An efficient predictor-corrector algorithm
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We develop a stable predictor-corrector algorithm for the solution of systems of first order differen-
tial equations. The algorithm requires two function evaluations at each step.
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Introduction
We give a new, efficient and stable predictor-corrector al-
gorithm for the numerical solution of nonlinear systems of
first order differential equations. The method is useful when
the step size must be kept constant. Only two function evalua-
tions are needed to compute the solution at each point.
Numerical experiments have shown it to converge much more
rapidly than the traditional second order predictor-corrector
methods. In general it converges only somewhat less slowly
than the classical 4th order Runge-Kutta algorithm (which
requires four function evaluations at each step).

The algorithm
Consider the system of first order differential equations
y' = F(,y) 0))
with initial value
W(to) = yo

where y is an n vector to be determined and F{(¢, y) is a contin-
uous n vector function of ¢ and y. To find the solution at t

1. Choose a step size h.

2. Find the solution y, to the equation at t, = t, + h
(say by a Runge-Kutta algorithm).

3.Seti =1ty =t; + hy; = Fty, yo)
Yy = F(t;,y,)and I = 1
4 Letl = —1
5. Use the predictor
Fivr = Yiey + 20y
to obtain an approximation to the solution at
tivi =ty + (@ + Dh
6. Compute j,/, = F(t;sq, Jiry)
7. If I = —1 go to step 12 otherwise go to step 8.
8. Use the corrector
Vier = yi + Sh(y; + 7,1,)
to find an approximate solution at ¢, ,.
9. Compute y;/, = F(t;1y, Yi+1)
10. Use the corrector of step 8 again to obtain
YVier =i +5h (v +y,])
11. Go to step 14
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12. Use the corrector
Vier = Vi1 + h(O; L, + 4y +7.0)/3
13. Compute
Vis1 = Fltiv1s Yisy)

14. If t;., = t, we stop, otherwise we let i =i + 1 and
return to step 4. 5
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Justification of the algorithm 8
Solving Equation (1) is equivalent to solving the Volter ra
integral equation 3
t =

90 = yo + [ Fsy(os. @

to 5

Now if the interval [#,, t] is partitioned into subintervals gf
length 4 then the following numerical integration technique s
appropriate for the evaluation of the right hand side of (
When the number of subintervals are even we use the com-
pound Simpson’s quadrature rule and when it is odd we use
the compound Simpson’s rule until the last interval and theil
we use the trapezoid rule on the remaining interval. T
method is numerically stable (Kershaw, 1974). In (Westrei
and Cahlon, 1979) it is shown that this method is equivalent
the alternate corrector method used in our algorithm.

Numerical results
As an application of our algorithm we considered the equati

yu _ 2y3 — 0
»0) = 1.
y(©) = -1
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which has the exact solution y(tr) = 1-/(1 + t). We solved t
equation on the interval [0, 10] for step sizes & = 0-1, 0-08;
0-05, 0-025, 0-01 by converting it to a first order system. At
each partition point we measured the deviation between the
computed solution and the real solution. The largest of tl@
absolute values of the deviations we called the maximum errop;
The solution at the second point was found by the classxcﬁ
4th order Runge-Kutta algorithm. The results appear in the
following table

h maximum error
01 1-49 E-02
0-08 7-79 E-03
0-05 1-67 E-03
0-025 1-36 E-04
0-01 4-03 E-06
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