A transformation on ordered trees

B. Dasarathy* and Cheng Yangt?

The paper introduces a new transformation on ordered trees which is used to compute a few average
properties of ordered trees. The properties that are studied are: (a) the average path length of an
ordered tree with 7 nodes, (b) the average number of terminal nodes of an ordered tree with »# nodes and
(c) its average height. An algorithm is also presented to effect this transformation on any ordered tree 7.

The algorithm is linear in the number of nodes in 7.

(Received October 1978)

1. Introduction and preliminaries

Using a new transformation on ordered trees and Knuth’s
natural correspondence between an ordered tree and a binary
tree (1968, pp. 332-333), a few combinatorial properties of
ordered trees are explored. Given that an ordered tree has n
nodes, the properties under consideration are: its average path
length, its average number of terminal nodes and its average
height.

The definitions given here are based on Knuth (1968). A
binary tree is a finite set of nodes which is either empty or
consists of a root and two disjoint binary trees called the left
subtree and the right subtree. A tree T is a non-empty set of
nodes such that

1. There is one specially designated node called the root of the
tree, root (T'), and

2. The remaining nodes (excluding the root) are partitioned
into m >0 disjoint sets T}, . . . , T,,, and each of these sets in
turn is a tree. The trees T, . . . , T,, are called subtrees of the
root.

If the relative order of the subtrees T, . . ., T, in (2) of the
definition is important, we say the tree is an ordered tree. For
the sake of brevity, the term ‘tree’ will be used for an ordered
tree in subsequent discussion.

A forest is an ordered set of trees. Horowitz and Sahni (1976)
have given the following transformation to represent a forest as
a binary tree. K T, . . . , T, is a forest of trees, then the binary
tree corresponding to this forest, denoted by B(Ty, . . . , Ty),
(a) is empty if n = O;

(b) has root equal to root (T); has left subtree equal to

B(Tyy, Ty, - . . » Ty,) Where Ty, . . ., Ty, are the subtrees
of the root (T},); and has right subtree B(T5, . . ., T,).

Conversely, it is easy to see that any binary tree corresponds to
a unique forest of trees by reversing the process. This cor-
respondence between a binary tree and a forest will be referred
to as a ‘natural correspondence’ in this paper.

The path of a node v from the root (T) of a tree T'is a sequence
of nodes vy, vy, Uy, - + - » Ug—1> U Such that v, = root (T),
v, = vand each tree with v;, , as the root is a subtree of the tree
with root v, i = 0, 1, ..., k — 1. The path length of a node v
from the root of a tree is the number of nodes in the path of
that node from the root minus 1. The average path length of a
tree with n nodes is the sum of the path lengths of all nodes of
all possible trees with n nodes divided by n and the number of
trees. The height of a tree is defined to be the maximum of all
the path lengths in the tree. The average height of a tree with n
nodes is the average of heights of all possible trees with n nodes.
The degree of a node is the number of subtrees of that node. A

node of degree zero is called a ferminal node. A tree traversal is
a method to trace all the nodes of the tree.

In a similar manner, path, path length, average path length,
height, average height, degree, terminal nodes and traversal can
be defined for binary trees. The average path length and the
average height of a binary tree with n nodes have been studied
by Knuth (1968) (p. 590, p. 329). De Bruijn, Knuth and
Rice (1972) have studied the average height of an ordered tree.
The corresponding problem for an ‘unordered tree’ (free tree)
has been solved by Renyi and Szekeres (1967).

The total path length of a tree, i.e. the sum of the path lengths
of all nodes of a tree is a quantity of interest in many areas,
such as information storage and retrieval and sorting and
searching (Hibbard, 1962). The average number of terminal
nodes is worth the investigation because the product of the
average number of terminal nodes and the average height
provides an upper bound on the (average) number of searches
required if the information is stored in the terminal nodes
alone.

2. A transformation on trees
A ‘reflection-transformation’ on a tree T will be defined using
reflection-transformation on a binary tree B. We obtain
reflected binary tree BX from a binary tree B by interchangin
for each node of B except its root the left and right subtrees of
that node. =
Using the natural correspondence between a tree and a binary %
tree as defined in Section 1 and the transformation on a binary &
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Fig. 1 Illustration of transformation from T to TR
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B B =
PYT) + P(T® =23 =P"B) + (n — 1)
P(M)=1+14+1+14+2+2+ =28
P(TH=1+2+2+3+3+4=15
P‘B)=1+2+34+3+4+4=17
n=17
Fig. 2 Illustration of Theorem 1
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We first use the natural correspondence to find a binary tree for
the given ordered tree T, then we use the reflection-transform-
ation to obtain BX from B. We use the natural correspondence
again to obtain T® from BX. The reflection-transformation thus
defined produces a unique TX for each 7, and further maps T®
back to T. The example in Fig. 1 illustrates the transformation.

3. Applications

We first compute the average path length of a tree as an
application of our transformation. As noted in Section 1, the
average path length of a tree with n nodes is the sum of the path
lengths of all nodes of all possible trees with » nodes divided
by n and the number of trees.

Theorem 1

Let T be a tree with n nodes, T be its reflected tree and B be the
binary tree for T using the natural correspondence and let
PY(T), P"(T*®) and P"(B) be the total path lengths of all nodes, of
T, TR and B respectively. Then

P™T) + PY(T®) = P"(B) + n — 1.
The statement of the theorem is made clear with the example
in Fig. 2.

Proof
Let P (B), P(T), P(T*) stand for the path lengths from the
root to a node v in B, T and T® respectively.

Consider P,(B). In general, P,(B) consists of two kinds of
edges, vertical and horizontal. It is easy to see by referring to
Fig. 2 that the number of vertical edges in the path from the
root to v in B is equal to the path length P(T). Similarly the
path length is equal to the number of vertical edges in the path
P(T*) from the root to v in BR. Since B® is obtained from B by
exchanging the left and the right subtrees of each node except
the root, the number of vertical edges in the path from the root
to vin BR is equal to the number of horizontal edges in the path
from the root to v in B plus 1. Thus

Since P"(B) = Y P,(B), from (1), we obtain
v # root

P"(B) = P™T) + P"(T®) — (n — 1), i.e.
PYT) + PYT®) = P"(B) + (n — 1).

Corollary 1
P™(T) + P"(T®) = P""Y(B’) + 2(n — 1), where B’ is the (n—1)
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node-binary tree obtained from B by deleting its root.

We now use the above corollary to compute the average path
length of a tree with n nodes. The average path length of a tree
is obtained as follows: we consider all possible n-node trees to
be equally likely. For each tree, we compute the total path
length of that tree. The average path length is the sum of the
total path lengths, summed over all possible trees, divided by
the product of the number of trees and n.

Theorem 2
The average path length of a tree with # nodes, considering all
trees with # nodes to be equally likely, is

~ 1)2 Jnn — 1/4‘/75—1/2.

Proof
From corollary 1, we obtain

23 PYT) = Y P Y(B) + 2(n — 1)*b,—,, )
T B’
where Y and Y respectively stand for the summation over ag
= -

B
possible trees with n nodes and all possible binary trees wit§
(n — 1) nodes and where b,_, is the number of binary treeg

with (n — 1) nodes. <
But g

3 P"~Y(B!) = 4" — (3n — 2)/n(>"~2)n(Knuth, 1968, p. 590}
n—1

&
From (2) and (3), and using the known result
b,-, = (1/n) 3*=») (Knuth, 1968, p. 389) (

we obtain
Y PAT) = 12[4"" — G2

Since the total number of trees with n nodes is also;l 2n—s
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(Knuth, 1968, p. 389), the average path length of a tree wi

n nodes is then =
1/2) (4G — 11 €3]

The proof of the theorem is concluded with the substitution ¢f
the stirling formula, n ! ~ n"e™"/27n, in (5). §
Next, we compute the average number of terminal nodes in @
tree with n nodes. @
&

Theorem 3 8

Let T be a tree with n nodes, and let T® be the tree obtained
from T by the reflection-transformation. Then the number &f
terminal nodes in T and TX, denoted by E(T) and E(T™,
satisfies S

E(T) + E(T® =n. (

v @u

1ud

Proof =
We use the natural correspondence to establish the followix%
relation: a node in 7'is a terminal node if and only if under the
natural correspondence the corresponding node in the binary
tree B has no left son, and a node in TR is a terminal node if
and only if the corresponding node (except the root) in B has
no right son.
Thus

E(T) + E(T®) = 2*dy, + 1*d, + 0*d, — 1,
where d, is the number of nodes in the binary tree B having
degree i. Since B is a tree with n nodes, we have

the number of edges = 2*d, + d; = n — 1, ©)
and

the number of nodes = d, + d;, + d, = n. ®)
From (7) and (8) we obtain

dl + 2do —1=n N

The Computer Journal Volume 23 Number 2



and
E(T) + E(T® = 2d, + 1*d, + 0*d, — 1
=n,

From the above theorem, we state this useful and interesting
corollary.

Corollary 2
The average number of terminal nodes of a tree with n nodes is
nf2.

Proof

Let k be the number of trees with # nodes and let the & trees be
denoted as Ty, T, . . ., T;.. Summing (6) over all possible trees
with n nodes, we obtain

é)lE(T,-) +~§1E(T'B) = in. )
Since 3 E(T;) = X E(TF), (9) reduces to
2% E(T) = k*n. (10)
i=1

Assuming all trees to be equally likely, i.e. dividing (10) by &,
the average number of terminal nodes in a tree with n nodes is
then n/2.

The following corollary provides a sufficient condition for a
tree with n nodes to have exactly n/2 terminal nodes.

Corollary 3
If the reflection-transformation of a tree T'is the same as 7, i.e.
T = T¥X, then it has exactly n/2 terminal nodes.

Proof
The proof is trivially obtained by substituting 7% = T in (6).

As noted in Section 1, de Bruijn, Knuth and Rice (1972) have
computed the average height of a tree with n» nodes. Knuth
(1968, p. 329) has also studied the average height of a binary
tree using the generating-function technique. However, as an
application of our reflection-transformation, we relate these
two quantities in the form of an inequality.

The height of a tree is defiaed to be the maximum of the path
lengths from the root to the terminal nodes of the tree. In a
binary tree consisting of vertical and horizontal edges, the
vertical (horizontal) height 2V (hH), is the maximum number of
vertical (horizontal) edges among all paths from the root to the
nodes.

It can be seen that the height 4"(T) of a tree with n nodes is
equal to V"~ 1(B’) + 1, where B’ is the binary tree obtained
from B by deleting its root (see Fig. 2), i.e.

h™"(T) = V" Y(B) + 1. (1)
Similarly, we note
h™(T® = hH" Y(B") + 1. (12)
From (11) and (12), we obtain
h"(T) + B(T® > h""Y(B") + 1. (13)

Summing (13) over all trees with n nodes and all binary trees
with (n — 1) nodes, we obtain

23X K(T) > T " Y(B) + b,_;. (14)
T B’

The inequality (14) yields the following theorem relating the
heights of a tree and a binary tree.

Theorem 4
The average height of a binary tree with (n — 1) nodes is less
than twice the average height of an ordered tree with n nodes.

4. A linear algorithm to obtain TR}
In this section we suggest an algorithm to obtain 7R from T, The
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List Father Sons and links to Son’s List

for node

A A B* link C link D link E link 0
to to to to
B’s C’s D’s E’s
list list list list

B B* 0

CcC C F link G link O
to to
F’s G’s
list list

D D 0

E FE 0

F F 0

G G 0

*This duplication of a node value in two places is not really
needed.
The skeleton algorithm given below will produce a similar
adjacency list for TR
Fig. 3 Adjacency list for 7 in Fig. 2
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algorithm is linear in the number of nodes in 7. Since thg
reflection-transformation of TR is T, the algorithm also mapg
T® back to T. Such a linear algorithm will be very useful in arg’
application where T® might be preferred in place of T. Considei‘;
a situation where, for a given tree T, the height of T® is mucks
less than the height of T'and the nodes of T have to be traversed®
often. Since the height of a tree determines the maximum stacl§
size used in algorithms that traverse the tree (Knuth, 19682
pp. 317-318, p. 329), T® may be a more appropriate choice foE.
traversal than 7. e

Our algorithm to obtain T® from T is based on the following’
fact: in the reflected tree T®, a node X hasitssons Y,, Y,,. .. 8
Y, if and only if Y; is the ‘first son’ of Y;_, in the original tre¢;
Tfor all i > 2 and if X is the root in T, then Y, is the first soms.
of X and if X is not the root, then Y, is the ‘next right brother’=
The input to the algorithm is an adjacency list for 7. Fog:
example, the tree T in Fig. 2 will have the representation showrﬁg
in Fig. 3.

1. Algorithm to obtain TR from T
Let S(1), S2),...,S(n — 1) be a (n — 1) dimensional vector
X and Y two temporary variables and K a pointer.

Z8€e/L9LIZIE

6 Aq 9¢8

1. (set the root of TR and its first son)
Set X« (value at the) root of T, Y« (value of the) first son of Xfcg
and K«O0 (if X does not have any son, go to step 3; the tree has;

only one node). ;

>
2. (get all the remaining sons of X) ) S
K<K + 1, S(k)« Y, Y«first son of Y. Repeat this step until ¥
does not have any son, i.e. Y71 = 0. N

3. (add the list for X to the adjacency list of T® being formed)
If K71 = 0, then append the entry. ‘X S(1) S(2) ... S(k) 0’ to
the adjacency list of T®; else the entry to be added is ‘X 0.

4. (get the node next to X in the adjacency list of T and set its first
son)

If the adjacency list of T is not exhausted, set X<« next non-
zero element in the adjacency list, Y+« next brother of X and
K0; else stop.

5. If Y71 = 0, then go to step 2; else go to step 3.

Next, we analyse the algorithm for its computational growth.
For any tree, step 1 takes only a constant amount of time, since
it is executed just once in setting up the root and its first son in
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TR, Step 2, in essence, computes all but the leftmost son of a
node X. Each of these sons is obtained with one table look-up.
The total number of sons cannot exceed n, since there are only
that many nodes in the entire tree. Thus the growth of step 2 is
O(n). Step 3 merely sets up the sublist of sons for each node in
the adjacency list of T®. Hence step 3 also takes O(n) time. In
step 4, we find the first son of each node (except the root). The
first son of a node in T® is the next node of the node under
consideration in the adjacency list of T. Hence the growth of
step 4 is also linear. We determine in step 5 whether a node in
T* has a son other than the leftmost son found in step 4. This
step is executed exactly (n — 1) times. Thus the growth of the
entire algorithm is 0(n).

It can easily be seen that the storage requirement of the
algorithm is also linear in the number of nodes. In step 3 of the
algorithm, the entry X S(1) S(2) . .. S(K) 0 is added to the
adjacency list of T®. However, each S(7) has to be accompanied
by a link where the link should point to the beginning of the
sublist where S(I)’s sons are stored. But this pointer to the sons
of S(Z) will not be available when the sons of X are computed.
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The following modification to the algorithm will get around this
problem; the growth of the algorithm will still be linear. In step
0 of the algorithm, as a preprocessing step, change the values of
the nodes to 1, 2, . . ., N in the adjacency list of 7. Store these
values in a one dimensional array such that if a value v is
changed to the integer J, then S(J) contains v. This array will be
used to obtain the original values of the nodes at the end of the
algorithm. Let R be a n x 2 array. The array entry R(J, 1) can
then be used to store the location of the link for the list of sons
of node J in the adjacency list of T®. The entry R(J, 2) can be
used to store the actual value of the link to the sons of J when it
becomes available. Storing this information in R takes only a
constant amount of time for each J. When we exit the algorithm
in step 4, we can complete filling in the links in the adjacency
list of TR using R again. This can be done in linear time for all
links.
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Book reviews

Machine and Assembly Language Programming of the PDP-11 by
Arthur Gill, 1979; 191 pages. (Prentice-Hall, £10-75)

This book is an expensive, slim volume which gives a very sound
introduction to the PDP-11 machine organisation and programming.
The author recommends that the reader be equipped with the
manufacturer’s processor, assembler and peripherals handbooks in
order to undertake the exercises set in the text and also expects the
reader to have encountered the basic concepts of algorithms, flow-
chart and stored program computer.

He commences with a strange first chapter which is a general review
of number systems and various conversion algorithms—the reviewer
would, however, admit its usefulness. It might have been better as an
appendix referred to as necessary. The second chapter introduces the
basics of PDP-11 machine organisation showing how the memory
can be addressed by byte and by word (two bytes)—the even
addresses. The general machine registers and peripheral registers are
also introduced. The peripherals handled are limited to the console
keyboard, console printer and line clock. The third chapter contrasts
numbers and characters introducing integer, floating point and string
representations. It is the reviewer’s experience that students always
have difficulty distinguishing coded representations from numeric
value representations and the early emphasis on this in this text is to
be applauded. The fourth chapter completes the groundwork for the
rest of the text, dealing in full with the differing instruction forms and
lengths and the various forms of addressing. The chapter includes
several example coding sequences.

Having completed the machine code treatment, Chapter 5 intro-
duces assembly language programming. Chapter 6 deals with stacks
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and subroutines introducing the system stack for the control of sub<;
routine linkage and exit. The remaining chapters are: arlthmetn‘ag
operations, traps and interrupts, Assembler and Linkage EdltOl’m
Advance (Macro) Assembly techniques.

This is a well developed text with well developed examples. Thég
author emphasises good programming style and dedicates adB
appendix to this. The book is to be recommended for anyone w1sh1n%
to learn something of the PDP-11 class of computer.

A. H. WIsE (Lelcester)J>
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Assembly Language Fundamentals by Rina Yarmish and J. Yarmxsh;v
1978 ; 768 pages. (Addison-Wesley, £13-50)

This book sets out to teach Assembler for IBM/360 or /370 machines,
under OS/VS and DOS/VS. The material is introduced gradually and
is well explained, with many examples and copious exercises.

My only criticism is that it is rather too much of a good thing. The
authors start from square one, assuming that the reader may not
even know what a computer is like. Perhaps they would have served
most of their readers by assuming at least some background in
computing. Another economy could have been made by making the
book more of a bridge to the manufacturer’s manuals. As it is, the
book cannot hope to cover everything, and the reader is in the end
referred to the manuals.

If the aim of the book had been thus curtailed, it would have been
just about as useful, though greatly reduced in bulk and price. But
perhaps it is in the publishers’ interest to produce expensive tomes ?

A. CoLIN DAY (London)
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