations that occur rarely durmg@
their execution. An exception can only be raised and handled‘D
within the same process; this rule is broken by the initialise and o o
terminate exceptions which are raised as a result of calling the
standard procedures new and dispose. A standard procedure>
raise is defined :

raise(e) propagate the exception e from the context of the call 3 3
along the dynamic calling sequence of the current ™
process.

An exception handler is declared at the head of a procedure or
process in the following manner

upon {exception name) do {statement sequence) end
Once an exception handler has been entered and its body of
statement completed, then

(a) if the handler was declared at the head of a procedure, exit
is made to the statement folfowing the call of the procedure,
or

(b) if the handler was declared at the head of a process, then
the rerminate exception is raised in that process.

peoju

eoe//:sdny wou

An example of the use of an exception handler
To illustrate an application of the proposed exception handling

149

mechanism, consider the following example of the abstract type
stack, together with its manipulating procedures. Note that the
exceptions themselves are part of the abstract type but that the
handler must be supplied by the user of the type.

The abstract type ‘integerstack’
module integerstack ;

{An abstract type stack which represents a stack of integers.
If stack overflow or underflow occurs, then the
associated exception is raised.

Note that parameterised types would give both a stack of any
size as well as stack elements of arbitrary data types}

define push, pop, set, stack;

const max = 1024;

type stack = record
sk: array 0: max-1 of integer;
index: integer
underflow, overflow: exception

end;
procedure set(var x: stack);
begin
x.index := 0
end set;
procedure push(var x:stack; i: integer);
begin
if x.index =max then raise(x.overflow)
else

x.sk[x.index] :=
inc(x.index)
end
end push;

procedure pop(var x:stack):integer,
begin
if x.index =0 then raise(x.underflow)
_else
dec(x.index);
pop = x.sk[x.index]
end
end pop;
begin
end integerstack;

A use of ‘integerstack’
The exception handling mechanism suggested here is supplied
in the declaration part of a Module, Process or Procedure and
once entered control cannot pass back into the statement part
of the interrupted construct. When the last statement of the
exception handling unit has been executed, the execution of the
Module, Process or Procedure is completed.

The use of the abstract type stack could be as follows:

module useintegerstack;

use push, pop, set, stack;

var s: stack;
upon
s.overflow do ...
s.underflow do ...
begin
.. statements using set, push, pop etc . . .
end useintegerstack ;

deal with error ... end;
deal with error ... end

Visibility
The above use of ‘integerstack’ breaks the visibility rules of
MODULA. The present rules are

(@) that only the identity of a type is known outside the module
in which it is defined. This means that all structural details,
such as record field names and the components of scalar
types, are unknown outside the defining module; and

(b) all local variables exported from a module are read-only or,
in the case of a signal, wait-only.

We propose here that it should be possible selectively to export
(and subsequently import) specific structural information. A
possible notation for the above example might be

module integerstack,
define push, pop, set, stack(underflow, overflow);

end integerstack ;

module useintegerstack ;
use push, pop, set, stack(underflow, overflow);

end useintegerstack;

where the record fields or the components of scalar types musﬁ
be specifically listed in both the define and use lists.

Of course once the structural details of types are mac%
available to the user of that type, then the specific details @'
implementation may become available to the user. Howeveér
two things will guard against misuse
(a) exported objects are still read-only, and
(b) only components specifically exported will be known.
Note that this proposal certainly lacks the flexibility of GYVE
pointers (Schwartz and Shaw, 1976) or the completeness of tlg
Fuclid (Lampson et al., 1977) visibility rules. However it s
suggested that the sxmple rules of MODULA, together with the
modification suggested here, will deal with the majority @f
practical cases.

:sdpy wol

LW0o/WOo9"

Levin’s storage allocation problem
When discussing the viability of various exception handlmg
schemes, Levin (1977) posed the problem of a general stora&
allocator which was responsible for the administration ofa
storage pool used by an indeterminate number of processqg
He suggested that the ‘natural’ way to program a solution to
this problem would be for the allocator to try and satisfy tE;
request from its own resources; if it could not do so, an
exception would be raised asking other processes in the system
to release storage. When the processes had released somie
storage, the allocator would then try to satisfy the ongmil
request. The attraction of using an exception for communi
tion is that it is unnecessary for the allocator to know either O&e
number of processes or their names.

The language proposals made in this paper will not solw:e
Levin’s problem, in particular

(a) the process that raised the exception cannot be resumgj
after the exception has been serviced, and N

(b) the procedure generate can only respond to requests using
pointers of known type. A general allocator, perhaps a
procedure, would have to respond to requests to allocate
an object of arbitrary type (and size). Clearly a relaxation of
the type checking mechanism would be necessary to satisfy
this requirement.

The following language extensions are suggested to solve

Levin’s problem

(@) the pointer type any is introduced for use in parameter lists.
It will satisfy any actual parameter of type pointer, that is

type any = 1 {any type);
and,
(b) a statement resume can be included in the exception hand-
ling unit following do and will cause the program context,
where the exception was raised, to be resumed.

[udy

The Computer Journal Volume 23 Number 2

The following program module is a solution to Levin’s problem

interface module allocator
define grab, return, release;
var x: region;
allocated: Boolean;
release: exception;

upon insufficientstorage
do raise(release);
if howmuchleft(x)=0 then allocated := false end;
resume
end;

procedure grab(var r: any): Boolean;
begin
allocated := true;
new(x, r);
grab := allocated
end grab;

procedure return(r: any);
begin
dispose(r)
end return;
begin
generate(x, 10000)
end allocator;

All users of the storage allocator should provide an exception
handler to free storage in response to the exception ‘release’.
The exception handler would have the form

upon release
do

return(something);
resume
end;

The mechanism used above is considerably less general than
that proposed by Levin (1977); in particular, when an exception
is raised, parameters cannot be passed to the handler, nor can
values be returned by the handler—except via global variables.
In addition the set of processes that can handle the exception
must be considerably wider than that outlined so far. Excep-
tions must be propagated across process boundaries and the
set of viable handlers for the exception must be expanded to
include processes that are not on the active calling sequence of
the current process. Also, if several processes have handlers for
the same exception, one must resolve the question of how many
of the handlers are invoked—should the first valid handler
suffice? For the solution of Levin’s problem we require

(a) all handlers that know its name can receive the exception,
irrespective of whether or not they are on the calling
sequence of the process that raised the exception, and

(b) when the exception is raised, all handlers for that exception
are invoked in an undefined order.

Clearly the mechanism could be made more complicated by
indicating, when the exception is raised, the subset of valid
handlers that can respond. A further complication, which is not
discussed here, is the effect of a handler, not in the current
calling sequence of the raising process, that does not contain a
resume statement. Furthermore what happens if one of a group
of handlers does not contain a resume statement? Are the
handlers that contain resume statements executed before that

References
BrON, C. FOKKINGA, M. M. and DE Haas, A. C. M. (1976).

handler or is the order of execution random ?

Conclusions

We estimate that the language proposals (excluding the
exception handling required for Levin’s problem) made in this
paper will increase the length of the defining document for
MODULA by approximately 20%,. The major complication
will be the definition of the semantics of three new types, the
operations allowed upon them, exception handling (basically a
new control sequence) and the small changes in the visibility
rules. Of particular difficulty are the semantics of the standard
procedure new.

We further estimate that the size of the compiler (Holden and
Wand, 1977) will increase by about 20 %. A large proportion of
this code will be in the second or semantic pass of the compiler.
The size of the PDP-11 run time package will probably increase
by a factor of three or four, perhaps approaching 512 bytes.
The major items that must be added are

(a) the standard procedure run, and

(b) the heap storage allocation mechanism, including new and
dispose.

However even with the increase in size given above, the

compiler and its run time system will still be quite small by the

standard set by other languages in this area. At the present

time we have no plans to implement the language features

discussed in this paper.

Both the definition and implementation of a resume state-
ment, as required for a solution of Levin’s problem, presents
considerable difficulty. A similar facility in PL/I was very
difficult to define; certain ON conditions could resume their
invoking context, others could not. The problem is somewhat

easier here as the exceptions can only be generated by software °

(they cannot be generated, for example, by hardware overflow
conditions), although in other respects it is more difficult as
many handlers may be invoked as a result of a single raised
exception condition (which may cross process boundaries). For
the solution of Levin’s problem, the exception must be propa-
gated to handlers that may not be on the calling sequence of the
process raising the exception. This will give rise to difficulties in
locating and invoking the set of valid handlers. No solution to
this problem is given in this paper, either in the definition of the
extensions to MODULA or of their implementation. It may be
that exception handling, when used in a block-structured
language, should remain an essentially simple mechanism and
be used for straightforward error handling (as in Ironman,
1977).

The utility of the proposal made in this paper can only be
tested by writing software components in this dialect of
MODULA. If the arguments presented in this paper are well
conceived then the class of problem to which MODULA can
be applied will have been considerably extended. We hope that
this will prove to encompass both low level programming, such
as device drivers (previously well served by MODULA), and
higher level programming (previously well served by Concur-
rent PASCAL).

Acknowledgement

The work described in this paper was carried out when the
author was on sabbatical leave at the IBM Thomas J. Watson
Research Center, Yorktown Heights, USA. The support of
IBM and the hospitality of colleagues at Yorktown Heights is
gratefully acknowledged.

A proposal for Dealing with Abnormal Termination of Programs, Memo-

randum Number 150, Department of Applied M?thematics, Twente University of Technology.

GOODENOUGH, J. B. (1975).

The Computer Journal Volume 23 Number 2

Exception Handling: Issues and a Proposed Notation, CACM, Vol. 18, pp. 683-696.

151

20z udy 01 U0 1s8nB Aq 989Z8€/ . 1/2/€Z/31014e/|uf00/W0d"dNo"oILEPEDE//:SARY W) PAPEOUMOQ

HoLDEN, J.and WAND, 1. C. (1977). Experience with the Programming Language MODULA, Proceedingsof IFAC/IFIP Real Time Programm-

ing Seminar, Eindhoven, K. Smedema (editor), Pergamon Press.
An Assessment of MODULA, Software—Practice and Experience. In press.

HoLDEN, J. and WAND, 1. C. (1978).

JENseN, K. and WIRTH, N. (1975). Pascal—User Manual and Report, Springer-Verlag.

LaMPSON, B. W., HORNING, J. J., LoNDON, R. L., MICHELL, J. G. and PopEk, G. J. (1977).

SIGPLAN Nottces pp. 1-79.
LeviN, R. (1977).
Mellon University.
ScHWARTZ, J. T. and SHAw, P. (1975).

Report on the Programming Language Euclid,

Program Structures for Exceptional Condition Handling, PhD Thesis, Department of Computer Science, Carnegie-

A Brief Survey of the Principal Concepts of GYVE, GYVE Newsletter, Number 1, Computer

Science Department, Courant Institute of Mathematical Sciences, New York University.

US DEPARTMENT OF DEFENSE, (1977).
WIRTH, N. (1977a).

WIRTH, N. (1977b). The Use of MODULA, ibid, pp. 37-65.

Ironman: Requirements for High Order Computer Programming Languages.
MODULA: A Language for Modular Multiprogramming, Software—Practice and Experience, Vol. 7, pp. 3-35.

Book reviews

Programming in Standard Fortran 77 by A. Balfour-and D. Marwick
1979; 384 pages. (Heinemann, £9-50, £4-50 paper)

The authors claim in their preface that this book will serve either as a
text for the novice or as a reference for the more experienced pro-
grammer. They also imply that FORTRAN is for use only by
scientists and engineers; this feeling is highlighted elsewhere in the
book. They state that they are going to encourage the reader to write
good FORTRAN programs and to this end devote a large part of
Chapter 3 to a quite unnecessary use of an ALGOL-like algorithmic
design language even down to the bold faced type for keywords. This
language emerges in a contrived way at intervals during the remainder
of the book and will probably serve to confuse the beginner and
annoy the reader who is using the book as a reference. Once the
reader has been told on page 3 that FORTRAN is not an ideal
programming language even though it is so widely used he will
realise that the authors are ALGOL (Pascal?) men wearing
FORTRAN hats.

It is a pity that the considerable material of FORTRAN is not
presented from a FORTRAN user’s viewpoint, rather than from the
stance adopted. Having said this, the body of the text describes most
of the features of the language very adequately in an order which is
more or less the norm for FORTRAN text books. Most chapters
have a number of useful exercises for which solutions appear in an
appendix. Input/output is covered in three separate chapters which
would probably have been better combined into two. I was surprised
that Chapter 7 is not restricted to the list directed forms of the READ
and PRINT statement instead of presenting simple and not so
simple formats first. The coverage of further input/output later in the
book is entirely adequate although no mention is made under the
heading ‘use of files’ of the problems that will be raised by different
implementations of the OPEN statement. Much of Chapter 8
(Program structures), particularly a description of statement lines
and comments, could appear earlier. With the almost universal
availability of terminals the three pages devoted to a program hand-
written on coding sheets seems superfluous. Predictably the chapter
entitled ‘Control statements’ follows IF-THEN-ELSE by DO and
relegates such useful features as logical IF and computed GOTO to
the final chapter without a forward reference. We are given a mere 13
pages entitled ‘Arrays and subscripted variables’ which makes the
mistake of introducing arrays by means of a matrix. Many non-
mathematical FORTRAN users have been perplexed by this
approach over the years.

A good chapter entitled ‘Procedures’ is marred by the authors’
conclusion that argument lists should always be used in preference to
COMMON. Logical and complex facilities are well covered but the
chapter on double precision facilities starts with the sweeping state-
ment that ‘the majority of programmers will seldom, if ever, require
to use double precision arithmetic’. Perhaps the authors have never
had cause to use the NAG library on a 16-bit mini. Character hand-
ling is given a chapter to itself although the use of more examples
here would have had much to recommend it. Towards the end of the
book a chapter entitled ‘Case studies’ discusses a number of non-
trivial programs in some detail. This is a good chapter confused by

152

the large number of different typefaces used by the printer; one i
vaguely aware of the problem throughout the book but never morg
so than here.

There is sufficient awareness today about program portability fo‘%
Chapter 21 to consist of more than 34 pages—it is not enoug
merely to point the reader at a number of references, good thoug
these sources may be. A number of ‘other features’ are lumpe
together towards the end of the book. One could perhaps justify thig
treatment of the arithmetic IF and assigned GOTO, but not of thg
logical IF and computed GOTO. The IMPLICIT statement shoulg
appear with type statements near the start of the book. The authoIS
state that their coverage of ENTRY and alternate RETURN statés
ments is deliberately superficial which is a pity as full coverage
these statements would have fitted logically into the chapter o’g
procedures. Most serious of all was the statement that ‘EQUE
VALENCE is a facility of dubious value’ and the restriction of i o
description to two pages. The book is concluded by appendices of-
conflicts with FORTRAN 66 (too brief), a summary of statemen@
and statement order and an unnecessary copy of the syntax charﬁ'
taken from the ANSI standard. Answers to exercises precede 3
comprehensive index which will please the reference reader. S

In conclusion, certainly the best FORTRAN 77 textbook to
appear so far, despite the attempts by the authors to discuss simu
taneously structured programming techniques. It is good valu§
particularly in paperback but will probably appeal more to thz:'
programmer updating to FORTRAN 77 than to the novice. oo

D. M. VALLANCE (Salforcg

e

Issues in Data Base Management by Herbert Weber and Anthony ?
Wasserman, 1979; 263 pages. (North-Holland, $34.25)

1senbt

I recommend this book to anyone wanting to get up-to-date with
current issues in data base management. It provides a selection of
some of the particularly relevant papers and panel sessions at thb
Very Large Data Base conference, Berlin 1978. =

To read all the papers presented at that conference would be a vex‘g
daunting prospect—I know, I was present and tried! However, £
believe this book to be readable, particularly if one starts with the
comments by panel members prior to studying the principal survey
paper of the session. The comments provide a few hooks on which to
hang ideas and that is important when trying to catch up with read-
ing late in the evening!

There are five subject areas: data base design; data base software
engineering; distributed data base systems; impact of new tech-
nologies, and data base security and privacy. The survey papers
present the problems and achievements in each area whilethe panel-
list’s comments take up the more controversial points.

Readers should not expect to find many answers to the issues raised ;
what they will get is an appreciation of the factors involved and some
idea of trade-offs. The fainthearted may decide to keep well away
from the data base area! The more courageous reader will have
plenty of ammunition to fire at the data base salesman, particularly
in the dlstrlbuted data base or the security field.

PeTER H. PROWSE (London)

The Computer Journal Volume 23 Number 2

